I have been asked many times what Doyne's Discoid Cataract (Coppock) looks like under the slit-lamp. One of the original family attended at the Oxford Eye Hospital the other day, so I arranged with Messrs. Hamblin to have an ophthalmoscopic and slit-lamp painting done.

In this particular case the opacity is a fairly dense one, and the patient can only carry on if her pupils are kept slightly dilated with weak atropine. In some of the cases the opacity is very much fainter, and may hardly interfere at all with vision. This case also shows some senile changes which have been developing recently on the inner side of the lens.

On examination with the ophthalmoscope the cataract appears as a circular spotted disc in the centre of the lens.

On examination with the slit-lamp the disc is seen to be a small spotted biconvex opacity, the spots looking bright white in the beam of the lamp, with a more or less clear central area. The Y's could not be definitely identified but the opacity appeared to involve the embryonic nucleus only, and to be of the nature of a very small "lamellar" cataract.

In the case illustrated here, there is a large vacuole at about XI o'clock on the edge of the opacity. This is a senile change which has developed fairly recently.
EYELID REFLEX IN EMMETROPIA

The original paper giving the family tree of the Coppocks was published in the Transactions of the Ophthalmological Society, 1906, by Nettleship and Ogilvie.

Since then, similar cataracts have been found from time to time in cases having no connection with the Coppock family.

THE EYELID REFLEX IN EMMETROPIA

BY

MATTHEW LUCKIESH and FRANK K. MOSS

LIGHTING RESEARCH LABORATORY, GENERAL ELECTRIC COMPANY, NELA PARK, CLEVELAND

EMMETROPIA is usually defined as the normal condition of the ocular refractive system in which, in a state of repose, infinity and the retina are conjugate points. However, the emmetropic condition could also be expressed in terms of near-point phenomena. For example, it might be defined as the normal condition of the eyes in which, without relative accommodation, a given near-point and the retinae are conjugate. Although these definitions appear to be appropriate descriptions of the normal refractive system, it is clinically known that normal adult non-presbyopic eyes do not conform to both these concepts. Specifically, the usual static and dynamic* methods of refraction indicate, respectively, that normal eyes are approximately emmetropic at distance and hyperopic at near. The latter condition has been described as a "lag of accommodation" accompanying near-vision.1 If such a lag is a reality, positive relative accommodation must be exercised in near-vision if blur is to be avoided.

The recently developed sensitometric method of refraction,2 involving identical techniques for all fixation-distances, reveals that normal adult eyes are myopic at distance and emmetropic over a rather wide range in near-vision when relative accommodation is avoided, as shown in Fig. 1. The indicated myopia may be described as a "lead of accommodation" with respect to convergence at distance;3 and its existence may be attributed to a preferential adaptation to near-vision.4 If there is such a lead, negative relative accommodation must be exercised for distant-vision if blur is to be avoided. These static and dynamic findings have been confirmed at the Dartmouth Eye Institute by measurements made with the ophthalmoeikonometer.5 It will be noted that the usual and the sensitometric examinations alike indicate

* These terms are used to indicate fixation for distance and near, respectively.