External ocular motor palsies in ophthalmic zoster: a review

R. J. Marsh, B. Dulley, and V. Kelly

From the External Diseases Clinic, Department of Clinical Ophthalmology, Moorfields Eye Hospital, City Road, London

SUMMARY Seventy-seven new patients suffering from ophthalmic zoster and a selected group of 69 old patients were carefully examined with regard to external ocular movements. An incidence of 31% of ocular pareses was found in the new patients, and 58 in all were analysed. We were surprised to find several of these were contralateral and bilateral palsies. 28% of the palsies were asymptomatic, due to diplopia being present only in extremes of gaze and the rapid development of suppression in the affected eye. The theories of aetiology of these pareses are discussed.

Herpes zoster ophthalmicus produces widely varying lesions of the eye in 50% of cases (Edgerton, 1945a) and rarely involves other parts of the central nervous system (Edgerton, 1945b; Walsh and Hoyt, 1969; Thomas and Howard, 1972; Marsh, 1976a). It is thought to arise by reactivation of varicella virus lying latent in the trigeminal ganglion after a prior attack of chicken pox (Garland, 1943; Hope-Simpson, 1965), the virus replicating and migrating peripherally to skin, orbit, and centrally to the brain stem (Godfredson, 1948; Esiri and Tomlinson, 1972).

The cranial involvement takes many forms. A meningoencephalitis may develop (Schiff and Brain, 1930; Krumholz and Liuhan, 1945; Worster-Drought and Sargent, 1949; Appelbaum et al., 1962; Rose et al., 1964; Norris et al., 1970). Contralateral hemiplegia occurs rarely, either in an isolated form (Baudouin and Lantuejoul, 1919; Rollett and Colrat, 1926; Biggart and Fisher, 1938; Hughes, 1951; Cope and Jones, 1954; Minton, 1956; Laws, 1960; Acers, 1964), or accompanied by hemianopia (Franceschetti et al., 1955), aphasia and agraphia (Gordon and Tucker, 1945; Leonardi, 1949; Anastopoulos et al., 1958). Other cranial nerves may be implicated simultaneously. Optic neuritis has been well described (Duke-Elder, 1940; Edgerton, 1945c; Pemberton, 1964; Harrison, 1965; Ramsell, 1967). The VIth nerve is occasionally involved (Hunt, 1909; Edgerton, 1945d), and a contralateral VIth nerve paresis has been described in 1 case (Norris et al., 1970). Third, IVth, and VIth nerve palsies occur more frequently (Edgerton, 1945c; Goldsmith, 1968), the IIIrd being the commonest (Kelly and Dulley, 1975). All 3 may be involved together as a total ophthalmoplegia and are usually accompanied by proptosis (Carmody, 1937; Edgerton, 1945f; Lister, 1948; Pincus, 1949; Von Siegert, 1964). Many series have been published giving the incidence of extraocular muscle palsies as 5% (Hybord, 1872; Flament and Bronner, 1974), 7% (Desirat, 1903; Worster-Drought, 1923), 10% (Nover, 1970), 12% (Rebattu et al., 1933), 13% (Edgerton, 1945g), and 14% (Hunt, 1909).

In this paper we present our own series based on a large number of patients.

Patients

The patients included in this study were drawn from those attending the zoster division of the External Diseases Clinic at Moorfields Eye Hospital, City Road, London, over a 4-year period. All were carefully examined with special reference to severity of rash, degree of neuralgia, the presence of nasociliary or lid margin involvement, episcleritis/scleritis, keratitis, iritis, and iris atrophy, and any complaints of diplopia were noted. A special note was added on the sectoral distribution of the lesions. Corneal sensation was measured centrally and in the 4 outer quadrants with the aesthesiometer of Cochet and Bonnet. Special investigations included haemoglobin concentration, ESR, differential white count, blood film, plasma protein electrophoretic strip, blood sugar, liver function tests and chest x-ray.

Two of the authors examined in detail the ocular movements of all new patients passing through the clinic in an 8-month period (77 patients) and a
selected group of old patients attending for follow-up (69 patients), many of whom had been previously diagnosed as having ocular palsies due to zoster. Tests were carried out at each attendance regardless of subjective symptoms and included cover test, ocular movements, convergence, assessment of binocular function, and Lees screen. A note was also made of the position of the upper lid margin.

Results

Twenty-two cases of paresis were found in the 77 new patients examined, giving an incidence of 29%. A total of 58 cases of external ocular muscle paresis were discovered among the new and old patients. Forty-two of them complained of diplopia, 32 constantly. Sixteen of the patients were asymptomatic, although 8 admitted to diplopia on testing in extremes of gaze. Careful analysis of the 58 pareses showed they tended to fall into 5 categories (Table 1). The different cranial nerves involved in the ipsilateral and contralateral groups are analysed in the Venn diagram (Fig. 1). The third category revealed slow recovery of the original ipsilateral paresis, and always a contralateral IIIrd nerve palsy superseded, although the same branch was not necessarily affected on each side (Table 2). A small percentage of cases had the same muscle paresis on each side from the beginning, but other underactions were present, usually on the side affected by the rash. Complete ophthalmpoplegia was accompanied by proptosis in 3 of the 4 cases seen, and 1 of these in fact had bilateral ophthalmpoplegia and proptosis.

Fig. 2 shows the age distribution of the patients

Table 1 Laterality of external ocular palsy

<table>
<thead>
<tr>
<th>No. of cases</th>
<th>Ipsilateral</th>
<th>Contralateral</th>
<th>Ipsilateral becoming contralateral</th>
<th>Bilateral</th>
<th>Complete ophthalmoplegia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

with palsies, and it should be noted that the youngest was 46.

All the pareses were detected within the first week of the rash, although it was often difficult to examine
eye movements at this stage owing to the lid swelling and malaise of many of the patients.

Fig. 3 shows the duration of symptoms, and it is significant that there were only 3 cases lasting for more than 18 months. However, an orthoptic defect could always be found in all patients despite the excellent subjective recovery.

The incidence of other ocular complications of zoster in the ocular motor palsy group was compared with those occurring in a comparison group of 46 patients seen at the same time with no ocular motor defect. The results and statistical analyses are depicted in Table 3. There was no clear relationship between any of the sectoral lesions and a particular external ocular muscle underaction. Neither was there any significant correlation with the results of the special investigations.

Three patients had ipsilateral VIIth nerve paralysis without auricular involvement. A further 3 developed contralateral hemiplegia within 1 month of the onset of zoster, and a fourth developed an ipsilateral hemiplegia 2 years after the rash.

Table 3 The association of external ocular palsies with other complications of ophthalmic zoster

<table>
<thead>
<tr>
<th>Complications of ophthalmic zoster</th>
<th>χ^2</th>
<th>Probability</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity of zoster</td>
<td>12.6</td>
<td>$P < 0.001$</td>
<td>Very highly significant</td>
</tr>
<tr>
<td>Neuralgia</td>
<td>5.9</td>
<td>$0.05 > P > 0.01$</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Iritis</td>
<td>12.6</td>
<td>$P < 0.001$</td>
<td>Very highly significant</td>
</tr>
<tr>
<td>Iris atrophy</td>
<td>10.2</td>
<td>$0.01 > P > 0.001$</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Sphincter damage</td>
<td>1.8</td>
<td>$0.2 > P > 0.1$</td>
<td>Non-significant</td>
</tr>
<tr>
<td>Corneal reflex</td>
<td>0.82</td>
<td>$0.5 > P > 0.3$</td>
<td>Non-significant</td>
</tr>
<tr>
<td>Corneal involvement</td>
<td>0.21</td>
<td>$0.2 > P > 0.1$</td>
<td>Non-significant</td>
</tr>
<tr>
<td>Episcleritis</td>
<td>0.2</td>
<td>$0.7 > P > 0.5$</td>
<td>Non-significant</td>
</tr>
<tr>
<td>Lid involvement</td>
<td>0.91</td>
<td>$0.5 > P > 0.3$</td>
<td>Non-significant</td>
</tr>
</tbody>
</table>

Discussion

We found external ocular motor palsies in ophthalmic zoster to be more common than previously indicated. This was probably related to the detailed examination of eye movements in all patients. 28% were asymptomatic owing to the diplopia being present only in extremes of gaze, poor sight in the affected eye, or to the development of suppression at a late age. Recovery was excellent despite the fact that an objective defect could always be found on orthoptic examination. The presence of a squint was significantly associated with the severity of the rash and the later occurrence of severe neuralgia, iritis, and iris atrophy, whereas episcleritis, and corneal and lid involvement were of no greater frequency. No case was seen under the age of 40. Surprisingly we found some of the palsies to be bilateral and on the side opposite to the skin lesions.

Pathogenesis

To try to understand the cause of bilaterality of some of the palsies and their relationship to other complications of zoster it is necessary to consider the pathogenesis of the lesions.

Three pathogenic mechanisms should be considered for mediating neural damage in zoster. The first is a direct cytopathic effect from the virus itself on the surrounding neural tissue (Cope and Jones, 1954). The second is an allergic response of the central nervous system to the virus, which is not primarily vascular (Krumholz and Luhan, 1945; Appelbaum et al., 1962; Rose et al., 1964). The third attributes it to an occlusive vasculitis induced by the virus (Gordon and Tucker, 1945; Feyrter, 1954; Anastostopoulos et al., 1958; Wray, 1972). A fourth theory (for which there is little evidence) suggests the varicella/zoster virus activates another latent neuropathic virus within the brain (Appelbaum et al., 1962).

Virus may reach the brain in several ways and there cause direct cytopathic or allergic damage to
the nervous tissue. The first is a retrograde spread of virus from the trigeminal ganglion to the Vth nerve nucleus. Here it reaches other cranial nerve nuclei, either by axonal spread along established interconnections (Biggart and Fisher, 1938; Godfriedson, 1948; Goodbody, 1953), or by random spread (Cope and Jones, 1954; Acers, 1964). The former pathway could be along the proprioceptive neurones of the oculomotor muscles in the Vth nerve (Denny-Brown et al., 1944). Alternatively, virus may reach the brain by means of a basal meningoencephalitis, which is well described in the literature (Schiff and Brain, 1930; Wynne Parry and Laszlo, 1943; Gordon and Tucker, 1945; Godfredson, 1948; Hughes, 1951; Norris et al., 1970). The area chiefly involved is thought to be the pontine region (Worster-Drought, 1923). Many features can be attributed to this: headache, general malaise, pyrexia, bilaterality of lesions, multiple cranial nerve palsies, hemiplegia, CSF findings, and the rare cases of cranial nerve lesions secondary to a remote primary zoster lesion (Thomas and Howard, 1972; Keane, 1975). Against this theory is the delayed occurrence of many of the cranial nerve lesions, the lack of symptoms and signs of encephalitis in many of the patients, and the rarity of bilateral lesions other than oculomotor palsies. Thirdly, a separate cranial motor neuritis may occur simultaneously with the trigeminal lesion, presumably also owing to the presence of latent virus activated by the same unknown stimuli. This could be a satisfactory answer for contralateral palsies and the occurrence of lesions at a different level from the primary rash (Denny-Brown et al., 1944; Keane, 1975). However, it is somewhat unsatisfactory to postulate 2 distinct lesions and could not adequately explain the association of squints with other ocular complications of zoster.

The last pathogenic mechanism to be considered is that of occlusive vasculitis. Various sites have been proposed. The earliest suggestion was that of the muscle cone and orbit with accompanying myositis, perineuritis, and thrombosis (Wyss, 1871; Abadie, 1898; Aubineau, 1914–15; Kreibig, 1938; Von Siegert, 1964). While this would be in keeping with the picture seen in total ophthalmoplegia with proptosis, iritis, and iris atrophy, it does not explain the isolated and contralateral ocular palsies we have seen or the rarer cases of contralateral hemiplegia.

The second site to be described was the cavernous sinus and orbit apex with involvement of the adjacent IIIrd, IVth, and Vth nerves (Rebattu et al., 1933; Edgerton, 1945g; Franceschetti et al., 1955; Walsh and Hoyt, 1969; Scheie, 1970). The difficulty here is to account for hemiplegias and the bilaterality of lesions, although it is true that the cavernous sinuses of both sides intercommunicate freely. The origins of the middle cerebral and ophthalmic arteries are here, and an ascending vasculitis may spread along these, with accompanying thrombosis (Gordon and Tucker, 1945; Anastopoulos et al., 1958). This may be mediated by a granulomatous angiitis induced by the varicella/zoster virus, involving the carotid artery, ipsilateral to the involved eye and segmental (Rosenblum and Hadfield, 1972; Victor and Green, 1976). In favour of this theory is the delayed onset of contralateral hemiplegias, hemianopias, and aphasia secondary to damage in the region of the internal capsule, and the occurrence of ischaemic optic neuritis and irritis. But it is a rather unsatisfactory mechanism for evoking contralateral ocular palsies.

A third site of vasculitis in the brain stem has been described pathologically by Feyrter (1954). This would, of course, account for ipsilateral palsies, contralateral hemiplegias (from involvement of the corticospinal tract), and lesions of adjacent cranial nerve nuclei. A spill-over of the vasculitis just the other side of the midline could give rise to the contralateral ocular palsies.

It is possible, of course, that the palsies are of a mixed aetiology and that all the mechanisms and sites mentioned are involved.

TREATMENT

In view of the satisfactory recovery without treatment in most cases the question arises, Is any necessary? The minority that suffer very troublesome diplopia may need temporary occlusions.

An overall therapeutic solution to zoster must include an effective, non-toxic, systemic antiviral agent which crosses the blood brain barrier. If given at the very onset of the disease it would prevent both the direct and allergic cytotoxic effect of the virus on neural tissue and prevent the initiation of a secondary vasculitis by destroying the virus at an early stage. However, a problem will still exist if cases present later on when these changes have been initiated, especially the vasculitis. It would seem logical to use systemic steroid in cases of occlusive vasculitis, and it is almost certain that total ophthalmoplegia with proptosis and ischaemic papillitis comes into this category (Marsh, 1976b).

It is quite clear that much work needs to be done on the pathogenesis of zoster and its complications. The disease is still a great mystery and despite its clearly proved association with varicella virus the theory of latency is not proved. The connections between the virus and lesions seen are also not understood. Neither is it known whether continuing presence of virus is necessary for the production of chronic lesions. There are many difficulties in
clarifying these issues. No animal model exists for zoster, and there is a great problem in obtaining post-mortem information on well-documented patients with zoster, especially in processing material for immediate histological, virological, and immunological checking. It is to be hoped that advances in these techniques will provide the therapist with the information he needs for the effective handling of this disabling disease.

We thank Professor Barrie Jones and Mr Alan Bird for their encouragement, Mr R. Fisher for his help with the statistics, and Mrs Jane Field for secretarial assistance.

References

Abadie, J. (1898). Douleurs neuralgiques anciennes consecutives au zona gueris immediatement par la ponction lombaire, Bulletin de la Societe Francaise de Dermatologie et de Syphiligraphie, 10 April.

followed by virus encephalitis with right-sided anaesthesia, parasthesia and hemiplegia. Transactions of the Ophthalmological Societies of the United Kingdom, 76, 227–233.

