type were used and illuminated by the central window of the nyctoptometer. In this case the initial illumination is made low and then gradually increased until the observer can read all the letters. A similar procedure is then undertaken with larger letters. Wynn Jones's experiments were made upon 12 air pilots of the R.A.F. He found that individual differences were most marked and that roughly persons can be divided into the following classes: 1. Poor adapters, both at the beginning and at the end; 2. Good adapters, both at the beginning and at the end; 3. Poor adapters at the beginning, good at the end; 4. Good adapters at the beginning, poor at the end.

The fullest information can only be given by a complete adaptation curve. The testing for light sensitivity can be confined to a region of 10 degrees around the fovea as results up to 60 degrees give much the same ranking. Beyond 60 degrees, it must be remembered, practically no binocular summation of stimuli occurs. At 20° at the temporal side of the fovea light sensitivity attains its maximum. He finds that dark adaptation for 16 minutes is sufficient for all practical purposes for testing both light sensitivity and visual acuity. He finds that an individual's visual acuity in daylight is no criterion of his light sensitivity; that visual acuity in daylight correlates moderately with visual acuity in dim lights and that visual acuity in dim light correlates highly with that in much dimmer light. Finally, that no inference can be drawn from testing an individual's light sensitivity as to his visual acuity in dim light or vice-versa.

P. G. DOYNE.
the headings: the form of the orbit, the orbital margin, the walls of the orbit, the accessory air-sinuses of the nose in their relation to the orbit, the osseous lacrimal passages, table of the apertures of the orbit and the structures which traverse them, the periorbita, mensuration, development and growth, and variations, asymmetry, and deformities. Part II includes the eyebrows, the eyelids (including a section on development), the conjunctiva, and the lacrimal apparatus (glands and lacrimal passages). The contents of the orbit are exhaustively described in Part III.

The book is characterised by meticulous accuracy. Few readers, for example, will be aware that Zeis is the correct way of spelling the name of the discoverer of the glands commonly known as Zeiss's. To show, however, that the author is not infallible we find that he falls into the not unusual error of spelling distichiasis “districhiasis” (p. 154), and he tells us that a “stye” is caused by the blocking of the duct of one of Moll's glands. We only point out these errors in order that they may be corrected in a future edition.

There is little scope for originality in a work on descriptive anatomy, except in the arrangement and clear and accurate presentation of the facts. In these respects the author has been eminently successful; but his supreme merit is the beautiful photographs and lucid diagrams. There are 195 illustrations, of which a very large number are original photographs, excellently reproduced, of bones, sections, and dissections. There is a very full bibliography of papers and books published since 1900 relating to the anatomy, histology, and embryology of the subject. Professor Whitnall is to be congratulated on the success of what must have been a laborious undertaking. The book will prove invaluable to students, particularly such as are preparing for ophthalmic diplomas. It may be hoped that the demand will be large enough to justify a reduction of the somewhat alarming price.

NOTES

Death

The death of Henry Work Dodd, after a prolonged illness, took place upon June 28th, at his house in Harley Street, at the age of 61 years. He was born at Victoria, Vancouver Island, B.C., and was the son of the late Charles Dodd. He was educated at Norwich School, under the Rev. Augustus Jessop, D.D., and studied medicine at St. Bartholomew's Hospital, London. For some years he was Clinical Assistant at The Royal Westminster