soon became evident to the members of this sub-committee that the subject was too large for them to deal with adequately, and in May, 1920, the then Minister of Health (Dr. Addison) appointed another Departmental Committee, under the Chairmanship of the Rt. Hon. G. H. Roberts, M.P., "to investigate and report on the causes of blindness, including defective vision sufficient to impair economic efficiency, and to suggest measures which might be taken for the prevention of blindness." This Committee has recently completed its investigations; its Report* has been published and merits the consideration of all, for there is surely no one to whom measures for the prevention of blindness can fail to appeal. A review of this report will appear in a later issue of this Journal, but as it seems desirable to bring it to the notice of our readers without delay we print the Committee's Conclusions and Recommendations on another page. Meantime we may echo the hope of the members of the Committee that the report will prove as productive of results as its predecessor of 1917.

Electric Lighting in Ophthalmic Hospitals

Lighting for ophthalmic work has always been a somewhat difficult problem. For ophthalmoscopic and focal examination of the eye the ideal light is a broad flame which can be readily focussed and easily moved about. In bygone days a candle, paraffin lamp and gas were all used in succession, but all had disadvantages in that they were difficult to move about, or to put quickly and readily into a proper position, and focussing systems of lenses were difficult to adjust in front of them owing to their heat.

When electricity was introduced with the incandescent carbon filament lamp it at once supplanted the other forms of illuminant, as it could be readily moved about and was comparatively free from heat. It also had this advantage, that the globe could be rendered opaque on one side and clear on the other, where it was desired to focus the image of the incandescent filament. The disadvantage of the carbon filament lamps is that their life is short, the globes becoming blackened, the light dull and insufficient. Since the introduction of the metal filament lamp, the manufacture of carbon filament lamps has died out. Unfortunately for ophthalmoscopic purposes metal filament lamps have not up to the present been made sufficiently strong to withstand the strain of constant movement. Where the voltage of current is low it is possible to make metal filament lamps which will stand the amount of jarring that they receive in the course of ordinary ophthalmic work, but where the voltage is high, such as is now the case from practically

all the distributing electric light stations, it has not yet been found practicable to make a lamp which will stand the strain. Hence we have to be content with somewhat indifferent carbon filament lamps.

Before the war many operation lamps such as Jessop's were fitted with a Nernst filament; as this is no longer obtainable the lamp is rendered useless. A very excellent substitute for the Nernst is the Ediswan Pointolight which has been fitted in some instances into the existing tubes by Messrs. Hamblin. This lamp has the disadvantage that it requires a resistance in the circuit, and although suitable for an operating theatre, cannot be carried into wards. Further, it is difficult to bring the filament sufficiently close to the focussing system of lenses to get an even illumination. To obviate this difficulty there has been produced quite recently a spiral metal filament gas-filled lamp, the filament of which is brought close against the glass on one side for projection. It is manufactured in all voltages, and does not require any resistance in the circuit, and can be used in either an operating lamp or in the lamp described below for use in the wards. It is manufactured by the British General Electric Co., and by Siemen Bros. A very excellent ward lamp designed and produced by Messrs. Rayner and Co., in consultation with ophthalmic surgeons and members of the Illuminating Engineering Society. It is readily portable, gives a definite spot of light of even brilliancy, and has discs of ground and Chance's daylight glass to place before it, if desired. The same firm has produced an excellent shadowless lamp for the general lighting of the operating field, which consists of three separate lens systems similar to the hand-lamp, deriving its source of light from a half-watt bulb.

REPORT OF THE DEPARTMENTAL COMMITTEE ON THE CAUSES AND PREVENTION OF BLINDNESS: CONCLUSION AND SUMMARY OF RECOMMENDATIONS

"We have reviewed the principal causes of blindness and defective vision and the methods by which they are at present dealt with. It is certain that much blindness is preventable, but it is not possible to state in exact terms to what extent this is so nor is the remedy always simple. The perfecting of medical diagnosis and technique will effect much, as will the success attending Public Health activity directed against unhygienic environment and conditions inimical to health. Such factors as are associated with conditions of social life, unhealthy habits, malnutrition, etc., cannot be rectified immediately but only by the slow and gradual process of education and the