Obituary

K. Rubinstein, MD, FRCSEd, DOMS
Kazimierz Rubinstein, formerly consultant ophthalmic surgeon at the Birmingham and Midland Eye Hospital, died suddenly on 25 June 1985 aged 69 years. He was born and educated in Lodz, Poland, and started his medical studies in Wilno. These were interrupted by the Russian occupation of East Poland at the beginning of the second world war, but with incredible boldness and enterprise he managed to leave in order to join the Polish Forces in the Middle East. There he was given the chance to complete his medical training at the University of Beirut. Afterwards he rejoined the Polish Forces as medical officer attached to an artillery unit in Italy. He was well liked by the ‘gunners,’ and his courage in the field was rewarded by a Polish Military Cross.

After demobilisation he started his ophthalmic specialisation in Sheffield, and having passed the DOMS and FRCS examinations he obtained a consultant post in Burton-on-Trent. He was enthusiastic in his work and had a passion for anything new and challenging. Having a large number of patients with squint, he devoted special interest to the surgery of the oblique ocular muscles, obtained considerable experience in this subject, and published his results. A few years later he was appointed a consultant in Birmingham.

The new technique of cryosurgery appealed to him, and with the help of a low-temperature engineer he constructed a cryosurgical unit based on liquid nitrogen. He also became fascinated by fluorescein fundus angiography, and, mastering this technique, he used it combined with the application of laser in the treatment of diabetic retinopathy and senile retinal dystrophy. Publishing his results, he gained international recognition.

Ruby was very helpful to his fellow colleagues and inspired many with his enthusiastic approach to ophthalmology. For his friends Kazik’s sense of humour was a most endearing feature and made him a perfect companion. His favourite sport was skiing in the Alps; later on he changed it to water skiing on the Mediterranean. It is tragic that soon after his retirement four years ago his health deteriorated and so he could not enjoy a golden autumn of his life with his wife Eileen and his sons Matthew and Stephen.

JLR

Book reviews


Von Graefe in 1856 is credited with realising the clinical importance of detecting visual field loss. Auerb in 1857 designed the first arc perimeter, consisting of two semicircular curved metal rods so that the patient when looking with one eye at the centre could see an object being moved in his peripheral field. Bjerrum in 1890 emphasised the importance of the central field and designed a flat black screen on which to chart central field defects. This method remained pre-eminent in glaucoma work until the 1950s, when the bowl perimeter with standard background illumination and testing under photopic conditions was introduced. Goldmann noted the relationship between stimulus size and luminance and paved the way for establishing reproducible perimetric testing so essential for the management of chronic ocular disease, notably glaucoma. Widespread adoption of bowl perimetry was rapidly followed by the training of perimetrist, on whom busy ophthalmologists were increasing to rely. The nature of visual field testing allowed innovators such as Dubois-Poulsen and Majis and Fankhauser and Parcell in the 1960s to investigate automatic automated perimetry. Standardisation of test conditions and the advent of the microchip allowed the development of the partially and then the fully automated perimeter.

Recognition of the advantages of the automatic perimeter with freedom from perimetrist shortages and the production of numerical print-outs has generated worldwide interest. In view of that interest Whalen and Spaeth have written, in conjunction with fourteen others, a manual on automatic perimetry. Based on their experiences with the standard bearer of automatic perimetry, the book contains lucid chapters describing programs, reproducibility, normal values, and the results seen in glaucoma and other disorders of the visual system. The information given here leaves the reader in no doubt that this type of perimetry is the greatest advance after the Goldmann bowl perimeter. And yet a word of caution.

Caution must be exercised on two fronts. Firstly, as Armaly noted in the final chapter, numbers (as the print-outs are recorded) alone should not mislead one into a notion of added accuracy or reliability. With threshold perimetry the ophthalmologist becomes acutely aware of the variability of the human response. Secondly, many patients need to be trained in responding to the automatic perimeter. Many are scared of being controlled by a machine and cannot give of their best. Results are worthwhile only after the patient has been tested twice or on even more occasions. The less intelligent the patient, the less reliable the results. For the anxious or stupid the automatic perimeter is no substitute for the calm voice of the perimetrist, who, metaphorically holding the patient’s hand during the test, is more likely to lead him on to give of his best.

Automatic perimetry is a microchip miracle exploring new undulations on the slopes of Traquair’s island of vision. It is of value for those patients who can respond; for the rest we shall still need to remain on manual.

ROGER A HITCHINGS


This is a well written, easily read, comprehensive survey on the subject of external infections of the eye. It deals fully with the different bacteria and viruses that cause such