AN INVESTIGATION OF MINERS' NYSTAGMUS

BY

W. J. Roche

Newport, Mon.

As an ophthalmic and aural surgeon practising in a colliery area, I meet many cases of miners' nystagmus in miners' hospitals, and many cases are referred to me by colliery companies and the South Wales Miners' Federation.

I feel I have some advantage over some previous investigators, I am both an ophthalmic and an aural surgeon; I have not read any literature which states that the inner ear has previously been investigated in connection with this disease.

The following table shows how nystagmus has increased since 1910, and the economic drain it is upon the country.

<table>
<thead>
<tr>
<th>Year</th>
<th>Per cent. incidence of fresh cases</th>
<th>No. of fresh cases</th>
<th>Total No. of cases</th>
<th>Cost of nystagmus compensation</th>
<th>No. of men underground</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910</td>
<td>0'11</td>
<td>956</td>
<td>1,618</td>
<td>£37,800</td>
<td>834,000</td>
</tr>
<tr>
<td>1929</td>
<td>0'34</td>
<td>2,577</td>
<td>9,838</td>
<td>£440,100</td>
<td>762,300</td>
</tr>
</tbody>
</table>

When considering the economic loss to the country, one must remember that not only is £440,100 spent on compensation but that in addition 10,000 men are unemployed as a result of the disease.

This table shows that although the numbers of underground workers have diminished yet the incidence of the disease has increased threefold.

"Observations on Miners' Nystagmus and Environment."—A committee appointed by the Medical Research Council investigated the disease and issued a report in 1922, and a second report in 1923; many of the improvements therein suggested have since been carried out in many collieries, yet the incidence is very high.

During the past four years, I have investigated in detail 212 cases, the average period of examination per case, being about half an hour. My investigations have taken place in my consulting-room, in a dark room at the pit head, and underground.
Occupation Analysis in a Series of 212 Cases.

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliers</td>
<td>141</td>
</tr>
<tr>
<td>Hauliers</td>
<td>21</td>
</tr>
<tr>
<td>Timbermen</td>
<td>17</td>
</tr>
<tr>
<td>Repairers</td>
<td>14</td>
</tr>
<tr>
<td>Labourers</td>
<td>5</td>
</tr>
<tr>
<td>Officials</td>
<td>3</td>
</tr>
<tr>
<td>Colliers' Helpers</td>
<td>3</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
</tr>
</tbody>
</table>

Colliers head the list; the frequency of the disease amongst hauliers, timbermen and repairers is slight in comparison. Many of the non-collier grades have worked as colliers at some period, which would partly account for the high incidence amongst non-hewers.

Types of the Disease.—I have classified the disease into four types:

1. Latent.
2. Sub-acute.
3. Acute.
4. Neurasthenic stage.

Latent.—I have investigated these various types; the symptoms and signs vary numerically and in intensity in these categories.

In the latent variety, as a rule the patient does not know that he has the disease. He complains of slight photophobia, oscillations may or may not be present, he is worse some days than on others; as a rule on his "bad days" oscillations are present, particularly at the end of the shift, also headache; he rarely reads at night on account of eye strain; the lights of his fellow workers are a source of annoyance, particularly underground when he is going to his work and returning to the cage; his vision is bad and he is often giddy in twilight and at night; and he takes a longer period to "get his sight" underground.

In many latent cases I could find no signs of nystagmus before the shift; but after the shift oscillations could be provoked after strenuous bending upwards and downwards. Oscillations were temporary and were usually only present whilst the patient was giddy. In some cases other signs such as photophobia and some difficulty in fixing the letters of a reading chart were present.

These latent cases invariably continued their occupations, unless a diagnosis of nystagmus was made by their panel doctor who informed the patient. This is a fatal error on the part of the practitioner; the man becomes introspective, and, as a result, his
subjective symptoms multiply, he becomes hypochondriacal and probably he will eventually conclude that he must have a rest if he is to be cured. He obtains weekly compensation for a time, and, when he resumes work, his output is below the average, and he is sparing himself lest he should get worse.

The collier’s doctor must remember that 25 per cent. of colliers have nystagmus, and he is doing his patient an injustice if he informs him of the presence of latent nystagmus, unless he is of opinion that he is incapacitated; because if the man is introspective it is only a matter of time until his brooding may result in incapacity.

I have seen several cases of latent nystagmus over a period of years; many have got no worse.

Sub-acute Type.—In this type the patient may complain of several of the following symptoms:—headache, frontal or occipital; dazzling of lights after working in an awkward position; particularly towards the end of the shift, he may notice neighbouring lamps irritating and “going around;” giddiness; he does not see the coal face so well; his sight is bad in twilight; and he feels giddy for a few hours after work.

On examination the signs of the disease vary. In three cases before the shift, there was no sign of the disease; but in most cases signs of the disease were present.

The commonest signs found were oscillations, photophobia, giddiness on bending, difficulty in fixing and reading the 6/18 of a Snellen’s chart at six metres whereas before the shift he could read 6/9 without much difficulty.

It is very typical of nystagmus that the men pick out the letters of a reading chart slowly, each letter has to be fixed separately. There may be no other signs of the disease, on the other hand they may have some of the other signs which are usually present in the acute type.

As a rule the sub-acute case is able to continue his underground work; in many cases he realizes that he has nystagmus, but he continues working, because he can earn a better wage than if he were on compensation. He may suffer acutely particularly towards the end of the shift. On the contrary, some say that their symptoms are worse at the beginning of the shift and they diminish later when they “get their sight” (when dark adapted); the numbers are few.

Acute Type.—In this stage all or some of the previously mentioned signs are present, but more marked. Most observers will agree with me when I state that no two cases of acute nystagmus are alike.

In most cases the following symptoms and signs are present to
a greater or lesser degree, some signs being prominent in one case and absent in another.

As a rule they walk with head slightly bent backwards, cap pulled down over forehead, and upper lids lowered; this attitude is to avoid light and annoyance of moving objects. The gait is slow with the legs slightly wide apart. In the twilight it is common to see them walk unsteadily and knock against stationary objects; at night when motor car lights approach them on the road, they stand or sometimes lean against the wall and look away until the lights have passed, because giddiness, temporary blindness, photophobia and headache are provoked; some never come out at night unless they are led by a friend.

Several bad cases could not bend even to lace their boots as it provoked marked giddiness, headache, pains in the eyes, and movements of surrounding objects; the symptom causing the greatest discomfort being giddiness.

In some cases noises provoked the symptoms already mentioned as also did mental excitement of any kind. Many stated that they could do some work on the surface if they were permitted to work at "their own pace."

Signs on Examination.—Photophobia is present, particularly on exposure to artificial focal illumination. This sign is usually associated with lid spasm or spasm of the elevator muscles or both.

Oscillations of the eyeballs are nearly always present—although in some cases they are only provoked on bending, slow oscillations at the rate of 100 per minute being most obvious to the naked eye. If the oscillations be fast and fine with a frequency of 200 to 350 per minute, they may be invisible to the naked eye, but, if the retinal vessels be focussed with an ophthalmoscope, they cannot be missed by the most inexperienced observer.

In most of the literature they are referred to as being of a rotatory type. I consider this is a misnomer as an oscillation is not a complete rotation. I prefer to describe the to and fro oscillations as being pendulum-like. They describe a little more than a semi-circle; occasionally oscillations are horizontal or oblique.

Oscillations may not be very marked, but it may be taken as a general rule that, if the patient bends up and down rapidly until giddiness is provoked, the oscillations will increase in frequency and amplitude.

Bending also provokes or increases head and hand tremor, spasm of the lids and elevator muscles.

When giddiness is present the pulse rate increases in frequency and it is occasionally irregular, even when disease of the heart is not present.
The signs and symptoms of the disease are more marked on some days than on others. I have many cases on record where patients have only had sub-acute signs of the disease on one day and on the following day marked acute signs. The patient usually stated that on the day his "nerves" were bad his nystagmus was worse.

Neurasthenic Stage.—In this stage the patient in addition to having signs of the disease has various neurasthenic symptoms. This is the type of case which may remain on compensation for ever. If he had been given suitable surface work, he would possibly have never become a neurasthenic; he would gradually have regained his self-confidence.

Significance of Oscillations.—Some men may have very fast and marked oscillations, yet they never have a sensation of objects around them moving; others with a similar type of oscillations or even with oscillations of a slower rate state that all objects around them are "on the move." In particular they complain of the lamps of their fellow workers which they may state are going around "like a ball of fire."

I have noticed that the men who complain of objects moving have always got marked vertigo.

I am of opinion that one cannot decide the extent of incapacity by the frequency or amplitude of the oscillations. I have known patients who have had slow oscillations which might even be described as nystagmoid jerks which were absolutely incapacitated. On the contrary I have known other patients whose oscillations were fine and fast who suffered no discomfort.

I have concluded that the most incapacitating symptom and one which accounts for 80 per cent. of all incapacitated cases is vertigo (giddiness). If vertigo did not occur in this syndrome I am convinced that there would be little or no incapacity. I consider that vertigo is the major symptom and that most other signs and symptoms are secondary to the same cause which brings about vertigo. This I will discuss later in my paper.

Incidence of Nystagmus.—In Tables No. 1 and No. 2 are the official figures supplied by the Mines Department for the years 1908 to 1929; these figures include only the cases who have received compensation for the disease in the United Kingdom which was roughly, in 1929, 1·2 per cent. of underground workers employed.

In the underground workers whom I have examined the incidence of the disease was 23 per cent.; the incidence is even higher at the end of a shift; most cases are of the latent and sub-acute types.

The average percentage of fresh cases in underground workers who received compensation from 1909 to 1920 was 0·22, from 1921 to 1929 was 0·32.
TABLE I.

Showing percentage incidence and number of cases receiving compensation for the first time during the year, total number of cases receiving compensation during the year, cost of all industrial diseases, number of men employed underground, number of cases disabled in the mining industry, and output per underground worker per year in tons.

<table>
<thead>
<tr>
<th>Year</th>
<th>Nystagmus</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FRESH CASES</td>
<td>Total No. of cases</td>
<td>Cost of all industrial diseases</td>
<td>No. of men employed underground</td>
<td>Accidents (1,000s)</td>
</tr>
<tr>
<td></td>
<td>Percentage incidence</td>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1908</td>
<td>0.05</td>
<td>386</td>
<td>460</td>
<td>13,000</td>
<td>783,000</td>
</tr>
<tr>
<td>1909</td>
<td>0.08</td>
<td>631</td>
<td>1,011</td>
<td>26,000</td>
<td>805,000</td>
</tr>
<tr>
<td>1910</td>
<td>0.11</td>
<td>956</td>
<td>1,618</td>
<td>42,000</td>
<td>834,000</td>
</tr>
<tr>
<td>1911</td>
<td>0.16</td>
<td>1,375</td>
<td>2,519</td>
<td>68,000</td>
<td>849,000</td>
</tr>
<tr>
<td>1912</td>
<td>0.16</td>
<td>1,376</td>
<td>3,195</td>
<td>85,000</td>
<td>865,000</td>
</tr>
<tr>
<td>1913</td>
<td>0.25</td>
<td>2,402</td>
<td>4,551</td>
<td>113,000</td>
<td>895,000</td>
</tr>
<tr>
<td>1914</td>
<td>0.28</td>
<td>2,409</td>
<td>5,993</td>
<td>164,000</td>
<td>835,000</td>
</tr>
<tr>
<td>1915</td>
<td>0.20</td>
<td>1,780</td>
<td>not available</td>
<td>743,000</td>
<td>not available</td>
</tr>
<tr>
<td>1916</td>
<td>0.29</td>
<td>1,626</td>
<td>5,493</td>
<td>820,000</td>
<td>799,000</td>
</tr>
<tr>
<td>1917</td>
<td>0.28</td>
<td>1,461</td>
<td>4,551</td>
<td>783,000</td>
<td>783,000</td>
</tr>
<tr>
<td>1918</td>
<td>0.24</td>
<td>1,917</td>
<td>6,449</td>
<td>225,000</td>
<td>933,000</td>
</tr>
<tr>
<td>1919</td>
<td>0.29</td>
<td>2,718</td>
<td>7,028</td>
<td>343,000</td>
<td>978,000</td>
</tr>
<tr>
<td>1920</td>
<td>0.29</td>
<td>2,865</td>
<td>7,028</td>
<td>343,000</td>
<td>978,000</td>
</tr>
</tbody>
</table>

* Home Office returns do not separate cost of nystagmus from other industrial diseases. Nystagmus is responsible for over 90 per cent. of this cost.

It must be noted that from 1909 to 1919 the eight hour shift was in operation, whereas from 1919 to 1926 the seven hour shift existed; yet the incidence of the disease increased in the latter period.

There was a reversion to the eight hour shift in 1926, yet the average incidence of the disease was less from 1927 to 1929 as compared with the years 1923 to 1925.

It is difficult to draw any conclusions from these figures; although the nystagmus incidence varied little, yet the output increased. This increase in output can be accounted for by:

The men have worked better since 1926; half an hour longer shift; and increase in the use of machinery underground.

My own opinion is that, during the period 1926 to 1929, many men have continued to work although they have suffered acutely from nystagmus. Many of these men told me that they feared to claim compensation lest they would not be employed again when they were fit, as there were so many fit men available, who had not contracted the disease.
MINERS' NYSTAGMUS

Some observers in the past have stated that when wages are low, the numbers on compensation are high and when wages are high the numbers on compensation are low; the following figures favour this statement. In 1920 the percentage incidence of fresh cases was 0.29 when wages were very high, in 1928 and 1929 when wages were very low the percentage incidence was much higher, 0.34.

I have made enquiries from colliery managers as to the type of workman who is at present receiving compensation. Out of 76 cases, 40 were considered good workmen, 29 fairly good, and 7 lazy and incompetent. A good workman is not the type who seeks compensation if he can avoid it.

TABLE II.

Number of nystagmus cases for which compensation was paid for the first time during each of the years 1921 to 1929 and the number of cases per 100 men employed underground. Total number of nystagmus cases for which compensation was paid during each year. Cost of compensation for all industrial diseases affecting miners. Number of (accident) disablement cases at all mines. Average number of men employed underground at coal mines and average annual output of coal per underground worker.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fresh Cases</th>
<th>Total No. of cases</th>
<th>Cost of compensation paid for all industrial diseases affecting miners</th>
<th>(Accident) Disablement cases at all mines</th>
<th>Average No. of wage-earners employed underground at coal mines</th>
<th>Annual average output of coal per underground worker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Per 100 men employed underground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921†</td>
<td>1,913</td>
<td>0.21</td>
<td>6,717</td>
<td>396,000</td>
<td>£</td>
<td>908,100</td>
</tr>
<tr>
<td>1922</td>
<td>4,092</td>
<td>0.44</td>
<td>9,155</td>
<td>587,000</td>
<td>201,370</td>
<td>180</td>
</tr>
<tr>
<td>1923</td>
<td>3,872</td>
<td>0.40</td>
<td>11,142</td>
<td>595,000</td>
<td>245,479</td>
<td>180</td>
</tr>
<tr>
<td>1924</td>
<td>3,271</td>
<td>0.34</td>
<td>10,906</td>
<td>675,000</td>
<td>214,171</td>
<td>180</td>
</tr>
<tr>
<td>1925</td>
<td>3,444</td>
<td>0.39</td>
<td>11,334</td>
<td>610,000</td>
<td>197,388</td>
<td>180</td>
</tr>
<tr>
<td>1926‡</td>
<td>1,771</td>
<td></td>
<td></td>
<td></td>
<td>10,041</td>
<td>542,000</td>
</tr>
<tr>
<td>1927</td>
<td>1,801</td>
<td>0.22</td>
<td>9,734</td>
<td>489,000</td>
<td>188,978</td>
<td>814,100</td>
</tr>
<tr>
<td>1928</td>
<td>2,554</td>
<td>0.34</td>
<td>9,818</td>
<td>503,000</td>
<td>185,823</td>
<td>745,000</td>
</tr>
<tr>
<td>1929§</td>
<td>2,577</td>
<td>0.34</td>
<td>9,838</td>
<td>489,000</td>
<td>196,515</td>
<td>762,300</td>
</tr>
</tbody>
</table>

* Home Office returns do not separate the cost of nystagmus from that of other industrial diseases affecting miners.
† Including cases affecting surface and underground workers and cases where there was payment for compensation.
‡ The years 1921 to 1926 were affected by prolonged disputes in the coal mining industry.
§ Provisional figures.
|| Cannot be stated.
Association of Incidence and Age.—I have seen three cases of nystagmus in colliers' helpers, they were boys of poor physique and neurotic of temperament. One boy informed me that his father had suffered from the disease.

It is impossible to associate nystagmus with any particular age, because a man may have had nystagmus for years before it has become sufficiently bad to claim compensation. I have had no case of a haulier, timberman or repairer affected before 39 years of age.

In one particular pit where the percentage of hauliers affected was high I noted that the lighting of the roadway was particularly bad; but the ventilation was considered good.

In the same pit I was informed that there was a portion of a seam where the incidence of the disease was much higher than in other portions of the seam. The width of this portion of seam was four feet, the temperature was higher than in other portions of the seam and the ventilation was poor, the composition of the coal was similar to the rest of the seam.

Illumination.—Most observers have concluded that the principal cause of nystagmus is defective illumination, and they forecast that when illumination is improved, the disease will cease nearly entirely.

The facts so far are not in agreement with their observations, as, since the introduction of electric lamps, the disease has increased considerably. However, as you will note later on in my paper, I consider that the principal cause of the disease is defective illumination.

For one electric lamp used in the United Kingdom in 1914, there are now nearly seven in use, and it is reckoned that every other underground worker has an electric lamp.

In most of the pits which I have investigated the great majority of the workers use 2-volt electric lamps. The majority of these lamps give a mean spherical C. P. of 0·96 when new.

Effective illumination is to a great extent dependent upon efficient lampmen and good bulbs. In the past, bulbs were like mass production motor cars; some were better than others. Now since the introduction of the British Standard Specification Ref. 377/1930, bulbs are required to show a C.P. of 1·05 in the maximum direction, which would be more than \(\frac{1}{2} \) C.P. when looked at end-on.

The purchaser has now only to specify his bulbs to be to B.S.S., and he is sure to have the best available light as a result. The illumination with cheap untested bulbs may be 25 per cent. worse than the illumination given by standard bulbs.

In one pit I found that from 1916 to 1918, oil lamps were used nearly altogether. In the period 1927 to 1929 nearly all electric
lamps were used, yet the incidence ratio of nystagmus increased as 3 : 1 in the latter period. In one house-coal pit which employs about 300 workers, acetylene lamps only are used; there has not been a case of nystagmus for the past three years.

I am of opinion that the increase is not directly due to the introduction of the electric lamp, but to the fact that the men who have become incapacitated were men who were suffering from latent nystagmus whilst using oil lamps; when they changed over to electric lamps, the irritation of the brighter light aggravated the disease. Nevertheless, I have examined several men under 30 years of age, who have never used anything but an electric lamp, and yet they have developed the disease. An electric lamp, particularly with plain glass, is a more irritating light than an oil lamp; hence, many of the cases which I have examined would probably have been able to continue work if they were working in a pit where oil lamps only were used.

In 1927, three colliers who were members of friendly societies, consulted me under the Ophthalmic Benefit Scheme; they required glasses for reading. In my routine examination I discovered that they were suffering from nystagmus, but they were working regularly in pits where frosted lamp glasses were used. Owing to the colliery shutting down, they were unemployed; two of them succeeded in getting work in a colliery where plain glass electric lamps were used, and within six weeks both of them were incapacitated with nystagmus.

As a result of this experience I examined batches of colliers at two pits, one in which frosted and tinted lamp glasses were used and others where the glasses were plain; the incidence of nystagmus was very similar. I considered that there were several men in the tinted glass pit, who had marked subjective and objective signs and symptoms, who if they were working in plain glass pits would have had to cease work.

Tinted and frosted glasses have little effect on the incidence of the disease, but the glare is less than with plain glass, and, as a result, men can continue work even when the signs and symptoms of the disease are marked.

The disadvantage of frosted prismatic glass is that it reduces the illumination by about 10 per cent.; on the other hand this is compensated for by the fact that there is not a noticeable pillar shadow, and the light is softer. Most miners' lamps have four or five steel protection pillars; with plain glass lamps marked shadows of the pillars are present.

The ideal tint is green; it cuts out actinic rays which are the most irritating. The amount of green tint required to diminish harmful glare is less than that required with other colours; consequently the diminution in illumination is less.
Errors of Refraction.—In 76 cases, many of which were contested in the County Court, I carefully studied the association of errors of refraction and the incidence of the disease. I find no association between refractive errors and the incidence and severity of the disease. In many cases the men with the least error of refraction were those with the worst subjective symptoms. I find that the age of incidence is somewhat above the average in myopic people. I suggest that this is because their visual acuity is so poor that diminished illumination and glare takes longer to affect them than other workers; and as their far point is near, they accommodate very little.

I noticed that, when vertigo was most marked after bending, the high myopic case could fix objects with greater ease than men with comparatively little error of refraction. This was due to the fact that spasm of the elevator muscles was less marked, which may be accounted for by the high myopic eye being much longer in the antero-posterior diameter; it is a bigger eye than the normal eye; consequently the elevator muscles have less effect in rotating the eye upwards and so diminishing fixation power. Also in the high myopic eye there are usually several areas of choroidal atrophy, and the amount of light stimulation of the retina is less; consequently there is less retinal irritation.

Association of Accident with Nystagmus.—In three cases, accidents at work were the alleged cause of nystagmus. In one case a fall of coal injured the head causing a frontal scalp wound; in the second a fractured forearm occurred; in the third case the man was buried under a fall of coal, and he sustained considerable shock.

I had not seen these cases before their accidents, so I cannot say if they were suffering from the disease or not.

I concluded after interrogating them that they were suffering from latent nystagmus, and that the shock of the accident to their central nervous system provoked acute nystagmus. One man is still on compensation after three years, and, although oscillations, vertigo, lid spasm and head tremors are present, he has in addition general neurasthenic symptoms.

Association of an Acute Illness.—In three cases men had no difficulty in performing their work underground until they developed an acute illness. Two developed influenza; one was an ordinary mild attack; he was in bed for five days; two days after resuming work he had giddy attacks and the lights underground were "all on the move," he was incapacitated with nystagmus for several weeks.

The second case of influenza developed meningeal symptoms, and he did not return to work for one month. Soon afterwards
he developed nystagmus and he was on compensation for six months.

The third case contracted pneumonia and whilst convalescing he had to be supported owing to vertigo when walking, and could not walk on the road at night as motor car lights provoked giddiness. He was certified suffering from nystagmus, and was on compensation six months.

As in the case of accidents, I have little doubt that the men had latent nystagmus which became acute as a result of an acute illness.

Interrogation of Nystagmus Cases.—I have interrogated several nystagmus cases whom managers considered were good workmen before they were incapacitated, and who did not cease work until they were very acute cases.

My questionnaire led me to the following conclusions:

1. **The symptom which provoked the greatest discomfort was giddiness.**
2. **Other men's lamps caused them most annoyance going to and returning from work underground.**
3. **A man's own lamp rarely caused him any discomfort.** One man's expression was very explanatory "I never look at my lamp. I always pick my lamp by looking at it out of the corner of my eye." In other words, when handling his lamp he always used peripheral vision.
4. **Most men said that they moved their lamps as little as possible, as when turning to move them they got the glare of other men's lamps; which provoked discomfort.** Another reason for not moving their lamps was, that the change in illumination of the coal face was often a source of annoyance.
5. **If the lamp was too near the portion of coal face on which a man was working, the swaying motion of his head brought the lamp into his field of vision momentarily, and the glare was irritating.** As a result, in many cases the men were having even worse illumination than was available; as they were loath to move their lamps owing to the glare and discomfort provoked.

Amount of Illumination.—If coal were a good reflecting surface the underground illumination would be comparatively good; but it is an unusually bad one. The absorption of light is very pronounced; it varies with the composition of the coal; but from 70 to 90 per cent. of all incident light is absorbed by the coal. It is the reflected light on which the worker depends; so if his lamp is 1 C.P. at the beginning of the shift, only 10 per cent. to 30 per cent. of 1 C.P. is available. It may be definitely less than this when one considers that:

1. The angle of incidence is equal to the angle of reflection
and as the coal face is not a smooth surface, there is very much scatter of reflected rays and consequently only a small proportion of reflected rays is available for the worker.

(2) The intensity of the illumination has a constant ratio to the distance of the light from the coal face, one candle at one foot from the face gives as much illumination as nine candles at three feet from the face.

As a result of these various conditions and others of less importance, the worker, depending upon the distance of his lamp from the coal face, may be only receiving reflected light to the extent of 1/500th to 1/1000th of a candle power to perform his work.

Comparison of Lamps.—The one candle power lamp rarely produces 1 C. P.; it is more often 0.75 to 0.90. Further, its end-on illumination may only be 0.50 C. P.

There are still further reductions in illumination. In plain glass lamps the pillars throw a shadow—these shadows are nearly devoid of illumination and the size of the shadow on the coal face is dependent on its distance from the lamp. The vertical illumination is very slight owing to the small size of the bulb, and the head plate, which is, as a rule, about 3 1/2 inches in width.

It is admitted by all investigators that the present illumination with the 1 C. P. lamp is totally inadequate; slight improvements can be made such as paraboloid reflectors, etc.; but the glare as a result of the improvement is greater.

Alternatives to the 1 C. P. lamp are the cap lamp and the 4 candle power alkali lamp.

The cap lamp is the ideal form of illumination; it has the following advantages: it develops as much as 6 C. P.; the worker directs the light on the portion of coal face on which he is working; his lamp is never an annoyance to him from a glare point of view, as he cannot see it; glare does not occur going to and coming from work, if other men carry their lamps as directed; and the same amount of dark adaptation is not required as the man uses macular and perimacular vision.

The objections to it are:—Until a man becomes accustomed to wearing a cap lamp, it is uncomfortable and often causes headache as a result; he has to alter its position on his head and it is continually shifting and the men object to the weight of the accumulator around their waists; the accumulator is often in the way when the position of the body is altered; these annoyances are worse in narrow seams.

Electrical engineers would have no difficulty in producing a head or hand lamp of any candle power or voltage which the collieries would require, but the higher the voltage, the greater the weight of lamp. It is not practical to have a heavy lamp.

A via media between the present hand lamp and the cap lamp, is the 4 candle power alkali lamp.
MINERS’ NYSTAGMUS

I feel confident as a result of my investigations underground, and in my dark room on the surface, with the 4 C. P. Concordia alkaline lamp, that its lighting is sufficient to insure the worker using macular and perimacular vision which, in my opinion, is necessary if nystagmus is to be avoided.

Description: It is much bigger than the 1 C. P. electric lamp, it is fitted with prismatic frosted glass, the glass area is about four times more than the area of the 1 C. P. lamp, the case is of cadmium plated steel containing two complete alkaline cells, the combined voltage of which is 2.6 volts. These cells are manufactured on a new principle developed by Edison. The positive plate is built up of reinforced steel tubes which are filled with active material. These tubes are immensely strong, and can resist the swelling which has so often been the cause of failure with alkaline lamps in the past. Its weight is roughly 9½ pounds, the capacity 18 amp-hours, the bulb, which has a “kinked” filament, consumes 1—6 ampéres. The light is equal to four Haffner candles. (One Haffner candle power is equal to 0.88 of one English candle power). What are the objections to this lamp? The only possible one is its weight. After all the man who should object to its weight is the collier; I have interrogated men who have carried and worked with my experimental lamp, and none of them objected to the weight, they said the better light compensated them for the increase in weight. In fact, in one district a batch of miners have agreed to give the lamp a trial, and the company are installing several dozen lamps.

The following are the advantages which I have noted with this lamp:

1. The glass is frosted and prismatic. As a result of prismatic glass, to the naked eye there are no pillar shadows; in reality there is a slight reduction of light in the pillar area.

2. As a result of frosting and prisms there is obliquity and diffusion of rays; the glare as a result is not more than that with a 1 C. P. plain glass electric lamp.

3. There is good illumination on the coal seam even as high as 12 feet as a result of much larger glass area; higher C. P.; bigger bulb and longer kinked filament; and a head plate 1/5th less than the head plate of the average 1 C. P. lamp, giving more vertical illumination.

4. As a result of good illumination the collier has not to move his lamp as much as he would have to in the case of the 1 C. P. lamp.

5. The eye becomes dark adapted more quickly because partial dark adaptation only is necessary.

After 8½ hours there is only a reduction of 0.25 C. P.; in the case of the 1 C. P. lamp the illumination after the same period is...
FIG. C.
Alkali Lamp in Section.
MINERS' NYSTAGMUS

about 0.5 C. P. In the former case there is only a small fractional reduction in illumination; in the latter the illumination has been reduced by nearly half.

Effects of After Images on Accuracy of Aim.—In conjunction with a colleague I have performed the following experiments in my dark room with: —Flame lamp; 1 C. P. plain glass electric lamp, and 4 C. P. frosted electric lamp.

The procedure was somewhat similar to that of Dr. Vernon and Mr. Adams.

(a) On a black velvet curtain background three feet square, and three feet from the ground were placed 20 squares of paper 4 mm. square at a distance of 1½ inches from each other. I sat on a stool at arm's length from the curtain and after 15 minutes dark adaptation

Fig. D.

Light-curve of Alkali Lamp with Prismatic Glass over 360 degrees.
the 1 C. P. lamp was suspended just higher than the curtain and midway between the curtain and myself; I then placed my hand holding a pen next my chest, and at one second intervals proceeded to prick each piece of paper. The error in accuracy of aim was measured by my colleague. This experiment was merely a control.

(b) After a reasonable rest I stared at the 1 C. P. plain glass lamp for two seconds and then proceeded with pricking test as in (a). In the first four pricks, considerable error in accuracy of aim was made; as I proceeded the error diminished, and after ten attempts the errors were equal to those found in control test (a).

(c) On the following day as I was perhaps becoming accustomed to the targets—I reduced their size to 3 mm., and performed similar experiments to (a) and (b) with a flame lamp. The amount of error in experiment (b) was 20 per cent. less for the first five pricks as compared with the plain glass electric lamp. After that, there was little difference.

(d) On the third day I performed similar experiments with the 4 C. P. alkali lamp with frosted glass. I made a slight reduction in the size of the targets. The amount of error after viewing the lamp for two seconds was slightly less (about 15 per cent.) than that with the plain glass electric; but it was more than that with the flame lamp looked at broadside.

My colleague performed similar experiments, and the error made by him was 50 per cent. less than mine, but our proportion of errors in each experiment was very similar.

These experiments show that the effect of after images on accuracy of aim varies in different individuals; and that the 4 C. P. frosted prismatic lamp produces less intense after images than a 1 C. P. plain glass lamp.

I was very surprised that there should be such a big difference in accuracy of aim between my colleague and myself—we have both excellent vision, about 6/6 in both eyes. In the experiments performed by Dr. Vernon and Mr. Adams, there was also a similar difference between the two observers, but it was not so marked.

After interrogation and introspection, we discovered that staring at the bright light provoked slight giddiness in my case, whereas my colleague did not complain of giddiness. Normally, I feel giddiness on heights, and on a rough sea sea-sickness is easily provoked; my colleague is not affected by heights or the sea. Evidently my internal ear is more sensitive than his, and consequently giddiness is more easily provoked. These observations stimulated us to compare the after-nystagmus produced by the rotation test in our own cases. In his case, with his head held forward at 30°, it required 18 complete revolutions on a suitable chair, to provoke labyrinthine after-nystagmus which lasted eight seconds; vertigo
Miners’ Nystagmus

only continued for a few seconds. In my case eight revolutions produced after-nystagmus which lasted 17 seconds; vertigo continued after the nystagmus ceased. I have no doubt that the giddiness which I experienced after staring at the lamps was vestibular in origin, and that part of my error in accuracy of aim had a similar origin.

I have since performed experiments similar to (a), (b), (c) and (d) with three colliers who are suffering with nystagmus but are doing surface work. The errors in accuracy of aim which they made, were much greater even than mine.

The conclusions I have come to are, that the irritation provoked by after images with a 4 C. P. prismatic frosted glass lamp are less than those provoked by a 1 C. P. plain glass electric lamp even in men suffering with mild nystagmus, and that the accuracy of aim with a 4 C. P. lamp is better because of the better illumination.

Two colliers who had recently been certified as having recovered from the disease, and had returned to underground work, were supplied with the 4 C. P. lamp for one shift. The following was the procedure, and the results. For the sake of clarity, I will refer to the men as “A” and “B”; both men were working in the same district, walking to their work underground. “A” carried the lamp half the way, he was followed by “B”; “B” stated that the 4 C. P. lamp did not irritate his eyes any more than the other lamps in front of him. On the other hand, when “B” took the lamp and preceded “A” the latter stated that he found the glare slightly more irritating than that of the other lamps. Normal men who followed the lamp, did not notice anything abnormal.

“B” worked the first half of the shift with the lamp and stated that the lamp was ideal, stating similar advantages to those already mentioned earlier in the paper. “A,” who used the lamp in the second part of the shift said he would prefer a “duller” light, although he could see much better with this lamp. I may say, on examining these men, that “B” had recovered entirely from the disease; whereas “A,” had lid spasm on exposure to light, slow oscillations and vertigo after bending.

The variation in the labyrinthine tests performed on my colleagues and myself, stimulated me to perform similar tests on colliers suffering from nystagmus. The type of nystagmus produced by rotation and syringing tests in normal people, is different from the pendulum type of oscillations in miners’ nystagmus. Vestibular nystagmus consists of two components, a slow one and a quick one; the slow component is vestibular in origin; the fast component, which is a return to the original position of the eye, is cerebral in origin. Physiologically, the condition
Labyrinthine (Internal Ear) Tests:

Diagram showing mechanism of physiological horizontal nystagmus to the left, after rotation of a patient (upright position) to the right. The brain and eyes are looked at from below and in front. On the left of the diagram (the right side of the patient) is shown, by continuous lines, the path of the impulse from the labyrinth producing the slow vestibular component to the right. On the right side of the diagram, dotted lines indicate the path of the impulse from the cerebral cortex (C) which produces the rapid (cerebral) component to the left.

is most marked when the patient looks in the direction of the cerebral component.

I have syringed the ears of, and rotated several miners with nystagmus, who had no oscillations when at rest, but in whom oscillations could be provoked by bending.

In rotating and syringing these cases, oscillations were provoked; but they were not of the normal vestibular type, one slow and one fast component; on the contrary they were the typical oscillations of miners' nystagmus, mostly of the pendulum type. In most cases oscillations were provoked much more quickly than in normal people; in some cases on rotating them from right to left, marked oscillations were provoked, but on rotating from left to right, the oscillations were not marked. Mostly, marked vertigo, head and hand tremors, were provoked by these tests; and in one particular case the patient had to remain in my rooms for two hours, before he was fit to proceed home.

One naturally wonders why ordinary vestibular nystagmus was
MINERS’ NYSTAGMUS

not provoked in cases of miners’ nystagmus after rotation, I can only hazard a theory to explain these alterations.

Starling in his physiology states, “That extirpation of one labyrinth causes partial loss of tone in the muscles of half the body and stimulation of the labyrinth causes movements of the eyes which may or may not be associated with movements of the head. The labyrinth is to a great extent in control of our posture, the resultant effect of its afferent and efferent impulses is to maintain a reflex posture of the head and eyes so that the optic axes in a position of rest are directed towards the horizon, the cerebellum is a subsidiary of the labyrinth.”

I suggest that the following signs of miners’ nystagmus are labyrinthine in origin:—oscillations, lid spasm, head and hand tremors, vertigo, fast pulse rate, and general inco-ordination. They are due to alteration in the afferent impulses to the labyrinth, and as a result, alteration in the efferent labyrinth stimuli with a consequent alteration in the tone of the muscles, and hence, tremor.

On ascertaining that pendular nystagmus was provoked by rotation tests in miners’ nystagmus, I made further aural investigations.

I have found with rotation tests, that the labyrinths of nystagmus cases are, as a rule, more sensitive than those of normal people; and it is quite common to have the labyrinth on one side, more sensitive than on the other side.

The external canals are tested with the head held forward at an angle of 30°, the posterior canal on the right side, and the superior on the left side, are tested when the patient’s head is held forward and to the right, lambda approaching the right shoulder. The latter two tests I rarely performed, as the giddiness provoked often lasted for a day. I will give further consideration to these observations later.

Muscle Test.—The apparent muscular inco-ordination, the presence of oscillations, and the presence of various muscular phorias with the Maddox rod test; stimulated me to investigate these conditions more thoroughly.

For this purpose I use the myophoriograph. This instrument was designed primarily, to record and investigate, in a graphical manner the co-ordination of a pair of eyes in dynamic action.

The instrument consists of a device, in which one eye fixes a luminous target, which is viewed through a prism rotated about an axis, coincident with the line of fixation. The image of this target is mentally projected on to a black screen, which is visible only to the companion eye.

On the surface of this black screen is another target, which is free to move in all directions parallel to the screen; and is operated by a lever which is held in the hand of the patient.
By varying the design of the two targets, different amounts of fusional stimulus can be demanded. The quality of fusion can be demonstrated in all positions of the eye, by using test objects of such a size as to occupy the macular area of both eyes.

To investigate the co-ordination of the two eyes with prism suspended, two dissimilar targets are employed, one occupying the foveal area, and the other, the paracentral zone.

The actual measurement of the lack of co-ordination of two eyes is obtained by dividing by two the number of small squares between corresponding points of the graph; the result being the amount of error expressed in prism dioptres, the measurement being made in the direction in which the error is to be estimated, i.e., horizontally in lateral errors, and up and down in the vertical errors. The average error is obtained by measurement between the geometrical centres of the figures described, and divided by the factor two, as above.

The method of operation is as follows:—The patient is seated, and his head is placed in a chin and forehead rest, so arranged as to permit no movement. The eye under observation views the luminous target through the rotating prism; the companion eye fixing the movable target on the black screen. The prism is set in rotation (at an even speed by means of a motor), and the patient is
instructed to follow and maintain fixation on the moving target, and to keep it encircled with the second (ring) target which is viewed with the second eye.

By means of a pantograph arrangement, the pattern described by the "follower" target is communicated to a pen travelling over the graph card, and its course is recorded on the latter.

In the construction of the instrument, it is arranged that in a case of orthophoric co-ordination, the figure described has for its centre the cross lines of the graph card, and the record for the two eyes should be superimposed on the one card.

The same procedure is repeated, using the opposite eye behind the prism, thereby obtaining a record for each eye.

By means of the relative displacements, the amount of deviation from normal co-ordination is measured, and the deviation can be definitely apportioned to each eye. The effects of the ductions of spherical and cylindrical errors of refraction, are shown in the shape and size of ambits described, and records of the critical positions in which one eye suspends vision may be investigated.
An interpretation of these charts is easy to the constant observer. I fear some of my readers may find them difficult. For the sake of clarity I will describe Chart A in detail; the chart is that of a clerk who has got vestibular nystagmus; he has never worked in a mine. The left eye shows 3.25 prism dioptres of hyperphoria, the right eye shows 2.75 prism dioptres of hypophoria, in addition, it shows about 5.0 prism dioptres of exophoria. This chart was taken without glasses; he has 2.0 dioptres of hypermetropia. It was found that when wearing 2.0 D. correction with a 3.25 prism base down right eye and 2.75 prism base up in left eye, that his hypophoria and hyperphoria were corrected and exophoria much diminished; these glasses were prescribed, his eyes are comfortable; slight alterations are made from year to year.

Chart B shows esophoria, which is most marked in left eye; owing to failure of fixation due to fatigue and muscular spasm, he could not complete chart in left eye. (Case of miners' nystagmus).

Chart C shows marked oscillations, hyperphoria in the left eye, in right eye exophoria.
Chart D.—Normal chart.

In nearly every case of nystagmus, I have found with this instrument that a latent squint of some type is present. The patient in Chart C had more marked oscillations than the patient in Chart B.

The principal advantage of this machine to an ophthalmic surgeon is that it demonstrates in which eye the squint is most marked. I have found that the patient is most comfortable, when prisms are prescribed in each eye, in ratio to the error as demonstrated by the charts.

The presence of phorias in nearly all cases of nystagmus favours my theory of the mechanism of production of the disease, which is discussed later.

In a bad case of nystagmus, after the patient bends up and down several times, it is impossible to take a chart; as he cannot fix the objective owing to vertigo, muscular inco-ordination and photophobia.

Effect of injections of Bulbocarpine C₁₉H₁₉NO₄.—In the Acta Oto-Laryngologica, Vol. XIII, fac. 2, Sture Berg states that after injection of bulbocarpine 0·1 grm., nystagmus and vertigo, if labyrinthine in origin, disappear. Sometimes the effect lasts for one day. Injections of the drug in rabbits, in whom nystagmus was induced, showed that the drug acts directly on the vestibular nuclei.

This pronouncement induced me to try its effect in miners’ nystagmus. In some cases it had no effect, in others blinking and oscillations ceased for several hours—generally, the patients said
their nerves were "steadier"; it had no effect in diminishing vertigo or headache. Oscillations could be temporarily provoked by bending.

The effects of the drug passed off completely in every case in 24 hours, and sometimes in a shorter period.

I cannot vouch for Dr. Sture Berg's suggestion that this drug acted on the vestibular nuclei, I presume it is correct, but if it does not act on these nuclei, it would show that there is some association between oscillation, lid spasm, and the efferent labyrinthine stimuli.

In two cases of ocular nystagmus due to corneal nebula I gave injections of this drug; it did not affect the oscillations.

Causation of Nystagmus.—I am of opinion that the primary cause of nystagmus is deficient illumination, and the principal secondary cause, is malposition at work. I shall endeavour to explain why the statistics of the disease are apparently in disagreement with my opinion. In the pits which I investigated, the fresh cases on compensation were 0·22 per cent. of the workers employed from 1909 to 1920; whereas, from 1921 to 1929 they were 0·41 per cent., yet in the interval the lighting had improved. In the former period oil lamps were principally in use, with a C. P. of about 0·5 at the beginning of the shift, whereas the electric lamp yielded about 0·85 C. P. at beginning of shift and 0·5 at end.

How can these statistics be accounted for; I have found by experiment on myself, that I take five minutes longer to become dark adapted with an oil lamp than with a 1 C. P. electric lamp; and that with a 4 C. P. lamp I become adapted in one-sixth of the time which it takes me with a 1 C. P. electric lamp.

The better the illumination, the less dark adaptation is required, and consequently a shorter period is required. With an oil lamp on a level with my hips at a distance of five feet from the coal face, I felt, when dark adapted and looking at a portion of coal face six feet high, that I was using my peripheral vision; the coal face was not clear, there was little contrast. With a 1 C. P. electric lamp at the same distance, I felt that I was using perimacular or perhaps macular vision; with a 4 C. P. lamp at the same distance, I was confident that I was using macular vision.

I concluded that, in the case of the oil lamp, I was using peripheral vision, and, with the 4 C. P. lamp, I was using central vision from experiments performed in a coal level. I found with the 4 C. P. lamp on walking into the coal face, which was 40 feet from the daylight entrance, that I could view the coal (in dark stall) nearly as distinctly when I looked at it first, as I could after being there ten minutes; whereas, with the oil lamp I had to become dark adapted before I could get a fair view of the face. I found with the 4 C. P. lamp, that I could get the clearest view of
the coal face when I accommodated and concentrated, with lids slightly closed; whereas with the oil lamp, I got the clearest view with my lids open wide. I was also conscious that I was not accommodating, I was subconsciously endeavouring to give my peripheral vision a chance of attaining its best results, i.e., by lack of accommodation, and poor illumination, my pupil was dilated and as a result the most was made of the bad illumination.

I have observed colliers working in good illumination, their eyes have an appearance of concentration, their pupils are not widely dilated, they are obviously using central vision. I have observed men working in bad light, due to having their portion of coal face in shadow; their eyes have that wide open appearance, which leads one to conclude that they are using peripheral vision, and their pupils are widely dilated.

From these observations I have concluded that men working with oil lamps, work altogether with peripheral vision unless the light is very near the coal face, which is mostly not practical.

With 1 C. P. electric lamps, at the beginning of the shift perimacular vision is probably used, whereas towards the end of the shift when light is bad, peripheral vision is used; when a man looks at his lamp the after images are produced by macular stimulation.

With a 4 C. P. alkali lamp, when the lamp is at a reasonable distance from the coal face, macular vision alone is used throughout the shift as the candle power is nearly as good at the end of the shift as it was at the beginning. Macular vision is also used with good cap lamps.

I have compared the paracentral visual acuity of colliers with my own; in all cases the photopic central vision was 6/6. With the dark adapted eye in bad illumination, I have endeavoured to describe the detailed outlines of a portion of coal face, and compared them with the colliers. I concluded that their trained peripheral vision was far superior to mine; in other words, their trained rod vision was twice as good as my untrained rod vision.

In formulating my theory as to the causation of nystagmus, I will adhere strictly to physiological facts and theories, as nystagmus is a non-organic disease of the central nervous system.

We know that at the macula there are only cones present, and that each cone has its own nerve, in the perimacular area there are principally cones and a few rods, in the periphery of the retina there are rods only, several rods have only one nerve connection. Cones are stimulated directly by light, there are photochemical changes; rods are stimulated by the visual purple which has been bleached by light, and a form of optogram sensation passes along the nerve.

The tortoise, which can only see during the day, has got only
cones, and the owl, which sees only in bad light and in the dark, has only rods. The rod vision of the owl is far superior to the rod vision of human beings, because there is in proportion to size of retina, much more visual purple, and each rod has its own nerve ending; in other words, this night eye is adapted for form vision.

The human eye in its periphery is not adapted for form vision, yet the underground workers have endeavoured to adapt it, and in 25 per cent. of cases they have failed, to the extent of developing nystagmus of slight or marked degree.

The illumination with a good oil safety lamp is about 0.60 at the beginning of the shift, but this does not indicate the amount of light available for the worker, which is dependent upon the distance of the lamp from the coal face, and the amount of light which is reflected from the coal face. If a lamp of 0.5 C. P. is suspended six feet from the coal face, the illumination of the coal face is about 0.014 C. P., 80 per cent. to 90 per cent. of this is absorbed by the coal face, so the collier works with about 0.003 C. P. Elsworth in his investigations has found that where there is much gypsum in the coal, and consequently good reflection of light, there is little nystagmus, and vice versa.

As a result of this defective illumination, the collier works with peripheral vision; he is trying to defeat nature, the periphery of the retina was never intended to be used for eight hours each day for form vision.

One of the first symptoms of nystagmus is defective vision in twilight: some men say that they are nearly blind in twilight and that they cannot see the coal face as well as they used to.

I suggest that this is probably due to two causes:—

(1) The stratum pigmentum produces visual purple. As a result of continuous overproduction these cells become defective, and nearly cease to secrete altogether, or they secrete a visual purple which is too diluted, and ceases to stimulate the rods on exposure to light; or,

(2) Normally, several rods have only one central nerve connection, and continuous use provokes fatigue and consequently poor transmission of impulses. The owl has excellent rod form sense, but there is one nerve to each rod.

In the normal person, in good light there is a very definite ratio between accommodation, convergence, and size of pupil; when a person converges his eyes, he also automatically accommodates and his pupils are contracted.

I have noticed myself, when walking through a room which is practically devoid of light, that in order to avoid striking articles of furniture, it is best to keep the head erect and the eyes wide open, and to look straight in front without accommodating; the
result is, the pupil is dilated, and the maximum amount of available light is falling on the periphery of the retina.

I have watched colliers at work in bad light; their pupils are widely dilated, the eyes are wide open, they are apparently accommodating very little; yet there is marked convergence.

My eyes are, of course, untrained for this occupation, I have endeavoured to top cut coal under the same conditions of illumination, when dark adapted; an observer has told me that my pupils were contracted, my lids were slightly closed; I was evidently accommodating, converging, and my pupils were contracted, all three were in normal proportion.

Judging from a subsequent conversation with the collier whom I replaced for a few minutes, I could see the coal face nearly as well.

My observation on this is that the collier subconsciously converged more than he accommodated; because, if he accommodated in equal ratio to his convergence, miosis would have resulted, and he would receive fewer reflected light rays and have less peripheral retinal stimulation, and consequently diminished peripheral visual acuity.

If this occurs as I suggest, much of the motor stimulation of the iris sphinter and ciliary body must be subconsciously inhibited, whilst the motor stimulation for convergence is normal or increased.

The third nerve is practically in total control of these three mechanisms. We know that the third nerve nucleus has special localized areas in control of these various mechanisms; so I presume it is quite possible for the miner to suppress or stimulate these various areas subconsciously.

On the other hand dilatation of the pupil may be due to increased stimulation of the sympathetic nerve through its dilator pupillae fibres, this would account also for the retraction of the lids; accommodation and convergence may be acting normally.

The visual acuity of the periphery of the retina diminishes as the pars ciliaris retinae is approached; there are no special areas of fixation; it is possible that, as one area of visual purple is bleached, the form acuity of vision in that portion diminishes temporarily, and that another area is used and as a result the musculature of the eye is constantly altering the areas of fixation; so the amount of nervous energy used would be great. The muscle tonus required for these suggested movements would be of an oscillating type: this may partially account for the oscillations which occur in this disease.

As I have previously stated in my paper, central vision is also affected even in mild cases without oscillations; the visual acuity is rarely better than 6/12, in very acute cases of nystagmus the patient may only be able to count fingers a few feet distant. In
cases who can read 6/12, it is noticed that they pick out the letters of the 6/24 line slowly, each letter has apparently to be fixed with a great effort. Starling states that "fixation is partly a voluntary and partly a reflex effort." I suggest that the difficulty in fixation is due to alterations in the reflex portion of this mechanism, which is caused by retinal fatigue, and that diminished central visual acuity is due to retinal and cerebral fatigue.

When the 1 C.P. electric lamp was introduced, those who were confident that defective illumination was the causation of the disease were hopeful that it would diminish, but it increased considerably.

This increase was probably due to two factors, principally,

1) The intrinsic brightness of the 1 C. P. electric plain lamp is about 200 times greater than that of the oil lamp; although the increase in illumination as compared with the oil lamp is only 1\% C. P. I suggest that the increase in glare causes marked after images, and consequently there is pronounced retinal irritation; as a result, many latent cases have become sub-acute or acute cases.

2) When the lamp is near the working area the worker is probably using his perimacular vision, whereas, when the light is distant from the working area he is using peripheral vision. This variation in retinal fixation provokes marked fatigue.

Physiologists inform us that stimulation of the following areas provokes movements of the eyes:

1) Semicircular canals when stimulated cause conjugate deviation of the eyes; head movements are the normal stimuli.

2) Stimulation of the median third of the angular gyrus causes both eyes to be turned to the opposite side, if the gyrus on the right side is stimulated, there are conjugate movements of the right internal rectus (third nerve) and the left external rectus (sixth nerve). The angular gyrus is also connected with the frontal and occipital lobes, so that the voluntary movements, and also the reflex movements associated with light stimulation can be carried out.

3) From the optic tracts, all visual impressions go to the anterior corpora quadrigemina the external geniculate bodies and the pulvinars of the optic thalami. The optic thalamus and external geniculate body convey visual impressions, the anterior corpus quadrigeminum does not. Stimulation of the anterior corpus quadrigeminum provokes movements of the eyes and head; its function is concerned with the co-ordination of visual impressions and movements, with the movements of other parts of the body, and especially with those associated with the mechanism of the labyrinth and cerebellum.

Horsley concluded that the cortex of the cerebellum must be
regarded as an afferent receptive centre, from which axons pass to
the ventrally placed efferent nuclei, viz., nuclei dentatus, fastigius,
emboliformus, Deiters; stimulation of these nuclei provokes move-
ments of the head, eyes, and body.

Although these various areas are capable of producing efferent
impulses which can move the eyes, and in some cases, other

![Diagram of connections of posterior longitudinal bundle.](image)

FIG. F. Diagram of connections of posterior longitudinal bundle.

Ant.C.Quad. anterior corpus quadrigeminiun; oc.m.n. oculo-motor
nucleus; IV.n, nucleus of fourth nerve; VI.n. nucleus of sixth nerve;
D.N. Deiters' nucleus; S.O. superior olive; VIII. Vest.n. vestibular
nerve; p.l.b. posterior longitudinal bundle; 1st c.n. first cervical nerve.

portions of the body musculature, it is necessary that these stimuli
be co-ordinated. Starling states: “This multifarious inter-
course which is taking place continually between the eye centres
and those for the movements of the body and between the afferent
impressions from the eyes and those from the semicircular canals
and the proprioceptive system generally, is effected to a large
extent through the intermediary of the posterior longitudinal
bundle which extends throughout the mid and hind brain, and
in the spinal cord becomes continuous with the anterior
horn. Receiving fibres above through the anterior commissure
from the optic thalamus and from the superior corpora quad-
rigemina, it is associated in its course with the three motor nuclei
which give origin to the nerves supplying the eye muscles.
"Fibres enter the posterior longitudinal bundle from the auditory system, and from the superior olive, and connections are also established between this bundle, the facial nucleus and the nucleus of Deiters representing the central station of impulses from the labyrinth." The general connections of the bundle are shown in Fig. F.

The posterior longitudinal bundle is the tract by which one part of the brain finds out what another part of the brain is doing with reference to muscular actions; it is a clearing house whose principal function is to assist in regulating muscular co-ordination and stimuli.

I suggest that miners' nystagmus is a non-organic disease, whereby the co-ordinate movements of the body, and particularly the eyes have become inco-ordinate, due to altered afferent impulses received from the eyes and the internal ear, and consequently altered reflex efferent impulses are transmitted to the musculature. These efferent impulses are altered in frequency and amplitude, and as a result, the normal tone of the muscles is altered. In order to adapt the eye to bad illumination, the efferent sensations travelling to the iris sphincter and ciliary muscle are inhibited, probably the sympathetic fibres are stimulated, the stimuli producing convergence are augmented and, as a result, the amount of nervous energy required for inhibition and stimulation is much increased. The peripheral visual apparatus which is being used for form vision becomes fatigued; the oculomotor system, owing to abnormal inhibitions and stimulations, also becomes fatigued and perhaps disorganized. As a result of these altered sensations in the visual apparatus, oculomotor system and internal ears, the co-ordinating function of the posterior longitudinal bundle is very much affected.

My investigations of the internal ears in nystagmus, have shown that alteration in sensation occurs in both ears. I suggest that this is due to

1) As a result of altered visual afferent impulses, and efferent oculomotor impulses, the internal ear receives abnormal afferent impulses from these areas, and its reflex efferent impulses are consequently altered.

2) The position of the collier at work, is also a source of irritation to the labyrinthine system. Crum Brown has demonstrated "that while one canal was affected by, and transmitted, the sense of rotation about one axis in one direction only for complete perception of rotation in any direction about any axis, six semicircular canals were required, arranged in three pairs, each pair having its two canals in the same plane and with their ampullae turned in opposite directions. Each pair must thus be sensitive to any rotation around an axis, at right angles to its plane, the one
being influenced by rotation in one direction, the other by rotation in the opposite direction." In the semi-reclining and the full reclining position, the head is in an abnormal position; in right-handed men the lambda approaches the right shoulder—the macula of the vertical canals are receiving the maximum stimulation. In normal individuals, it is not customary to test the vertical canals unless it is specifically indicated; because vertigo is often produced, which may last for a day, and labyrinthine nystagmus is pronounced. The abnormal position of the collier, and the impulses provoked by head movements and the concussion of mandril strokes, must be a great irritant to the vertical canals in particular. Evolution has not fitted the human being to do arduous work in this abnormal position; the strain on the labyrinthine system must be very great. It is an admitted fact that the narrower the seam the greater the nystagmus incidence.

We know that the functions of the saccule, utricle, and semi-circular canals are to maintain equilibrium, to give information of the body in space, and they exert a tonic action on the body musculature; normally, the tonic action of one labyrinth balances that of the other. Injury to the saccule or utricle of one side causes nystagmus, giddiness, muscular inco-ordination, etc.

I have found in many cases of miners' nystagmus, that there are alterations in the labyrinthine sensation in one ear as compared with the other; I suggest that in this syndrome parts of the labyrinth of one ear are more sensitive than similar areas in the other labyrinth, and consequently altered tone (inco-ordination), vertigo, etc., result. In addition, owing to the alterations in sensation in the various parts, including the ear, the co-ordinating action of the posterior longitudinal bundle is affected.

Bad ventilation favours the production of the disease, because there is maloxygenation of the body, and consequently diminished elimination of the waste products produced by energy in the muscles; consequently these muscles are more easily fatigued, and stronger stimuli are required to perform these movements. The centres controlling these movements suffer equally from accumulation of waste products, and they are consequently more liable to fatigue.

Dr. J. S. Haldane, who is considered by most people the leading authority on mine gases, definitely states that they are not present in sufficient amount to account for this disease. The recent researches of Ivor Lane, which were very thorough, are in accordance with Dr. Haldane's opinion. If nystagmus were due to gas poisoning, one would expect a sudden onset; but it is gradual.

Most underground workers work under similar conditions, yet only 25 per cent. develop nystagmus. Some people probably have more stable oculomotor and labyrinthine systems than others, they
do not develop the disease. The children of nystagmus patients are probably more liable to develop the disease than the children of normal miners.

The mechanism of causation which I have suggested, refers to colliers; it can be adapted to account for the disease amongst other workers also, e.g., timbermen, hauliers, etc.

Recommendations

Illumination.—The reasons of the increase in incidence since the introduction of the 1 C. P. electric lamp probably are, that there has not been a sufficient increase in candle power to insure the use of macular vision at work, and, also that increase in the amount of glare has been out of all proportion to the increase in the amount of illumination; particularly with the plain glass electric lamp. It must be remembered that the electric lamp, at the end of the shift and the oil lamp at the beginning of the shift are both about $\frac{1}{3}$ C. P.

I would recommend

(a) The ideal lamp is the cap lamp, but most workers in this area are antagonists to it, because it provokes headache, it is continuously shifting, and the accumulator around the waist is a source of constant annoyance. I have worked recently with a modern one part electric lamp; it seemed ideal.

(b) The alternative to the cap lamp is the 4 C. P. electric lamp, the advantages of which I have previously stated. German pits, where these lamps are used, have recently been investigated by Prof. Dr. M. Bortels, Senior Ophthalmic Surgeon, The Eye Clinic, Dortmund, and Dr. Knepper, Essen Bredency. They state that the incidence of the disease has diminished considerably. I feel confident, if this type of lamp were used, that the incidence of the disease would diminish considerably in England, as it has done in Germany.

(c) All lamps should be frosted, and should have a slight green tint in addition.

(d) Going to, and returning from work, an opaque shade should be fixed to the pillars on the back of the lamp to avoid glare; those who do not adhere to the regulation should be fined.

(e) Flood illumination should be used at machine faces when possible.

(f) Although ventilation is good in modern pits, it must be remembered that the incidence rate is highest in portions of seams which are badly ventilated; an endeavour should be made to improve the ventilation generally. Better ventilation will mean more coal production.
(g) The sons of men who have been known to have nystagmus should not be employed underground.

(h) Men returning to underground work after an attack of nystagmus, should not be given colliers' work in the beginning; and when they are given a place it is advisable that the seam should be wide and the ventilation good in their working areas. I realize that this may be a difficult matter for the management to arrange.

(i) Suitable glasses, either for the prevention or cure of nystagmus are of little avail. Underground, where he requires his glasses most, the miner cannot use them. As a result, men who wear glasses off duty often find the strain greater underground than they did before wearing glasses; this occurs particularly in the case of hypermetropes whose accommodation is rested to a certain extent with glasses.

(j) Men with nystagmus would be well advised to change their occupations if possible.

(k) Many of the continued cases from previous years are neurasthenics who would be better doing light employment; they would gradually regain their confidence.

(l) Certifying surgeons should be ophthalmic surgeons, given discretionary powers to decide which cases are, or are not incapacitated, and for what type of work they are suited. Should the worker disagree with the certifying surgeon's opinion, he should have access to examination by the ophthalmic medical referee.

(m) Contested cases should be decided by a conciliation board whose personnel should include a member of the legal profession in the chair, and an ophthalmic surgeon.

(n) Men who have been on compensation, should be given work by the colliery where they were incapacitated.

(o) Better illumination on main roadways, stone dusting, whitewashing, etc.

(p) Underground workers who are not taking full advantage of the illumination, e.g., light in bad position, too far from coal face, etc., should be reprimanded by officials.

Since completing this investigation, I have received information from collieries where the 4 C. P. electric lamp has been used exclusively in underground districts.

Miners who have used the lamp for a month state that it has all the advantages which I have previously stated in my paper. In addition, I am informed that the glare of other men's lamps, going to work or in their district, is not annoying. Some men say that they do not move their lamps three times during the shift, owing to the excellence of the illumination, and that their coal production is better.