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mGCIPL overall thickness separately. Statistical significance 
threshold was set at p<0.050.

RESULTS
Participants
Table 1 shows the baseline characteristics of the included cohort. 
A total of 31 subjects with preoperative chiasmal tumours, 30 
patients with POAG and 50 healthy controls were included 
(online supplemental figure). The causes of chiasmal compres-
sion were pituitary macroadenoma (n=24), suprasellar menin-
gioma (n=2), unspecified suprasellar mass (n=2), chiasmal 
glioma (n=2) and craniopharyngioma (n=1). Sex did not statis-
tically differ between groups. All but one of the patients with 
chiasmal compression went on to have surgical resection of 
the compressing lesion, which occurred between 1 month and 
4 years after the analysed OCT scan was acquired (median: 5 
months). Age differed significantly between the three groups 
(all p<0.050). mGCIPL thickness was significantly lower in 
glaucoma and pituitary lesion compared with healthy controls 
(both p<0.001). However, there was no significant difference 
in overall mGCIPL thickness between subjects with POAG and 
chiasmal compression (p=0.36) (figure 1A and 1B). As far as 
these data were available (for 31 chiasmal compression cases and 
17 POAG cases), visual acuity was similar for chiasmal compres-
sion cases compared with POAG, with a median of 6/6 for POAG 
and 6/9 for chiasmal compression. These data seem to suggest a 
relatively similar severity of disease in both groups.

mNTR across groups
The mNTR was significantly lower in chiasmal compression 
compared with POAG (p<0.001). Compared with healthy 
controls, the mNTR was significantly decreased for subjects with 
chiasmal compression and significantly increased in subjects with 
POAG (both p<0.001) (figure 1). The mNTR was not associated 
with age (r=0.00, p=0.377).

Multivariable linear regression
Multivariable linear regression adjusted for sex, age and overall 
mGCIPL thickness identified that the mNTR was significantly 
�O�R�Z�H�U���I�R�U���V�X�E�M�H�F�W�V���Z�L�W�K���F�K�L�D�V�P�D�O���F�R�P�S�U�H�V�V�L�R�Q����� �ï���������������������&�,��
�ï�����������W�R���ï�������������S�����������������D�Q�G���V�L�J�Q�L�I�L�F�D�Q�W�O�\���K�L�J�K�H�U���I�R�U���V�X�E�M�H�F�W�V��
with POAG (=0.07, 95% CI 0.03 to 0.11, p=0.001), compared 
with controls. The IN/SN ratio did not significantly differ across 
the groups, and the IN/ST ratio was significantly reduced in 
�F�K�L�D�V�P�D�O�� �F�R�P�S�U�H�V�V�L�R�Q�� ��� �ï������������ ���������&�,���ï���������� �W�R�� �ï������������
p<0.001) but showed no associations with POAG (table 2).

Exploration of diagnostic accuracy
Given the significant results in multivariable linear regression 
analysis, the mNTR was taken forward for analysis with ROC 
curves (figure 2). The AUCs for the mNTR were 89.0% (95% 

Figure 1 Dot plots showing macular naso- temporal ratio (mNTR) and macular ganglion cell and inner plexiform layer (mGCIPL) thickness across 
groups in (A) and (B) respectively. P values represent results of post- hoc evaluation of intergroup differences with the Dunn- test, adjusted for multiple 
comparisons through the Benjamini- Hochberg method. Horizontal lines represent medians.

Table 2 Multivariable linear regression analyses

mNTR
Mean both eyes

IN/SN ratio
Mean both eyes

IN/ST ratio
Mean both eyes

Est P value Est P value Est P value

Controls – – – – – –

POAG 0.07 0.001 −0.02 0.185 0.02 0.476

Chiasmal 
compression

−0.12 <0.001 0.02 0.295 −0.08 <0.001

Age −0.00 0.377 0.00 0.476 0.00 0.437

Sex −0.01 0.986 −0.02 0.044 −0.03 0.104

Mean mGCIPL 
thickness μm

0.00 0.698 0.00 0.482 0.00 0.515

Multivariable linear regression analyses showing the distribution of inter- eye mean 
macular nasotemporal ratio (mNTR), the inferionasal/superionasal (IN/SN) ratio and 
inferionasal/superiotemporal (IN/ST) ratio across controls, glaucoma and chiasmal 
compression cases. The analysis is adjusted for age, sex and mean overall mGCIPL 
thickness. Significant results are shown in bold.
mGCIPL, macular ganglion cell and inner plexiform layer; POAG, primary open- angle 
glaucoma.
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CI 80 to 98%) and 79.0% (95% CI 68 to 90%) when comparing 
healthy controls with chiasmal compression and POAG, respec-
tively, and 95.3% (95% CI 90% to 100%) for comparing POAG 
and chiasmal compression directly.

Overall mGCIPL thickness had poor performance when 
discriminating between POAG and chiasmal compression, with 
an AUC of 60.0% (95% CI 45% to 75%). mGCIPL thickness 
did have AUCs of 95.0% (95% CI 90% to 100%) and 91.9% 
(95% CI 85% to 99%) when distinguishing controls from POAG 
and chiasmal compression, respectively. When discriminating 
controls from cases with either chiasmal compression or POAG, 
the AUC was 94.1% (95% CI 89% to 99%).

When distinguishing chiasmal compression from POAG, an 
optimal diagnostic mNTR threshold of <0.99 was identified, 
which was associated a specificity of 100% and a sensitivity of 
84%. When comparing with healthy controls, a mean mNTR 
threshold of <0.96 was associated with a specificity of 100% 
and a sensitivity of 77% in identifying chiasmal compression and 
an NTR threshold of >1.06 was associated with a specificity 
of 88% and a sensitivity of 60% in identifying glaucoma. An 
mGCIPL thickness of <309 µm was associated a specificity of 
89% and a sensitivity of 89% for distinguishing controls from 
cases with either chiasmal compression or POAG (online supple-
mental table).

There were three patients with chiasmal compression who had 
no visual symptoms and had no appreciable abnormalities on 
Goldman visual fields. These patients had a mNTR of 0.91, 0.96 
and 1.07.

Qualitative image evaluation
Figure 3 shows examples of thickness maps of a typical healthy 
control (A), three patients with chiasmal compression (B–D) and 
two patients with POAG (E–F). For patients with chiasmal 
compression and POAG a preferential nasal and temporal 
atrophy pattern can be visually appreciated, respectively. These 
patterns with associated changes in the mNTR can be observed 

both for eyes that are in the early (figure 3C,E) and in the 
advanced stages (figure 3D,F) of disease. MMO was observed in 
the retinal scans of three patients with pituitary lesions (9.7%) 
and none of the glaucoma patients (figure 3G).

DISCUSSION
This study suggests that the mNTR is a novel OCT metric which 
may contribute to distinguishing chiasmal compression from 
atrophy due to POAG, as it is reduced in chiasmal compres-
sion but increased in POAG. This is based on the pattern of 
macular inner retinal layer atrophy,5 and far superior to the 
global mGCIPL thicknesses which were not discriminatory. 
These data indicate that regional macular atrophy patterns can 
be easily quantified and convey important diagnostic clues that 
are obscured by overall retinal thickness measures.

Consistent with our findings, case series have reported pref-
erential nasal atrophy of the mGCIPL thickness in patients with 
chiasmal compression29 30 and temporal atrophy in glaucoma.11 12 
The presence of binasal atrophy of the inner retinal layers in 
patients with chiasmal compression has been described quali-
tatively before,29 30 and it has been shown that nasal mGCIPL 
thickness is more sensitive than temporal thickness when identi-
fying chiasmal compression.31 The finding of predominant nasal 
atrophy has been called the ‘half- moon sign’.4 Importantly, this 
pattern can also be detected in patients with POAG who later 
also develop compression of the chiasm. This study demonstrates 
that a comprehensive measure of regional retinal atrophy, being 
the mNTR, can distinguish chiasmal compression, POAG and 
controls. Retrograde degeneration due to chiasmal compression 
is thought to affect the inferior nasal quadrant predominantly 
initially, as pituitary adenomas usually compress the optic chiasm 
from below.13 27 However, atrophy in this specific quadrant, as 
identified through the IN/SN and the IN/ST ratios, was not or 
less related to pathology in this cohort. The mNTR appears to 
have superior diagnostic accuracy compared with analysis of 
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Figure 2 Receiver operating characteristic (ROC) curves. (A) shows the ROC curves visualising the diagnostic properties of the macular naso- 
temporal ratio (mNTR) (in blue) and overall macular ganglion cell and inner plexiform layer (mGCIPL) thickness (in red) when distinguishing eyes 
affected by chiasmal compression and primary open- angle glaucoma (POAG). (B) and (C) show the ROC curves visualising the diagnostic properties of 
the mNTR (in blue) and overall mGCIPL thickness (in red) when distinguishing healthy controls (HC) from eyes affected by chiasmal compression and 
POAG, respectively.
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reginal patterns of the retinal nerve fibre layer (RNFL), based 
on limited data.32

Although the atrophy pattern seen in glaucoma does not respect 
the vertical meridian, it has been described before that the temporal 
hemi- macula is generally more severely affected.11 12 This was also 
identified in these data, with the mNTRs being higher in eyes of 

patients with POAG compared with controls. The preferential 
temporal atrophy pattern associated with POAG is opposite to the 
nasal pattern seen in chiasmal compression, giving the mNTR excel-
lent discriminative properties for distinguishing the two disorders.

Furthermore, these data showed that the overall mGCIPL 
thickness had a higher sensitivity for distinguishing healthy eyes 

Figure 3 Examples of optical coherence tomography (OCT) scans in healthy controls, pituitary lesions and primary open- angle glaucoma (POAG). 
Example ganglion cell layer thickness maps of a typical healthy control (A) three patients with chiasmal lesions (B–D) and two patients with POAG 
(E) and (F) are shown. The square grid with naso- superior, naso- inferior, temporo- superior and temporo- inferior quarters is shown. The macular naso- 
temporal ratio (mNTR) is given in white. G shows an example of a patient with chiasmal compression showing nasal microcystic macular oedema. 
IN,inferior- nasal; IT, inferior- temporal; SN, superior- nasal; ST, superior- temporal.
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from eyes affected by either chiasmal compression or POAG, but 
the mNTR had a greater specificity for distinguishing between 
POAG and chiasmal compression as causes of optic nerve 
damage. Comprehensive analysis of overall mGCIPL thickness 
and mNTR may optimise the diagnostic value of structural OCT 
data in optic nerve injury. Reduced overall mGCIPL thickness 
is highly sensitive to identifying the presence of optic nerve 
damage, which makes it an advantageous screening tool. Direct 
retrograde degeneration causes appreciable mGCIPL atrophy 
within 1 month of onset, as has been described in optic neuritis.33

There are other advantages when using retinal thickness 
metrics, compared with perimetry, when trying to identify 
chiasmal compression. OCT is quicker, more reproducible and 
less affected by patient- related factors as already discussed.21 
Most importantly, mGCIPL atrophy may be more sensitive to 
picking up pituitary lesions compared with visual field defects, 
as it has been identified in a number of pituitary adenoma 
patients without abnormalities on perimetry.2 13 14 However, 
it should be noted that there are also rare cases where there 
is bitemporal hemianopia on perimetry without OCT abnor-
malities. Perimetry and OCT metrics should be used jointly to 
optimise diagnostic accuracy. Chiasmal compression cases in 
this cohort were identified at an eye hospital and almost all had 
visual symptoms with bitemporal hemianopia on perimetry. 
Therefore, the sensitivity and generalisability of the mNTR 
in early- stage patients without visual symptoms are still to be 
established. Patients with optic nerve changes due to chiasmal 
compression are sometimes initially thought to have glau-
coma34 35 and the mNTR may be a particularly valuable diag-
nostic tool in this population.

While it is well- established that binasal inner retinal thinning 
respecting the vertical meridian occurs with chiasmal compres-
sion, we believe that the mNTR is an easily quantified metric that 
can be routinely presented to clinicians. In high- volume clinical 
scenarios which are focused on glaucoma care, for example, the 
qualitative finding of binasal thinning may be overlooked. An 
mNTR outside of a normal range can prompt a more detailed 
examination of the OCT as well as other examination findings.

Diagnostic accuracy for the mNTR was not perfect. For five 
chiasmal compression cases, the mNTR value exceeded 1.0. One 
of these cases had the lowest mGCIPL thickness in our cohort, 
suggesting severe atrophy. On the other hand, four cases had 
relatively less mGCIPL atrophy with a median of 320 (range: 
261–381) compared with chiasmal compression cases overall 
(median 267). The case with the highest mNTR had no visual 
loss, but was diagnosed due to systemic symptoms that were 
caused by a prolactin secreting pituitary adenoma.

The association of MMO with structural lesions in the ante-
rior visual pathways is well documented, and its presence should 
therefore prompt brain imaging.36 Here, MMO was observed 
in nearly 10% of patients with chiasmal compression, which is 
consistent with the 10.7% (3/28) reported before.36 MMO was 
located in the nasal area where also the most prominent mGCIPL 
atrophy was observed, in line with the presumed pathogenesis of 
MMO being a retrograde maculopathy.6 In glaucoma, MMO is 
typically absent.26 Dedicated brain imaging was not performed 
systematically in one report on the exceptional rare occurrence 
of MMO in individuals with glaucoma and substantial optic 
atrophy.37

Limitations of this work include the retrospective design 
without longitudinal follow- up, the limited sample size and the 
discussed selection bias towards chiasmal compression patients 
with visual symptoms. These findings will have to be replicated 
in a larger cohort to further ascertain our conclusions.

CONCLUSION
Macular thickness maps can visualise retinotopic differences in 
atrophy patterns. The present study demonstrates that the mNTR 
a quantitative metric for patterns of hemi- macular atrophy which 
expands on earlier descriptions (‘half- moon’ sign), achieving 
high diagnostic accuracy for separating glaucoma from chiasmal 
compression. Due to the high- dimensionality of macular thick-
ness maps, these data may provide excellent source data for the 
development of pattern recognition artificial intelligence algo-
rithms that could facilitate early detection of optic nerve disease 
in the future.
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