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in case of poor quality, ideally while the patient is still on-site. 
This saves time and reduces burden for both the examiner and 
the patient, avoiding unnecessary appointments. This applies 
for clinical practice as well as multicentre study settings, where 
images are uploaded to a central reading centre.

Another field of application beyond the manual analysis by 
clinicians is the preprocessing of images for artificial intelligence 
(AI) analyses. When applied to poor quality images, AI algo-
rithms are often unstable or completely fail to produce mean-
ingful predictions. Assuring adequate image quality for further 
processing ensures proper functionality of the model.

In this study, we developed an AI-based approach for fully 
automated quality assessment of CF and FA images, predicting 
four (contrast, focus, illumination, shadow & reflection) and 
three (contrast, focus, noise) modality specific image quality cate-
gories for each input image (figure 1). In addition, the models 
provide an uncertainty score for each prediction, allowing better 
interpretability of the model output. Beyond a quantitative 
and qualitative evaluation on a heterogeneous dataset, external 
dataset and human grading, we also provide a clinical trial use-
case evaluation on complete image series of patient visits.

MATERIALS AND METHODS
Image datasets
Images and manual annotations provided by the Vienna Reading 
Center (VRC) from large prospective multicentre trials were 
used forming two different datasets, one for CF and one for FA. 
The datasets cover a variety of diseases, including age-related 
macular degeneration, diabetic macular oedema and diabetic 
retinopathy. The images have been acquired by more than 200 
clinical sites and different manufacturers. Varying acquisition 
modes result in heterogeneous field of views. Per standardised 
protocol of the VRC, the field of view is always 30°–60° and 

always 3–16 images per eye that just show fields that are rele-
vant for each disease. Pixel resolutions range from 496×512 to 
6000 × 4000 pixels.

We used two different types of manual annotations: first, one 
senior grader (highest of five levels) generated binary annota-
tions, classifying images for usage within clinical trials as good/
poor quality within each category. These labels were used for 
training the AI model together with samples from a previous 
work,5 annotated in the same categories by the same graders 
without a label on overall quality. The second type of label was 
used for evaluation. A retina specialist, who is also an experi-
enced image grading supervisor at the VRC, assessed the image 
quality for each category using a Likert scale from 1 (best) to 5 
(worst). This fine-grained scale was both employed for valida-
tion and test set, allowing a more detailed assessment of the AI 
model, provided in the online supplemental file 1.

This results in two datasets: ‘CF quality’ consists of 2272 CF 
images from 281 visits from 248 patients. Each image was assessed 
in the categories ‘contrast’, ‘focus’, ‘illumination’, ‘shadow & 
reflection’, while 81% of all images were assessed in ‘overall 
quality’, with a respective share of 0.37/0.59/0.21/0.61/0.38 poor 
quality labels (0.43 in average). The second dataset ‘FA quality’ 
comprises 2492 images from 511 visits from 457 patients. FA 
annotations contain labels for the categories ‘contrast’, ‘focus’, 
‘noise’ and for 74% of all images ‘overall quality’, with a share 
of 0.43/0.62/0.27/0.56 (0.47 in average).

To evaluate inter-reader variability and provide an additional 
comparison for the proposed AI model, a second senior level 
grader manually annotated the image quality using the afore-
mentioned Likert scale on the test set.

For external validation of the CF model, we use the public 
Eye-Quality (EyeQ) Assessment Dataset,6 which provides image 
quality labels ‘Good’, ‘Usable’ and ‘Reject’.

Figure 1  Overview of the proposed image quality assessment (IQA) approach. An input (A) colour fundus (CF) or (B) fluorescein angiography 
(FA) image is processed by a deep neural network and outputs a quality score for each target category, representing the probability of good quality 
(depicted in grey). A quality score of 1 relates to worst possible quality, represented as full grey bar. In addition, the model also provides uncertainty 
scores for each prediction, indicating how confident the model is about its quality score (illustrated in blue on the right-hand side).
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For the additional clinical trial use-case evaluation, the two 
datasets ‘CF visit quality’ and ‘FA visit quality’ were used. For 
a subset of the ‘CF quality’ and ‘FA quality’ validation/test sets, 
the single images are extended through full image stacks of the 
respective visit. For both datasets, each visit was manually anno-
tated by graders of different levels assessing the overall image 
quality of the entire visit with a binary label of good/poor quality. 
This highly subjective grading can depend on the visual percep-
tibility of a various number of images and their relevance for 
conducting the corresponding underlying study from a clinical 
point of view. To create a balanced dataset, all good quality visits 
and the same amount of randomly selected poor quality samples 
have been used. This resulted in 1206/66/65 and 3116/106/104 
images/visits/patients for CF and FA, respectively, following the 
same validation/test split as the ‘CF quality’ and ‘FA quality’ 
datasets. Additional dataset details are included in the online 
supplemental file 1.

Technical setup: deep learning method
The developed AI approach predicts the probability of good/
poor quality of CF or FA images for multiple categories in addi-
tion to the ‘overall quality’, allowing a better reasoning and 
interpretability for the human operator. Moreover, the model 
provides an uncertainty score for its prediction, using Monte 
Carlo Dropout.7 Here, dropout layers stay activated for the 
evaluation. Inference is conducted 16 times for a single sample, 
using the average of the predicted probabilities as final proba-
bility score and the variance as corresponding uncertainty esti-
mate. It is important to emphasise that this uncertainty indicates 
the confidence of the model regarding its predicted probability 
score, indicating to which extent we can trust the prediction of 
the model, and not the likelihood of good/poor quality. An over-
view of the presented method is shown in figure 1.

The structure of the convolutional neural network (CNN) 
follows a ResNet-18 architecture,8 with additional dropout layers 
in each block. We use a transfer learning strategy, pretraining the 
network on the natural image database ImageNet.9 Details of 
the architecture and training are provided in the online supple-
mental file 1.

Experimental set-up
Both datasets (‘CF quality’, ‘FA quality’) were split into a 
training, validation and test set on a patient level, the same 
patient occurring only in one data subset. The training sets 
consist of data samples with binary labels. For samples without 
a label on ‘overall quality’, no loss was calculated for this cate-
gory and only model weights for the remaining categories were 
adapted. The data with more fine-grained annotations were 
randomly split into validation and test set with an approxi-
mate ratio of 1:2. This resulted in a train/validation/test split of 
1922/87/263 images from 89/40/119 patients for ‘CF quality’ 
and 2055/116/321 images from 70/100/287 patients for ‘FA 
quality’.

The training set was used for training the model, while hyper-
parameter and model selection were based on the validation 
performance. The test set was used to evaluate the final perfor-
mance of the model. For comparison, we evaluated the anno-
tations of the second grader, using the annotations of the first 
reader as ground truth.

A comparison of the presented AI method with a handcrafted 
feature-based machine learning approach5 based on Pires Dias et 
al10 is provided in the online supplemental file 1.

Table 1  Results of the artificial intelligence (AI) models and the 
second human grader evaluated on the test set for (A) colour fundus 
(CF) and (B) fluorescein angiography (FA)

Accuracy Precision Recall F1-score AUC-ROC AUC-PRC

(A) CF

Contrast*

 � Manual 0.777 0.553 0.938 0.696 0.828 0.791

 � DL 0.852 0.653 0.977 0.783 0.956 0.903

Focus*

 � Manual 0.816 0.660 0.982 0.789 0.852 0.849

 � DL 0.905 0.794 0.986 0.880 0.974 0.959

Illumination

 � Manual 0.847 0.954 0.367 0.530 0.684 0.748

 � DL 0.656 0.400 0.921 0.558 0.865 0.737

Shadow and reflection

 � Manual 0.705 0.490 0.940 0.644 0.768 0.732

 � DL 0.731 0.517 0.806 0.630 0.854 0.751

Overall quality

 � Manual 0.904 0.849 0.958 0.900 0.912 0.928

 � Deep 
Learning AI 
model

0.919 0.937 0.879 0.907 0.963 0.966

Average*

 � Manual 0.771 0.590 0.946 0.717 0.819 0.796

 � Deep 
Learning AI 
model

0.813 0.660 0.914 0.751 0.922 0.863

(B) FA

Contrast*

 � Manual 0.651 0.429 0.973 0.596 0.745 0.709

 � Deep 
Learning AI 
model

0.775 0.549 0.840 0.664 0.882 0.717

Focus*

 � Manual 0.672 0.531 0.917 0.673 0.718 0.748

 � Deep 
Learning AI 
model

0.818 0.747 0.762 0.755 0.880 0.802

Noise

 � Manual 0.773 0.430 0.846 0.570 0.803 0.670

 � Deep 
Learning AI 
model

0.700 0.354 0.839 0.498 0.873 0.722

Overall quality*

 � Manual 0.780 0.664 1.000 0.798 0.795 0.839

 � Deep 
Learning AI 
model

0.830 0.755 0.903 0.822 0.918 0.889

Average*

 � Manual 0.719 0.513 0.934 0.659 0.765 0.742

 � Deep 
Learning AI 
model

0.781 0.601 0.836 0.685 0.888 0.782

Accuracy, precision, recall, F1-score, AUC-ROC and AUC-PRC have been calculated 
for each category. In addition, the average over all categories is provided. Statistical 
significant differences between the AI model and human grader results are 
indicated with an asterix.
AUC-PRC, area under the precision recall curve; AUC-ROC, area under the receiving 
operator characteristic curve.
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Metrics and evaluation
For each category, we computed accuracy, precision, recall, 
F1-score, area under the receiving operator characteristic curve 
(AUC-ROC) and precision recall curve (AUC-PRC). To enable 
quantitative evaluation with binary model predictions, the Likert 
scale annotations on the validation and test set were mapped 
to binary labels (1–2: good image quality, 3–5: poor image 
quality). Details on the used evaluation metrics and the manual 
label distribution per category are provided in the online supple-
mental file 1. Regarding the evaluation on the EyeQ dataset,6 we 
used the provided training set for selecting the optimal threshold 
of the prediction probability, while evaluation was conducted on 
the test set. McNemar’s test with ‘alpha’=0.05 was used to test 
for statistical significant differences.

Clinical trial use-case evaluation—visit quality
While previously published image quality detection methods on 
CF and FA were trained and evaluated on single images, within 
a clinical trial whole image series are typically acquired during a 
single patient visit. Clinicians are therefore confronted with the 
task of judging the overall quality of an entire image series.

To be able to predict the quality of entire visits, the image 
level predictions are combined into a visit level score by aver-
aging the binary image level predictions, which again results in a 
score between 0 and 1. A detailed description of this process is 
provided in the online supplemental file 1.

In this experiment, we evaluate the performance of the AI 
model on this clinical trial use case, comparing the network 
predictions with the human visit level labels on the ‘CF visit 
quality’ and ‘FA visit quality’ test sets.

RESULTS
Quantitative results
An overview of the quantitative results per modality and cate-
gory is provided in table 1. We observed a similar performance 
behaviour in both modalities throughout different categories. 
In particular, the developed networks achieve best performance 
in the task of classifying the ‘overall quality’ with a F1-score/
AUC-ROC/AUC-PRC of 0.907/0.963/0.966 for CF and 
0.822/0.918/0.889 for FA. The best performance for specific 
categories was achieved for ‘focus’ and ‘contrast’, while lowest 
scores were obtained in modality specific categories: ‘illumina-
tion’ and ‘shadow & reflection’ in CF and ‘noise’ in FA. These are 
also the categories with biggest label imbalance within training 
data. In all categories, the DL approach achieves human-level 

performance or even significantly outperforms the human 
grader (table 1).

For external evaluation on the EyeQ test set, the provided labels 
from 0 to 2 were adapted in three ways to match our binary predic-
tions on overall quality. First, intermediate ‘Usable’ quality samples 
were dropped achieving an accuracy/precision/recall/F1-score/
AUC-ROC/AUC-PRC of 0.91/0.81/0.85/0.83/0.95/0.93, 
comparable to the performance reported by Fu et al.6 
When interpreting intermediate samples as poor quality, 
the model achieves an accuracy/precision/recall/F1-score/
AUC-ROC/AUC-PRC of 0.82/0.53/0.85/0.65/0.91/0.79, and 
0.76/0.86/0.61/0.71/0.83/0.85 for intermediate labels being 
interpreted as good quality.

Furthermore, the uncertainty provided by the AI models 
is related with the classification performance. Comparing 
the mean/median uncertainty of correctly versus incorrectly 
predicted samples across all categories, the uncertainty score 
increases from 0.010/0.0005 to 0.23/0.014 for CF and from 
0.006/0.001 to 0.014/0.01 for FA. We also conducted an exper-
iment where we excluded samples with highest uncertainty esti-
mation from the evaluation: after excluding 10%/20%/30% of 
all samples in the test set with highest uncertainty, total accu-
racy increases in both datasets: 0.83/0.84/0.87 compared with 
0.81 for CF and 0.83/0.86/0.88 compared with 0.78 for FA. 
Additionally, the uncertainty also correlates with the predicted 
quality score. The uncertainty is lower for predictions which are 
either close to 0 (best quality) or 1 (worst quality), and higher 
for predictions in between (figure 2), having a Pearson correla-
tion coefficient of −0.672 for CF and −0.684 for FA indicating 
moderate correlation.11

Qualitative results
Representative qualitative results were manually selected for 
distinct cases with correct predictions, borderline cases and 
comprehensible mistakes by the model for both CF and FA 
(figure 3).

Clinical trial use-case evaluation
Prediction of a full visit takes between 3 and 9 s, depending 
on the number of images within a visit. For CF the AI model 
predicted 41 out of 44 visits correctly compared with the manual 
annotations, misclassifying only three samples, resulting in an 
accuracy of 0.930. For FA, we evaluated the model on a set of 
86 visits, achieving an accuracy of 0.895 with only 9 samples 
misclassified. The results are visualised in figure 4.

Figure 2  Visualisation of the correlation of the model uncertainty with the predicted probability of the overall quality category, of the ‘CF quality’ 
(left) and ‘FA quality’ (right) test sets. Each dot represents the ‘overall quality’ prediction for a single sample. While the Y-axis represents the 
uncertainty score, the X-axis indicates the predicted probability score.
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DISCUSSION
We propose a deep learning approach to automatically predict 
image quality scores for CF and FA images, achieving human-
level performance in our test set and high accuracy in our clin-
ical trial use-case evaluation. To automatise this task of quality 
assessment for CF and FA, the models produce predictions for 
multiple image quality categories in a fast and upscale-able way.

Images play an increasingly important role in ophthalmology 
since the invention of the fundus camera in 1910, especially due 
to the increasing possibilities of higher resolution leading to 
unprecedented real-life documentation. Achieving good quality 
images is crucial in this context to correctly identify diseases and 
treat patients accordingly, making IQA a significant aspect of 
daily clinical practice. However, due to the increasing amount of 
data, IQA poses a resource-intensive step which is not manually 
applicable in most scenarios. Automatisation of IQA can dras-
tically reduce required resources, save valuable time through 
real-time feedback on acquired images and help making IQA 
applicable in clinical practice or clinical trials. Moreover, auto-
mated IQA also represents a crucial preprocessing step to make 
deep learning pipelines more robust and avoid inaccurate predic-
tions of subsequent models.

Automated IQA as proposed in this work is able to give feed-
back on multiple image quality categories simultaneously in real 
time, allowing the operators of the imaging console to reac-
quire images immediately and react to specific poor quality, for 
example, by adjusting parameters like refractive error of the eye, 
using lubricating/mydriatic eye drops or preventing movements 
causing artefacts. Even for FA as an invasive modality, where 
reacquisition is not possible right away, clinicians can react 
during the FA imaging process by responding to bad quality 
assessment on the spot. Particularly in multicentre study settings, 
real-time IQA can drastically reduce patient burden, avoiding the 
need for reacquisition of images within a new visit, for example, 
if images are not sufficient for evaluation at a later point in time 
by central reading centres. Moreover, automated IQA also helps 

Figure 3  The first row (A–D) shows clear cases with correct 
predictions and low uncertainty predicted by the network. The sample 
scans (A) (colour fundus (CF)) and (C) (fluorescein angiography (FA)) are 
both images with very good quality. (B) A CF example of severe poor 
quality in focus, where the blurry characteristic makes it hard to see 
small details (eg, distinguishing small vessels from the background). (D) 
Poor quality in contrast due to the early phase in FA image acquisition, 
where no contrast fluid has entered the vessels yet. The second row (E–
H) illustrates four examples of border cases with correct predictions of 
all quality categories. In contrast to the samples above, these scans have 
been labelled with intermediate quality by human graders. The scans in 
(I–L) show border cases with high uncertainty and incorrect predictions 
by the neural network in one or more categories. For all four images, the 
human grader has assessed the image with intermediate quality (quality 
score of 2 or 3) in multiple categories. While the manual annotation 
does not deviate much from the predictions of the AI model, it leads 
to misclassification when binarised in at least one of the categories. 
(M–P) Samples with incorrect predictions with comprehensible mistakes 
by the AI model. (M) A CF image with a shadow artefact on the lower 
half of the scan, causing a prediction for poor illumination. In (N), the 
combination of the dark macula at the edge of the CF scan and the 
bright optic nerve head lead to a prediction of shadow and reflection 
artefacts. (O) An example for device-dependent noise. While this level of 
noise is poor quality for images acquired with one device, it could be of 
good quality for another. (P) An FA image with disease-related artefacts 
visible as bright spots which have been misinterpreted by the network 
as noise.

Figure 4  Scatterplots showing the results of the clinical trial use-case 
evaluation on the test set for (A) colour fundus (CF) and (B) fluorescein 
angiography (FA), each dot representing a visit. While the X-axis 
denotes the manual annotation, the prediction probability of the 
artificial intelligence model for good image quality is plotted on the 
Y-axis.
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to overcome the problem of human intergrader/intragrader vari-
ability by providing objective and reproducible results. Again, 
this is of particular relevance in multicentre settings where image 
evaluation needs to be harmonised across study sites.

Automatisation of IQA is an active field of research in ophthal-
mology.1–6 10 12–21 On one hand, conventional machine learning 
approaches10 14–16 use hand-crafted features, limiting their 
performance and application domains. On the other hand, most 
existing deep learning approaches13 only classify the overall 
quality into good or poor1 17 18 or introduce a third, intermediate 
quality.1 6 19 21 While a few methods predict the quality in specific 
categories,1 3 they only return the most prominent poor image 
quality class. In the IEEE ISBI 2020 challenge 5,22 labels in the 
fundus specific categories ‘Artifact’, ‘Clarity’, ‘Field definition’ as 
well as ‘Overall Quality’ are suggested. In contrast, we propose 
predictions for multiple more general image quality categories. 
This represents a new level of detail and improves IQA interpret-
ability for human operators in terms of explainable AI.

In addition, the developed network provides an uncertainty 
estimate per predicted quality score. Results show that predic-
tion accuracy and uncertainty are related, demonstrating that 
the calculated uncertainty is a relevant metric for model deci-
sions and can be used as an indicator for requesting human 
verification. Furthermore, the quality score and uncertainty 
showed a moderate correlation, mimicking behaviour of human 
operators and therefore following expected decision patterns. 
We are convinced that adding these layers of transparency for 
predictions will help integrating automated approaches into 
clinical routine, since cases with high uncertainty can be filtered 
and reviewed by clinicians. The utility of this indicator could 
be further improved by using the validation set to calibrate the 
model output, enabling binary indication of human revision at a 
certain level of uncertainty. However, this is beyond the scope of 
this study and is left to future work.

In the external validation dataset for CF, the presented model 
achieved comparable results to the state-of-the-art method 
trained on the external dataset6 when evaluating on two quality 
classes. When integrating the third ‘Usable’ quality into evalu-
ation, the performance of our proposed model drops, but still 
achieves reasonable results considering the imprecision intro-
duced with the 3 to 2 class transformation.

Furthermore, the proposed DL approach achieves results on 
par with or better than the second human grader. We hypoth-
esise that this is partly caused by the subjectiveness in percep-
tion of image quality. Both the manual grading as well as the 
developed networks achieve the best performance in the overall 
quality category (table 1, online supplemental file 1). We hypoth-
esise that an overall quality prediction naturally clusters images 
into ‘good’ and ‘any poor’ quality, depicting a significantly easier 
task than the recognition of specific poor image quality char-
acteristics. In contrast, poor quality images of other categories 
might resemble each other and cause a higher variability within 
annotations, as validated through the performance of the second 
manual test set grading.

When analysing the qualitative examples, wrong predic-
tions are of particular interest (figure  3). We hypothesise 
that border cases depend on network thresholds and may be 
improved through additional training data. Another challenge 
are incorrect predictions through confusion of similar catego-
ries. For instance, shadow artefacts/poor illumination have 
similar appearance in form of a dark segments covering parts/
the whole scan. This misclassification would have severe impact 
on further actions in clinical practice: Depending on the shad-
owing structure nothing may be changed by the photographer, 

whereas in case of illumination problems, a pupil dilation or 
better centralisation of the light into the eye can significantly 
improve image quality. Future work should aim for improving 
automated IQA for these cases. Another known problem is that 
devices of various manufacturers differ in achieved image quality 
due to used hard- and software.23 24 While a specific level of 
noise would be considered as good quality for images acquired 
with one device, it may be poor quality when taken with another 
device. One possible way to tackle this problem is to create sepa-
rate networks, one per device, which however at the same time 
amplifies other problems like data scarcity. Landmarks of the 
eye with unusual appearance or lesions may also be misclassified 
as they may visually look similar to poor quality characteristics, 
depicting explicitly hard cases for automated IQA. In our study, 
the relatively small amount of such cases in the training dataset 
poses a limitation of the presented approach. The performance 
for all categories may be improved by adding additional samples 
for training, as CNNs usually perform better when trained on 
more data.25

Nevertheless, in our additional clinical trial use-case evalua-
tion, results demonstrate high accuracy of 0.930 and 0.895 for 
both modalities on visits of multiple devices from multiple clin-
ical sites, making it promising for future usage. While calculating 
the mean of the individual predictions seems to be a simple yet 
effective method to retrieve visit-level scores, it also poses limita-
tions. For instance, images of the peripheral retina might be not 
as important compared with macula or optic-disk centred images 
to make a certain diagnosis. This means that more task-specific 
strategies should be developed in future work.

Another challenge are early phase images in FA which natu-
rally tend to have low contrast and illumination until the fluo-
rescein as contrast agent becomes visible. This means that they 
are likely to be incorrectly predicted as poor quality. With an 
increasing number of such early phase images within a visit, 
the chance of misclassification of the overall visit quality also 
increases. One possible solution is to incorporate time informa-
tion into the model, allowing to weight the impact of individual 
images on the overall visit prediction accordingly.

In conclusion, we propose a deep learning approach for auto-
mated quality assessment of retinal CF and FA images. With 
3 and 4 modality-specific categories plus an overall quality 
together with an uncertainty score for these predictions, we 
introduce a more efficient prediction than existing approaches 
while achieving human-level results. Furthermore, the approach 
is extended to also perform a visit level classification, which was 
successfully validated within our clinical trial use case. With the 
help of this work, automated IQA can be integrated into the clin-
ical workflow convincingly and advance the process of ophthal-
mological examinations for more efficient and effective disease 
management.
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