eye condition with his occupation made the diagnosis difficult. Only the peculiar localization of the conjunctival irritation in the area of the lid aperture made it possible. The patient was advised to stop working with dimethyl-sulfate, and the condition improved considerably. When he started after a few days to work with the substance the condition appeared again. Treatment with bland lotions and ointments failed to bring relief but bathing of the eyes with borax solution, which neutralizes the substance, improved the bloodshot appearance and itching of the eyes. Changing over to a different job brought about complete cure.

It seems worth mentioning that, as in the case published by Adams and Cridland, other workers in the same laboratory who had previously done exactly the same job had never been affected.

REFERENCES

ANNOTATION

Patron Saints of the Eyes

An abridged reprint of the paper entitled as above, by Koch, is published in the Supplement to the Sight-Saving Review, 1944. The original was the author's thesis for membership of the American Ophthalmological Society and appeared in February last year. Here is given the lore of some of those saints who, in the middle ages, were, canonized for miracles in connexion with sight. These saints are four in number: St. Lucy, St. Odille, St. Clair and St. Augustine of Hippo. St. Lucy was a virgin martyr of Syracuse, born c. 283 A.D. Her name was invoked principally by those suffering from external diseases of the eye. The legend of St. Odille should be familiar to those who know the Ingoldsby Legends. In this paper she is said to have been born to Adalric, Duke of Alsace and his wife. Odille was born blind c. 660 A.D. and narrowly escaped being put to death by her irate father. She is reputed to have recovered her sight during adolescence, became a nun and later the Abbess of a convent where she lived in the odour of sanctity for nearly a century. Both St. Lucy and St. Odille are commemorated on the same day, December 13th.

St. Clair, whose day is November 4, was a priest and martyr of the IXth century. He is invoked, for the most part, by those in Northern France, in cases of ophthalmia. There are other Saint
Clairs also, as well as an Italian St. Clare of Assisi, in this case, a lady.

St. Augustine was born A.D. 354. His day is on August 28 according to the Roman Martyrology and June 15 in the Russian church. He seems to have been a vicious youth both in morals and in religion; but he was converted and became Bishop of Hippo. A well documented paper full of interest.

BOOK NOTICE

An idea of the scope of this book will perhaps be best conveyed by a brief historical review (naming only protagonists) of the discoveries of the physiological processes giving rise to visual phenomena.

In 1876 Boll discovered visual purple, which was exhaustively investigated by Kühne from 1877-82. Its genesis and chemical properties were elucidated by Wald (1934-39) and Lythgoe (1937-8). In 1903 König first estimated its absorption curve and pointed out its agreement with the scotopic luminosity curve. Kühne had already proved that rhodopsin was contained only in the rods of the retina, and that visual impulses were initiated by photochemical stimuli.

In 1868 Schultze found that cones predominated in the retinæ of diurnal, and rods in those of nocturnal animals; and in 1898 Parinaud attributed night blindness to deficiency in the rod mechanism. In 1904 von Kries brought forward a vast array of arguments in favour of the Duplicity Theory that the rod mechanism is responsible for vision at low intensities of light, and the cone mechanism for vision of higher intensities and for colour vision.

Du Bois Reymond’s discovery of the “negative variation” in nerves (and also the resting potential of the eye) in 1849 may be regarded as the starting point of electrophysiology. Since then overwhelming evidence has accumulated that even if changes in electrical potential are not the actual cause of nerve impulses they are a quantitatively accurate reflection of the actual cause. Holmgren (1865-82) and Dewar and McKendrick (1873-7), discovered the electroretinogram (ERG); and Gotch (1903-4), with the capillary electrometer, obtained the first ERGs which embodied all the features now known to us. Valve amplification has provided instruments fast enough to follow the rapid action potentials in the nerve