BOOK REVIEWS


This is the first volume of the System of Ophthalmology to be concerned predominantly with the clinical description of eye diseases. Its publication, therefore, is an event of special significance. The work represents a vast expansion of the appropriate sections of the "Text-book of Ophthalmology", but this increase in size is not accompanied by any diffuseness in organization. The reader will quickly realize that the author's enviable power of lucid communication continues at high level. The accounts given of the clinical features of many ophthalmic conditions are models of precision and completeness.

A fascinating historical introduction introduces an extensive section devoted to terato-genesis. Here we find again the catholic knowledge of topics having only an oblique reference to ophthalmology, which has come to be expected of the author. Nevertheless, in a work "written primarily for the clinicians", some of the experimental data included in this section are perhaps a little too detailed. Mild surprise might be felt in some quarters at the omission of any reference to the possible teratogenic effect of the products of nuclear fission.

The main part of the book is presented under sub-headings relating to anomalies of the eye itself, of the adnexa, and of ocular motility. Accounts are given of congenital deformities of the head and neck and of the central nervous system. Finally multiple syndromes are discussed.

In each of these chapters the clinical presentations of the various conditions are amplified by extensive bibliographies so that, quite apart from the eclectic nature of the text, the work will act as an important source of reference. The significance of many diverse conditions and the inter-relations between them are clearly brought out. It is welcome to find, for example, that the distinction between megalocornea and buphthalmos is not quite as clear cut as was formerly held.

Inevitably comparisons will be drawn between the relevant portions of this book and the recent work on genetics by François and by Waardenburg, Franceschetti, and Klein. It is not mere patriotism which inclines the reviewer towards the present work. All too easily a large tract on genetics can deteriorate into an uninteresting catalogue. Thanks to crisp style and careful but thorough selection of material, this fault has been completely avoided in the volume under review.

Is this work to be looked upon, however, as part of the "System" or as an independent work? Without doubt, from this last viewpoint, it is very successful. There are occasional lapses such as the sub-section on pseudo-glioma; here the confused terminology of retinal neuroblastoma goes unexplained and might be incomprehensible to a clinician who is in the habit of using an old-fashioned term.

In trying to visualize the place of this volume in the "System" as a whole, some slight misgivings arise. To review one volume of a major work such as this is almost like commenting on Genesis in ignorance of the remainder of the Pentateuch.

An independent work devoted to one aetiological category of eye disease is bound to lead to overlap in subsequent volumes which are based on topographical definitions. Is there to be a further and yet fuller account of Duane's syndrome in the coming work on ocular motility? Will syringomyelia be dealt with again in the volume on neuro-ophthalmology? The future development of the "System" will be most interesting.

If the remaining volumes maintain the high standard of literary style, illustration, and independence shown by the present one—even at the expense of some duplication—we look forward to them.


This is a diffuse and rambling book which purports to relate language performance to birth and early development, sleep patterns, early crawling patterns, creeping abilities, walking patterns,

Ocular complaints are frequent among textile workers and this monograph deals with their causes and remedies. The author takes a firm stand against quick screening methods by laymen, as full vision is only a small part of the optical and neuro-physiological requirements. Quick tests may even do harm, as many will be satisfied and will fail to seek the advice of the ophthalmologist.

The author's survey of the existing conditions include the nature of the work and the direction of gaze, e.g. in one process the worker had to look up 20° and down 70° and cover a distance of 160–170 cm. The lighting in many workshops was inadequate. The visual acuity required varies considerably. For example, a modern hosiery machine can make 28 to 32 stockings simultaneously and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second. The threads may be as thin as 0.05–0.03 mm., often pale in colour, and of poor contrast. The operator has to supervise all these processes and the speed is about two rows a second.

In assessing visual performance in the textile industry, the visual acuity is not a sufficient guide, as it does not take into account the essential form-appreciation and quickness of perception. Rapid accommodation and, for presbyopes, increased lighting, so as to give good contrast are important. The colour of artificial light depends on the temperature of the filament, and by using different fluorescent tubes, combined with tungsten filament or mercury vapour lamps, the colour rendering and the balance of light and shade can be improved. The threshold of visual comfort is above 250 but possibly nearer 400 lux; for frame-setting and finishing a much higher value is necessary. The degree of accommodation required varies a great deal, e.g. with a yarn of 0.03 mm. thickness the one minute visual angle is at 10 cm., but for visual comfort for sustained work 1·5 minutes is the minimum required, i.e. a working distance of 6·67 cm. or 15 dioptries of accommodation.

Besides these strictly ophthalmic requirements some other points are emphasized. In the workshop the moving parts should be painted yellow and the danger-spot red, and the rest of the machinery should be a pleasant colour. Of the optical aids, large-sized magnifying lenses on a flexible shaft giving 1·3 to 2 x magnification are preferred to head loupes, as the latter require a special head-posture which may lead to fatigue.

This little book is a useful summary of an ophthalmologist's role in the textile industry.