Combining retinal and choroidal microvascular metrics improves discriminative power for diabetic retinopathy

Bingyao Tan,1,2,3 Nicole-Ann Lim,1,4 Rose Tan,1,5 Alfred Tau Liang Gan,1 Jacqueline Chua,1,2,5,6 Simon Nusinovici,1,6 Chui Ming Gemmy Cheung,1,5,6 Usha Chakravarthy,7 Tien Yin Wong,1,5,6 Leopold Schmetterer,1,2,3,4,6,8 Gavin Tan1,5,6

ABSTRACT

Purpose To use optical coherence tomography angiography (OCTA) parameters from both the retinal and choroidal microvasculature to detect the presence and severity of diabetic retinopathy (DR).

Method This is a cross-sectional case–control study. OCTA parameters from retinal vasculature, fovea avascular zone (FAZ) and choriocapillaris were evaluated from 3 × 3 mm2 fovea-centred scans. Areas under the receiver operating characteristic (ROC) curve were used to compare the discriminative power on the presence of diabetes mellitus (DM), the presence of DR and need for referral: group 1 (no DM vs DM no DR), group 2 (no DR vs any DR) and group 3 (non-proliferative DR (NPDR) vs proliferative DR (PDR)).

Results 35 eyes from 27 participants with no DM and 132 eyes from 75 with DM were included. DR severity was classified into three groups: no DR group (62 eyes), NPDR (51 eyes), PDR (19 eyes). All retinal vascular parameters, FAZ parameters and choriocapillaris parameters were strongly altered with DR stages (p<0.01), except for the deep plexus FAZ area (p=0.619). Choriocapillaris parameters allowed to better discriminate between no DM versus DM no DR group compared with retinal parameters (areas under the ROC curve=0.954 vs 0.821, p=0.006). A classification model including retinal and choroidal microvasculature significantly improved the discrimination between DR and no DR compared with each parameter separately (p=0.029).

Conclusions Evaluating OCTA parameters from both the retinal and choroidal microvasculature in 3 × 3 mm scans improves the discrimination of DM and early DR.

INTRODUCTION

Diabetic retinopathy (DR) is a microvascular ocular complication of diabetes mellitus (DM), and a leading cause of blindness in working age population.1–4 The diabetes population globally is estimated to reach 366 million in 2030, with 34.6% having DR, and 7% having vision-threatening DR.5,6 The current classification and staging systems of DR (eg, modified Airlie House/Early Treatment Diabetic Retinopathy Study (ETDRS)5 or International Classification6) are largely based on examination of changes in the retinal vasculature since these vessels can be easily observed on ophthalmoscopy and colour fundus photography. However, with a new understanding of the pathophysiology and new imaging technology, these DR classification systems may need updates and revision.

Optical coherence tomography angiography (OCTA) has been used to detect retinal microvascular abnormalities associated with DR, such as enlarged and noncircular foveal avascular zone, capillary dropout and high vessel tortuosity,10–19 and is well poised to be added as a tool to aid classification of DR. OCTA has the advantages over traditional imaging modalities such as fluorescein angiography (FA) and indocyanine green angiography (ICGA) by being non-invasive and dye injection free, fast and can resolve vascular plexuses in individual layers.20,21

Choroidal vascular changes such as choroidal infarcts have long been described in eyes with DR,22–25 but these are infrequently quantified clinically or used to determine the severity of DR. Visualising choriocapillaris with FA and ICGA is difficult because of insufficient optical resolution along with limited depth information.26,27 Newer swept-source OCTA (SS-OCTA) systems with 1060 nm wavelength now enable choriocapillaris visualisation by precisely segmenting this monolayer plexus underneath Bruch’s membrane.28–31 Using such SS-OCTA systems, the choriocapillaris can be characterised by a dense capillary network interspaced by flow deficits (FD), also called flow voids. Recent studies have demonstrated choriocapillaris flow impairment in patients with DM with and without DR using commercial OCTA systems.11,16,19,32–35 Rosen described the FD size and number relationship into a power law distribution, whose parameters are altered in different DR severities.36 However, it is unknown if combining measures of the retinal and choroidal microvasculature would increase the discriminative ability of OCTA for DM and DR. The objective of our current study was to (1) evaluate retinal and choroidal microvascular parameters measured using an SS-OCTA system in patients with DM and stages of DR, and (2) to determine whether their combination could better detect the presence and severity of DR.

METHODS

Study participants

We conducted a cross-sectional study. For this analysis, we compared SS-OCTA measures in
three groups to evaluate the discriminative power of the OCTA metrics on the presence of DM, the presence of DR and need for referral: group 1 (no DM vs DM no DR), group 2 (no DR vs any DR) and group 3 (non-proliferative DR (NPDR) vs proliferative DR (PDR)).

The study was performed from April 2018 to July 2019 in a single tertiary eye centre, the Singapore National Eye Center, Singapore. Written informed consent was obtained from all participants. For DM participants, the inclusion criteria were patients aged ≥21 years old with type 2 diabetes >5 years duration, while the non-DM population included patients with no known DM. The severity of DR was assessed using two field fundus photography and the ETDRS DR grading scale. Exclusion criteria were glaucoma, age-related macular degeneration, significant media opacity or diabetic macula oedema. Inclusion criteria for the control participants were no self-reported history of diabetes and evidence of ocular pathology, including glaucoma, age-related macular degeneration or media opacity. IOL Master700 measured the axial eye length, and eyes longer than 26.5 mm were excluded.

This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Optical coherence tomography angiography

We used a prototype SS-OCTA system (PlexElite 9000, Zeiss Meditec, Dublin, California, USA) with a wavelength scanning speed is dependent on the scanning rate of the swept-source (100 000 Ascan/s), and the axial and lateral resolutions in tissue are 6.3 µm and 20 µm, respectively.

The same trained ophthalmic technician scanned all the participants. A 3×3 mm² scanning protocol centred at the fovea was applied, and each data volume consists of 300 A-scans and 300 B-scans. Each B-scan was repeated four times to generate OCTA images using an optical microangiography algorithm.

Motion-related artefacts were minimised by an integrated line scanning ophthalmoscope eye tracker during data acquisition. A review software (Zeiss Meditec) provided automated segmentation of retinal layers and retinal pigment epithelium (RPE). A manual correction was applied for the improper automatic segmentation and choriocapillaris layers were segmented by a standard protocol developed by Spaide (between 31 µm and 39 µm underneath RPE). Scans were excluded from further analysis if one or more of the following criteria were met: poor clarity images, weak local signals caused by obstacles such as vitreous floats, and excessive motion artefacts.

The quantification flowchart is shown in online supplemental figure S1. To quantify the vascular components of the retinal circulation, we manually outlined the area of the foveal avascular zone (FAZ) of the superficial and deep vascular plexus FAZ and obtained FAZ size and perimeter. Two annulus masks (500 µm and 1000 µm) were generated around the superficial FAZ, and one annulus mask (500 µm) was generated around the deep FAZ. Retinal angiograms were binarised by a global threshold, and the area with perfusion was set to 1 whereas the background was set to 0. Perfusion density in each annulus was calculated as the perfused area per total annulus area. The binarised perfusion map was consequently skeletonised (Matlab function: bwskel) to shrink the vessel diameter down to 1 pixel, and vessel density in each annulus was calculated as the vessel length per total annulus area.

The extracted choriocapillaris angiograms were first compensated using its corresponding morphological images, followed by a binarisation using a threshold of mean—SD. The size (Sz) of each FD was computed, and a size-selective FD density (FDD) was calculated as:

$$FDD_{Th} = \frac{\sum_{i}^{N} Sz_i}{\text{Total Imaged Area}} \times (Sz > Th)$$

where Sz is the size of each FD, N is the total number of FDs in the image, and Th is the threshold used to binarise the image.

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control (n=27)</th>
<th>No DR (n=32)</th>
<th>NPDR (n=29)</th>
<th>PDR (n=14)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, (%)</td>
<td>15 (55.6)</td>
<td>22 (68.8)</td>
<td>21 (72.4)</td>
<td>11 (78.6)</td>
<td>0.41</td>
</tr>
<tr>
<td>Age, mean (SD), years</td>
<td>62.1±6.4</td>
<td>66.3±6.9</td>
<td>66.2±7.5</td>
<td>64.5±11.7</td>
<td>0.37</td>
</tr>
<tr>
<td>BMI</td>
<td>24.5±2.7</td>
<td>25.2±3.6</td>
<td>26.1±4.2</td>
<td>26.1±3.3</td>
<td>0.33</td>
</tr>
<tr>
<td>Hypertension, yes (%)</td>
<td>18 (66.7)</td>
<td>26 (81.3)</td>
<td>20 (69)</td>
<td>9 (90)</td>
<td>0.34</td>
</tr>
<tr>
<td>Systolic BP (SD), mm Hg</td>
<td>129.6±19.4</td>
<td>147.6±25.6</td>
<td>143.4±20.2</td>
<td>149.4±28.6</td>
<td>0.01*</td>
</tr>
<tr>
<td>Diastolic BP (SD), mm Hg</td>
<td>73.0±6.4</td>
<td>75.2±10.6</td>
<td>71.6±9.6</td>
<td>72.0±12.3</td>
<td>0.76</td>
</tr>
<tr>
<td>Diabetes duration (SD), years</td>
<td>NA</td>
<td>17.0±8.9</td>
<td>23.7±16.8</td>
<td>20.5±11.4</td>
<td>0.13</td>
</tr>
<tr>
<td>Haemoglobin A1c (SD), %</td>
<td>NA</td>
<td>7.0±1.0</td>
<td>8.4±1.7</td>
<td>8.6±1.7</td>
<td>0.001†</td>
</tr>
<tr>
<td>Creatinine (SD), µmol/L</td>
<td>NA</td>
<td>87.8±28.4</td>
<td>95.1±40.8</td>
<td>82.3±36.6</td>
<td>0.54</td>
</tr>
<tr>
<td>Serum glucose (SD), mmol/L</td>
<td>NA</td>
<td>9.2±4.3</td>
<td>11.0±5.0</td>
<td>11.7±4.1</td>
<td>0.21</td>
</tr>
<tr>
<td>Cholesterol (SD), mmol/L</td>
<td>NA</td>
<td>4.2±0.7</td>
<td>4.2±0.9</td>
<td>4.9±0.8</td>
<td>0.11</td>
</tr>
<tr>
<td>HDL cholesterol (SD), mmol/L</td>
<td>NA</td>
<td>1.2±0.2</td>
<td>1.2±0.3</td>
<td>1.3±0.4</td>
<td>0.52</td>
</tr>
<tr>
<td>Triglycerides (SD), mmol/L</td>
<td>NA</td>
<td>1.9±0.7</td>
<td>2.1±1.2</td>
<td>2.0±0.8</td>
<td>0.32</td>
</tr>
<tr>
<td>LDL cholesterol (SD), mmol/L</td>
<td>NA</td>
<td>2.5±0.7</td>
<td>2.4±0.6</td>
<td>2.9±0.8</td>
<td>0.05</td>
</tr>
<tr>
<td>Cholesterol ratio (SD)</td>
<td>NA</td>
<td>3.6±1.0</td>
<td>3.6±0.9</td>
<td>3.7±0.8</td>
<td>0.008‡</td>
</tr>
<tr>
<td>Axial eye length (SD), mm</td>
<td>NA</td>
<td>24.5±1.1</td>
<td>24.7±1.1</td>
<td>25.0±1.2</td>
<td>0.59</td>
</tr>
</tbody>
</table>

SI conversion factors: to convert cholesterol to mmol/L, multiply values by 0.0259.

Comparison was performed among diabetic groups.

Analysis of variance and post hoc Bonferroni comparing continuous variables and χ² test comparing categorical variables among study groups.

‡Significant between no DR and PDR; NPDR and PDR.

†Significant between no DR and PDR; no DR and PDR.

BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; DR, diabetic retinopathy; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.
Clinical science

where N was the number of FDs with size larger than Th, which was set to 200 µm², 400 µm², 600 µm², 800 µm², respectively. The filter size was decided based on previous reports on high-resolution in-vivo and ex-vivo choriocapillaris images.

Statistical analysis

We compared retinal and choroidal microvascular metrics between three groups: group 1 (no DM vs DM no DR), group 2 (no DR vs any DR) and group 3 (NPDR vs PDR). A generalised estimating equation (GEE) was applied to adjust the inter-eye correlation when calculating the association between OCTA metrics and DR severities. Receiver-operating characteristic (ROC) curve analysis was performed to assess the accuracy of each OCTA metric in discriminating different groups and between all classes. GEE cannot be applied in areas under the ROC curve (AUC) where assuming independent observations. CIs and hypothesis tests comparing AUC were calculated using a non-parametric approach to estimate SEs that allowed for correlation of measurements within an individual where both eyes were included. Briefly, bootstrapping was performed with individuals as the resampling units and stratified by DR severity to ensure a representative distribution across the DR severity spectrum in each bootstrap sample. All OCT metrics were preadjusted for age, gender and systolic blood pressure by using in place of the metrics, the residuals from a linear regression of each metric on these variables. The combined performance of OCT metrics was assessed by simultaneously including them as predictors in a logistic regression model and obtaining model predicted probabilities for each observation.

As the retinal and choriocapillaris metrics, especially five choriocapillaris metrics, were highly correlated with one another, we used principal components analysis to reduce them to fewer components that explain over 90% of the variation in the original metrics. Number of components were selected by inspecting scree plots—two components for choriocapillaris metrics were selected, respectively. These components were included in place of the metrics in a model evaluating the respective diagnostic accuracies of the retinal and choriocapillaris metrics. We reported all AUCs with their 95% CIs and considered p<0.05 a statistically significant improvement in model accuracy.

RESULTS

Statistical analysis

We compared retinal and choroidal microvascular metrics between three groups: group 1 (no DM vs DM no DR), group 2 (no DR vs any DR) and group 3 (NPDR vs PDR). A generalised estimating equation (GEE) was applied to adjust the inter-eye correlation when calculating the association between OCTA metrics and DR severities. Receiver-operating characteristic (ROC) curve analysis was performed to assess the accuracy of each OCTA metric in discriminating different groups and between all classes. GEE cannot be applied in areas under the ROC curve (AUC) where assuming independent observations.

RESULTS

Patient characteristics

A summary of participant characteristics is shown in table 1. The group with no DM with a mean age of 62.1 (6.4) years consisted of 27 participants who contributed a total of 35 eyes. In participants with DM the DR severity was classified into three groups: no DR (62 eyes from 32 patients), NPDR (51 eyes from 29 participants) and PDR (19 eyes from 14 participants). Higher HbA1c levels were associated with DR severity (p=0.001). There was no difference in body mass index (p=0.33), gender

Table 2 Quantitative metrics from retinal perfusion, FAZ and choriocapillaris

<table>
<thead>
<tr>
<th>OCTA metrics</th>
<th>No DM</th>
<th>DM no DR</th>
<th>NPDR</th>
<th>PDR</th>
<th>P trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retina 500 µm annulus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCP perfusion density, %</td>
<td>28.21±1.79</td>
<td>26.24±2.52</td>
<td>25.04±3.29</td>
<td>23.33±4.40</td>
<td><0.001</td>
</tr>
<tr>
<td>DCP perfusion density, %</td>
<td>18.17 (1.82)</td>
<td>18.48 (2.27)</td>
<td>17.11 (2.11)</td>
<td>16.07 (3.69)</td>
<td>0.003</td>
</tr>
<tr>
<td>SCP vessel density, %</td>
<td>21.39±1.51</td>
<td>18.48±2.27</td>
<td>17.11±2.12</td>
<td>16.07±3.69</td>
<td><0.001</td>
</tr>
<tr>
<td>DCP vessel density, %</td>
<td>4.61±0.36</td>
<td>4.05±0.56</td>
<td>3.78±0.53</td>
<td>3.48±0.69</td>
<td>0.007</td>
</tr>
<tr>
<td>Retina 1000 µm annulus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCP perfusion density, %</td>
<td>28.38±1.46</td>
<td>26.47±2.12</td>
<td>25.32±2.72</td>
<td>24.26±4.44</td>
<td><0.001</td>
</tr>
<tr>
<td>SCP vessel density, %</td>
<td>6.18±0.39</td>
<td>5.57±0.57</td>
<td>5.09±0.58</td>
<td>4.68±1.00</td>
<td><0.001</td>
</tr>
<tr>
<td>Superficial FAZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area, mm²</td>
<td>0.30±0.13</td>
<td>0.25±0.09</td>
<td>0.32±0.12</td>
<td>0.33±0.10</td>
<td><0.001</td>
</tr>
<tr>
<td>Perimeter, mm</td>
<td>2.16±0.50</td>
<td>2.26±0.46</td>
<td>2.88±0.94</td>
<td>2.97±0.63</td>
<td><0.001</td>
</tr>
<tr>
<td>Deep FAZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area, mm²</td>
<td>1.29±0.43</td>
<td>1.25±0.46</td>
<td>1.24±0.70</td>
<td>1.70±0.82</td>
<td>0.619</td>
</tr>
<tr>
<td>Perimeter, mm</td>
<td>6.62±1.49</td>
<td>6.42±1.26</td>
<td>6.69±1.70</td>
<td>6.69±1.07</td>
<td><0.001</td>
</tr>
<tr>
<td>Choriocapillaris flow voids density, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>16.08 (0.58)</td>
<td>16.42 (1.05)</td>
<td>17.06 (0.94)</td>
<td>17.63 (1.03)</td>
<td><0.001</td>
</tr>
<tr>
<td>>200 µm²</td>
<td>14.43 (0.66)</td>
<td>15.89 (1.02)</td>
<td>16.53 (0.89)</td>
<td>17.17 (1.13)</td>
<td><0.001</td>
</tr>
<tr>
<td>>400 µm²</td>
<td>12.13 (0.80)</td>
<td>13.67 (1.02)</td>
<td>14.40 (0.88)</td>
<td>15.35 (1.44)</td>
<td><0.001</td>
</tr>
<tr>
<td>>600 µm²</td>
<td>10.24 (0.89)</td>
<td>12.61 (1.08)</td>
<td>13.39 (0.94)</td>
<td>14.46 (1.50)</td>
<td><0.001</td>
</tr>
<tr>
<td>>800 µm²</td>
<td>8.74 (0.94)</td>
<td>8.28 (1.43)</td>
<td>9.36 (1.34)</td>
<td>10.77 (1.72)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

DCP, deep capillary plexus; DM, diabetes mellitus; DR, diabetic retinopathy; FAZ, fovea avascular zone; NPDR, non-proliferative diabetic retinopathy; OCTA, optical coherence tomography angiography; PDR, proliferative diabetic retinopathy; SCP, superficial capillary plexus.
(p=0.41), age (p=0.37), diabetes duration (p=0.13), the presence of hypertension (p=0.33), serum glucose (p=0.21), creatinine (p=0.54), cholesterol (p=0.11), high-density lipoprotein (HDL) cholesterol (p=0.52), low-density lipoprotein cholesterol (p=0.05) and triglycerides (p=0.32) among groups, but systolic blood pressure was higher in the PDR group than no DR group (p=0.001), and cholesterol ratio (total/HDL) was higher PDR group than no DR group (p=0.008).

Examples of OCTA images from retinal plexuses and choriocapillaris of patients with different DM and DR stages are shown in Figure 1. A retinal perfusion reduction in superficial capillary plexus (SCP) and deep capillary plexus (DCP) was associated with severer DR. Worsen DR was also associated with rarefaction of the choriocapillaris and increased number and area of large FDs. The quantitative analysis from retinal and choriocapillaris metrics is summarised in Table 2. Boxplots of the choriocapillaris and retinal OCTA metrics further highlighted the relationship between OCTA metrics and DR severities in online supplemental figure S2. As expected, worsening DR was associated with most parameters, but no trend was observed in the deep FAZ area (p=0.619). Interestingly, there was an initial non-significant increase in the DCP in eyes with DM but no DR. Moreover, flow deficit density (FDD) increased with DR severities, and setting a size selectivity on FDD could better stratify the DR severities.

Using both Pearson’s R and R², full correlation matrices are shown in online supplemental figure S3. Parameters from retinal vasculature, FAZ and choriocapillaris were not well correlated with severities, and setting a size selectivity on FDD could better stratify the DR severities. This difference was significant (p=0.546) from NPDR.

The discriminative power of choriocapillaris parameters was calculated as the average of all possible pairwise AUCs, i.e, no DR-NPDR and NPDR-PDR.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AUC (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DM vs DM no DR group 1</td>
<td>0.668 (0.530 to 0.805)</td>
</tr>
<tr>
<td>DR vs no DR group 2</td>
<td>0.673 (0.618 to 0.728)</td>
</tr>
<tr>
<td>PDR vs NPDR group 3</td>
<td>0.690 (0.515 to 0.866)</td>
</tr>
<tr>
<td>Multiclass†</td>
<td>0.682 (0.619 to 0.785)</td>
</tr>
</tbody>
</table>

The first two principal components of a principal components analysis of the five flow deficit density parameters. AUC, areas under the receiver-operating characteristic curve; DCP, deep capillary plexus; DM, diabetes mellitus; DR, diabetic retinopathy; FAZ, fovea avascular zone; NPDR, non-proliferative diabetic retinopathy; OCTA, optical coherence tomography angiography; PDR, proliferative diabetic retinopathy; SCP, superficial capillary plexus.
Clinical science

significant for group 1 (AUC: 0.579 (0.455 to 0.704) FDD all; 0.912 (0.839 to 0.985) FDD with size threshold, p<0.001) and multiclass DR detection (AUC: 0.762 (0.697 to 0.826) FDD all; 0.855 (0.806 to 0.905) FDD all, p<0.001).

Using a multivariable logistic regression model, AUCs with combined predictors were higher than AUC from any individual predictor. Excellent AUCs were achieved in differentiating DR groups and the performance of individual parameters are shown in figure 2. Retinal and choriocapillaris parameters yielded similar AUC in groups 2 and 3 and multiclass, but group 1 comparison was more accurate to choriocapillaris parameters (p<0.001). Combining all parameters significantly improved the discrimination in group 2 (0.907 (0.853 to 0.961) vs 0.861 (0.800 to 0.922), p=0.029), as compared with selecting the best predictor from each category.

DISCUSSION

In this study, we evaluated several OCTA metrics known to be affected in type II diabetes in the eyes of persons with and without DR. We examined retinal vascular perfusion density, vessel density, FAZ parameters and choriocapillaris parameters. We also evaluated a multivariable prediction model which combined OCTA parameters from retinal and choroidal microvasculature for DR diagnosis. We found that FDD with a size threshold better stratified DR severity, and our findings suggest that incorporating retinal and choroidal microvascular metrics improves the discriminative power of our models identifying eyes with no DR from those with DR.

Focal and diffuse rarefaction of choriocapillaris has been well documented in patients with diabetes using histology. OCTA allows quantification of the FDD in vivo with high reproducibility. It has elucidated some of the earliest changes in the retinal vasculature in DR. Notably, focal rarefaction was more prominent in the fovea and is generally due to an excessive change in the size of a few FDs. Consistent with the previous studies we found that increased FD density was strongly associated with the level of DR, and a significant difference was found between the no DM and DM no DR. The loss of the choriocapillaris or the decrease of the flow signal to the noise floor could result in the merging of the several small FDs into a large FD. This effect would decrease the number of small FD and increase the number of large FD, which could be described as a change of FD size and density relationship. By stratifying FDD by size, and simply calculating the FDD with a size threshold could increase the sensitivity of detecting the rarefaction from both focal and diffuse choriocapillaris degeneration in DR.

Multivariable models perform better than single biomarkers in discriminating most diseases, and in the field of ophthalmology, it has been adopted to predict glaucoma, myopia and DR. Recently, Ashraf et al. established a multivariable regression model using retinal OCTA metrics to increase the sensitivity and specificity in differentiating NPDR and PDR as well as no DR and no DM. Our study evaluated whether adding OCTA metrics from choriocapillaris will improve discriminatory performance. The retina receives its blood supply from two independent circulations, the retinal and choroidal circulations with different anatomical structures, flow rates and regulatory mechanisms. The retinal vasculature primarily nourishes the inner retina, while the choroidal vasculature mainly provides oxygen and metabolic supply to the outer retina, including photoreceptors. Compared with retinal vasculature changes, diabetic choroidopathy is less well characterised and its relationship to DR is less clear. The physiological differences between retinal and choroidal circulatory systems in terms of blood flow rate, oxygen saturation rate, haemodynamic properties, autoregulatory function, response to hypoxia and vessel permeability are factors that may explain the lack of correlation between...
study concept and design. JC, CMGC, UC, TWYL, LS and GT supervised the project. All authors contributed significantly to the final version. GT is the guarantor.

Funding This work was funded by grants from the National Medical Research Council (Estate Grant 107_A2017_SERI; OFIRG/0048/2017; OFLCC/001/2017; OFLCC/006/2018; TA/MOH-000249-00/2018 and MOH-OFIRG20nov-0014), National Research Foundation Singapore (NRFF2019-THE002-0006 and NRF-CRP24-2020-0001), A*STAR (A20H4b0141), the Singapore Eye Research Institute & Nanyang Technological University (SERI-NTU Advanced Ocular Engineering (STANCE) Programme), the Duke-NUS Medical School (Duke-NUS-KP(c)coll/2018/0009A) and the SERI-Lee Foundation (LF1019-1) Singapore.

Competing interests GT reported receiving travel support from Carl Zeiss Pte Ltd; receiving personal fees and consultancy fees from Novartis; receiving grants from Bayer AG and Santen Pharmaceutical Company, Ltd; and receiving travel support from Alcon outside the submitted work.

Patient consent for publication Consent obtained directly from patient(s).

Ethics approval This study involves human participants and was approved by SingHealth Centralized Institutional Review Board SGH DN001 and conducted in accordance to Declaration of Helsinki. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request.

Supplemental material This content has been supplied by the author(s). It includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any errors and omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Bingyao Tan http://orcid.org/0000-0002-6532-9603
Jacqueline Chua http://orcid.org/0000-0002-6474-5293
Simon Nusinovic http://orcid.org/0000-0002-9599-5818
Chui Ming Gemmy Cheung http://orcid.org/0000-0003-3358-3516
Tien Yin Wong http://orcid.org/0000-0002-8448-1264
Leopold Schnitterer http://orcid.org/0000-0002-7189-1707

REFERENCES

Spaide RF. 2017;58:999–1008.

