Combined vitamin A and E therapy prevents retinal electrophysiological deterioration in abetalipoproteinaemia

SALIM BISHARA,¹ SAUL MERIN,¹ MICHAEL COOPER,² EYOB AZIZI,³ GEORGES DELPRE, AND RICHARD J. DECKELBAUM⁴

From the ¹Department of Ophthalmology, Hadassah University Hospital, Jerusalem; the ²Department of Paediatrics B, Kaplan Hospital, Rehovot; the ³Department of Paediatrics, Asaf Harofe Hospital, Zerifin, and the ⁴Department of Paediatrics and Gastroenterology, Hadassah University Hospital, Jerusalem, Israel

SUMMARY Eight patients with abetalipoproteinaemia had the typical ocular, systemic, and laboratory findings of this disease. Combined therapy with vitamins A and E was administered, starting as early as the first day of life and as late as 26 years of age. The patients were followed up for 2-6 years. Electroretinography was undertaken in all cases and electrooculography in some. After initiation of vitamin A and E therapy no progression of disturbed visual function could be detected in any patient. These objective tests of retinal function demonstrated that the combined vitamin A and E therapy may be useful in arresting retinal deterioration in abetalipoproteinaemia.

The Bassen-Kornzweig syndrome¹ is a hereditary disorder characterised by gastrointestinal symptoms (steatorrhoea), haematological disorders (acanthocytosis), neuromuscular disturbances (ataxia), and retinitis pigmentosa, all appearing in the first decade of life. Early appearance of the retinal disease differs from the hereditary type of isolated retinitis pigmentosa, which appears later, usually during the second or third decade.²

The term abetalipoproteinaemia was given to this disease when it was discovered that lipoproteins containing apoprotein β are absent from the plasma.²⁻³ Thus the plasma of these patients contains neither chylomicrons nor very low density lipoproteins (VLDL), nor low density lipoproteins (LDL).⁴⁻⁵ Levels of circulating vitamins A and E are very low in all untreated patients.⁶⁻¹¹ Although the reason for the diminished blood levels of these fat-soluble vitamins is not completely understood, it may be a consequence of faulty absorption and subsequent transport as chylomicrons in the lymph to the liver.¹² Normally vitamin A is released from the liver bound to retinol-binding protein and is transported to various tissues as a 1:1 molar complex with serum prealbumin.¹³ Vitamin E is normally transported by lipoproteins in the plasma.¹⁴ Vitamin A is necessary for the normal operation of the visual cycle, and vitamin E, normally a component of the photoreceptors, plays an essential role in preventing autooxidation of polyunsaturated fatty acids.¹⁵¹⁶

We have followed a group of 8 abetalipoproteinaemic patients who received vitamin A and E in large doses. The purpose of this study was to determine whether supplementation with both vitamins is effective in arresting retinal deterioration.

Patients and methods

Patients with abetalipoproteinaemia were referred to the Vision Research Laboratory of the Hadassah University Hospital for electrophysiological studies. The diagnosis was based in every case on typical clinical findings, with complete absence of plasma apoprotein β as determined by specific radioimmunoassay. In all patients the plasma cholesterol and triglycerides of the parents were normal, a finding that excludes familial homozygous hypobetalipoproteinaemia.¹²¹³

The electrophysiological studies included: Electroretinography (ERG). This was done as described in detail elsewhere.¹⁸ In short, the patient is placed in a recumbent position in an electrically
Table 1 Age, treatment, and ocular findings in 8 patients with abetalipoproteinaemia

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (years)</th>
<th>Commencement of treatment</th>
<th>Fundus examination</th>
<th>ERG</th>
<th>EOG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vitamin A†</td>
<td>Vitamin E‡</td>
<td></td>
<td>First</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At birth</td>
<td>At birth</td>
<td>—</td>
<td>Age</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>At birth</td>
<td>At birth</td>
<td>Normal</td>
<td>1 year</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>At 10 days of age</td>
<td>At 10 days of age</td>
<td>—</td>
<td>7 months</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>At 4 months</td>
<td>At 4 months</td>
<td>Normal</td>
<td>1½ years</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>At 18 months</td>
<td>At 20 months</td>
<td>Normal</td>
<td>1½ years</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>At 26 years 'irregular'</td>
<td>At 26 years 'irregular'</td>
<td>Peripapillary choriotinal atrophy, mild pigmention in macula, narrow arteries, 'atypical' retinitis pigmentosa</td>
<td>26 years</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>At 13 years</td>
<td>At 13 years</td>
<td>Typical retinitis pigmentosa</td>
<td>15 years</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>At 8 years</td>
<td>At 8 years</td>
<td>'Inverse' retinitis pigmentosa</td>
<td>10 years</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>None$</td>
<td>None$</td>
<td>Pale disc, narrow attenuated arteries, bone corpuscles of pigment, 'typical' retinitis pigmentosa</td>
<td>16 years</td>
</tr>
</tbody>
</table>

§CT measurements.

*50 000 U twice a week.
†100 mg/kg/day to a maximum dose of 3000 mg daily.
‡The amplitudes of A and B waves are given in μV.
§Vitamin A and B were administered for a few days and stopped after the appearance of bilateral papilloedema.

shielded cell. The pupils are dilated with tropicamide (Mydriaticum) and neosynephrine 10%, after which contact lenses with corneal electrodes (Henke's type) are fixed to both eyes with methylcellulose 2%. Reference electrodes are fastened to the skin above the eyebrow and a ground electrode is attached to one ear. The stimulating light is positioned 20 cm above and equidistant from both eyes to keep the angle of light comparable to both retinas. The corneal electrodes are connected to the oscilloscope through AC preamplifiers. Thirty minutes are allowed for dark adaptation, and the CT (computer of average transient) is used in cases of very low electroretinograms. With these methods the minimal normal values in our laboratory for adults are 100 μV for the A wave and 400 μV for the B wave amplitudes, with a variability between visits of 20 μV. In normal children the amplitudes are usually lower.

Electro-oculography (EOG). This was performed in older children and adults by the methods of Arden and Kelsey. The 180% light peak/dark trough ratio was considered the lower level of normal.

All patients underwent a routine eye examination including direct and indirect ophthalmoscopy. Blood samples were taken to determine the vitamin A and E levels in the serum.

Results

Table 1 summarises the main clinical and electrophysiological findings in the 8 patients who were included in the study, while Fig. 1 shows serial changes in each patient as detected during the period of follow-up. Three subgroups were noted. The first included 4 children (cases 1-4) who started combined vitamin A and E therapy during the first 2 years of life. ERG values and normal fundus picture did not change till their present ages of 2, 3, 5, and 4 years respectively. The reduced ERG values of case 4 on his second examination (Fig. 1) were due to technical reasons, as proved by 2 additional examinations. Repeated tests showed serum vitamin E levels to be between 0.15 and 0.2 μg/ml (normal range 0.5–0.8 μg/ml), or about one-third of the normal values.* Vitamin A levels were between 13 and 45 μg/100 ml (normal range 15–60 μg/100 ml). (SI conversion: μg/ml = mg/l; μg/100 ml x 0.01 = mg/dl.)

The second subgroup consists of 3 adults (cases 5-7) who started the vitamin A and E treatment later in life, only after electrophysiological functions were already much reduced, and the fundi showed changes of retinitis pigmentosa of different stages of severity. All 3 patients maintained a stable ERG and EOG
Combined vitamin A and E therapy

Discussion

Since Bassen and Kornzweig\(^1\) reported their first case of abetalipoproteinemia in 1950 only 36 cases had been described until 1976.\(^8\) The present study deals with 8 additional patients. The results indicate that in abetalipoproteinemia combined vitamin A and E therapy has a 'stabilising' effect in preventing deterioration both in the fundus and in the electrophysiological functions of the retina. Is this 'stabilising' effect the result of each vitamin acting separately, or is it due to their combined mode of action?

Patients with abetalipoproteinemia have been treated by vitamin A\(^{11,21,22}\) and vitamin E.\(^{10,20}\) Sperling et al.\(^{11}\) claimed that vitamin A is effective if administered before the retinal changes become irreversible. However, they reported a follow-up for only 3 months. Müller et al.\(^{23}\) described a patient who developed the typical retinal changes at the age of 5 years in spite of being treated with vitamin A and having normal serum levels of this vitamin since the age of 12 months. Similarly Wolff et al.\(^{21}\) reported that vitamin A supplementation in their patients did not prevent the development of retinitis pigmentosa. Thus it seems that vitamin A offers only temporary benefit to these patients. The effect of vitamin E was studied by Müller et al.\(^{10}\) and Azizi et al.\(^{20}\) and a long-lasting beneficial effect was suggested but not proved.\(^{12}\)

Interrelationships of vitamins A and E on retinal structure and histology have recently been demonstrated experimentally by Robinson and coworkers.\(^{24}\) While vitamin A is specifically essential in the visual cycle, vitamin E is known to have broader functions. It not only protects a variety of cellular membranes—including the retinal photoreceptors—from auto-oxidation, it may in addition serve as an antioxidant for vitamin A per se. A combined deficiency of both vitamins was shown to accelerate the retinal degeneration in experimental animals,\(^{24}\) findings which provide a basis for understanding the possible pathogenesis of the pigmentary retinopathy in untreated patients with abetalipoproteinemia. Our observations in the 8 patients presented here indicate a synergistic or complementary effect of the 2 vitamins. Accordingly the simultaneous administration of vitamins A and E in patients suffering from abetalipoproteinemia is advocated.

This study was supported in part by the Lebenson Fund for Ophthalmologic Research (Dr S. Merin) and the Children's Nutritional Disease Project, Canadian Friends of the Hebrew University (Dr R.J. Deckelbaum).

References