Tear electrophoretic changes in Nigerian children after measles

O KOGBE and S LIOTET

From the 'Department of Ophthalmology, ABU Hospital, Zaria, Nigeria, and 2Laboratoire du Centre National d'Ophthalmologie des Quinze-Vingts, Paris, France

SUMMARY At the laboratory of the National Centre of Ophthalmology, Paris, tear electrophoresis on cellulose acetate support was studied in 56 Nigerian children—32 during and shortly after measles infection and 24 healthy controls. The controls had a normal pattern, while those with measles had patterns consistent with inflammation, most severe in the first week but showing varying degrees of recovery by the third week. Four weeks after measles all cases suffering from malnutrition had patterns with an additional peak. This was shown on further investigation by electrophoresis on polyacrylamide cellulose gel and immunoelectrophoresis to be due to serum transferrin. The normal protein pattern of tears is shown to be altered during and after measles infection.

Clinical observations and reports from Nigeria, 1,2 Zambia, 3 Uganda, 4 Kenya, 5 and Tanzania 6 confirm that measles is the commonest cause of corneal ulceration and the leading cause of blindness in children in Africa south of the Sahara. It would appear to be responsible for much of the 200 000 annual cases of blindness attributed to xerophthalmia in this region. Measles, which can be very severe in African children, is frequently associated with a rapidly progressive corneal ulceration (up to 1% in Nigeria 1) and protein calorie malnutrition. This is because most of the children are affected by measles between the ages of 1 and 2 years, which corresponds to their weaning period, when they go off the breast before they can take an adult diet. 7 During the attack of measles protracted high fevers, severe anorexia, and frequent oral candidiasis worsen the nutritional status of the affected children.

The pathogenesis of this corneal ulceration following measles remains obscure. Its similarity to keratomalacia led to the estimation of serum retinol-binding protein levels. The results have not been significantly decreased in malnourished children with or without measles to support the theory that the condition may be primarily a manifestation of vitamin A deficiency.

Moreover, administering vitamin A, although effecting an appreciable rise in the concentration of both serum retinol and retinol-binding protein, 8 does not, combined with topical antibiotics, accelerate healing of the corneal ulceration, unlike keratomalacia with secondary bacterial infection. Measles 9 and malnutrition 10 have separately been observed to cause a state of severe depression in cellular immunity. So it was proposed that the severe corneal ulceration is due to an abnormally severe secondary herpes simplex infection, 11 calling for a trial of antiviral agents combined with forms of immunotherapy such as interferon or levamisole.

Recent work on the functions of the tear fluid on the cornea in keratitis sicca syndrome suggested the possibility that the lacrimal gland (an epithelial tissue derivative) might be affected by the measles virus.

We investigated the tears produced by children during the course of measles infection by studying the composition and levels of tear proteins.

Materials and methods

Subjects
In August 1984 and in January 1985 samples of tears were collected from children presenting at the paediatric unit of Ahmadu Bello University Hospital in Zaria and Kaduna, University College Hospital, Ibadan, State Hospital, Ikeja, and Health Centre Tundunwada, Jos. The date of onset of measles, and
its ocular and systemic complications, were recorded. Fifty-six children were seen: 32 had measles, while 24 with no history or clinical evidence of measles served as controls matched for age. The ages of the children ranged between 6 months and 3 years.

METHODS
Samples of tear fluid were collected by capillarity with a sterile pointed-ground pipette, between 9 am and 12 noon to minimise evaporation, formol vapour being used as a stimulant for lacrimation. The specimens were centrifuged and the supernatant stored at 4°C until electrophoresis was performed on cellulose acetate support in glycine tris-buffer solution. The strip was stained by Ponceau red, decolorised, and cleared. Further differentiation and identification of proteins was done by carrying out electrophoresis on the polyacrylamide cellulose gel of fresh aliquots of tear samples from cases showing an abnormal change; so also was immunoelectrophoresis of whole serum, diluted serum, and tears in the presence of whole human antiserum on agarose.

Results
The number of children suffering from measles was surprisingly small, as there had been a successful measles vaccination campaign the year before. Many paediatric units had to be visited to collect tear samples from 56 children. It was generally observed that the controls produced tears much more readily than those suffering from measles.

ELECTROPHORESIS
All 23 controls had white eyes with no clinical evidence of conjunctivitis. Electrophoresis of their tears showed a splitting into four main bands (Fig. 1). All 19 cases seen during the first week of measles infection had mild to severe conjunctivitis; three had a normal pattern of tear proteins and 16 had patterns similar to that of serum.

During the second week of measles the number of cases seen was much less, as the majority had recovered, and only those with complications reported to the hospital. All seven had mild conjunctivitis. The pattern of tear electrophoresis was still largely similar to that of serum (Fig. 2) in five out of the seven cases, but showed a type 2 pattern (Fig. 3).
abnormality first described by Liotet et al. One of them had in addition an abnormal peak in the middle band (Fig. 4), indicating an appearance of a new protein.

The only patient whose tears were collected in the third week had recovered from measles. He had no clinical conjunctivitis, and showed a normal pattern of tear electrophoresis. The others seen were too ill and had dry eyes as they just cried noisily without shedding any tears.

All five cases seen at four weeks after measles were on treatment for secondary infections and varying degrees of malnutrition. They had no clinical conjunctivitis but had various corneal erosions. In all five the tear electrophoretic patterns were abnormal, as an additional narrow band with a pointed peak showed up on an otherwise normal pattern in two cases (Fig. 5) and on a serum-like pattern in three cases (Fig. 6).

Whereas five of six malnourished children without a history of measles or corneal disease had patterns similar to the controls', one child who had healing bilateral corneal ulcerations following meningitis also had an additional band similar to that seen in cases four weeks after measles.

All the tears showing this additional band were examined by electrophoresis on the gel of polyacrylamide cellulose (Fig. 7) and by immunoelectrophoresis (Fig. 8). A prominent band was observed in the position of serum transferrin. We could not determine its quantity as we did not have the specific monovalent antiserum.

Discussion

The observed reduced tear production in children suffering from measles is highly suggestive of measles affecting the lacrimal gland function in tear production. Not only is the quantity reduced, the quality also appears to be altered.

On normal tear electrophoresis our results agreed with that of Liotet *et al.* who described four bands seen on electrophoresis of normal tears on cellulose acetate support.

During measles the appearance of an electrophoretic pattern like that of serum (Fig. 2) in the presence and absence of clinical conjunctivitis more than confirms McClellan *et al.* 's experience which led them to say that children with conjunctivitis could be said to be crying serum.

In normal children only a limited amount of serum proteins are found in tears, because a closed blood-tear barrier exists. Hence measles must cause a derangement of this barrier, so that serum proteins move freely into tears from the conjunctival vessels and/or from the lacrimal gland. It is remarkable that this derangement can be detected by tear electrophoresis four weeks after the onset of measles when,
Tear electrophoretic changes in Nigerian children after measles

Clinically, recovery from conjunctivitis appears to have taken place. This can either mean that the blood-tear barrier remains open for a while or that the lacrimal gland has not yet recovered. Either way, tear electrophoresis is a simple, non-invasive means of assessing lacrimal gland function and conjunctivitis.

The appearance of serum transferrin in electrophoresis of tears from all children with measles complicated by malnutrition and corneal erosion could be another index of derangement caused by measles. Malnutrition per se cannot be incriminated, as all those affected only by malnutrition had normal patterns. The fact that this derangement was likewise seen in a patient who had not measles but meningitis with malnutrition and healed bilateral corneal ulcerations suggests that the derangement may be the cause or the effect of the corneal lesions. The quantity of serum transferrin is too large (from the peak) to be likely to be due to filtration. So we propose two hypotheses:

1. The first is local synthesis, which is unlikely, because the usual site of synthesis is in the liver, though this should be considered in view of the reports of synthesis at other sites.21,22

2. More likely, there could be an active transport from the vascular sector into the tears. The factor for this is yet unknown, although such observations have been made on the cerebrospinal fluid,23 vitreous, and aqueous humour.24 This active transportation of serum transferrin will be a source of loss to the body and may partly explain the finding of low values in malnourished Nigerian children reported by Dossetor et al.25

This could explain another means by which measles renders children malnourished. It will be interesting to find out if the same abnormality occurs in liquid secretions and filtrations such as saliva, cerebrospinal fluid, and aqueous humour after measles.

The ready help and co-operation of the staff of the laboratory of the hospital des Quinze-Vingts and the paediatric clinics in Nigeria are acknowledged with thanks.

References

3 Animashaun A. Measles and blindness in Nigerian children.
4 Sandford-Smith JH, Whittle HC. Corneal ulceration following
5 McGlashan ND. Measles, malnutrition and blindness in Luapula
167–71.
7 Moorhouse AM, Muller S, Schulpen TWJ, Gemert W,
Walkenburg H A. Ensering HE Machakos Project studies.
Agents affecting health of mother and child in a rural area of
8 Franken S. Measles and xerophthalmia in East Africa. Trop
9 Inua M, Duggan MB, West CE, Whittle HC, Kogbe OI,
Sandford-Smith JH, Glover J. Post-measles corneal ulceration in
children in northern Nigeria: the role of vitamin A, malnutrition
10 James HO, West CE, Duggan MB, Ngwa MA. Controlled study
of the effect of injected water miscible retinol palmitate on plasma
concentrations of retinol and retinol-binding-protein in
11 Whittle HC, Dossetor JBF, Oduloju A, Bryceson ADM,
Greenwood BM. Cell mediated immunity during natural measles
12 Geffrheysc BJ, Rosen EU, Katz J, Ipp T, Metz J. Impaired
cellular immunity in kwashorkor with improvement after
13 Whittle HC, Sandford-Smith K, Kogbe OI, Dossetor J, Duggan
M. Severe ulcerative herpetic of mouth and eye following measles.
14 Liotet S, de Murat AF, Schroeder A, Cochet P, Warnet VN,
Moens C. Anomalies de larmes entrainant un encrassement
15 Liotet S, Warnet VN, Arrata M. Functional exploration of the
lacrimal gland by tear electrophoresis. Ophthalmologica 1982;
16 McClellan BH, Whitrey CR, Newman LP, Allansmith M.
17 McGill J, Liakos GM, Goulding N, Seal DV. Normal tear
18 McClellan BH, Bettman JW, Allansmith MR. Tear and serum
immunoglobulin levels in Navajo children with trachoma. Am J
19 Sendt, K, Sarin S, Mataur GP, Kunal S. Biological variation of
immunoglobulins concentration in normal human tears related
20 Watson RR, Reyes MA, McMauray DN. Influence of malnutrition
on the concentration of IgA, lysozyme, amylase and
21 Thorbeche GJ, Liem HH, Knight S, Cox K, Muller-Eberhard U.
Sites of formation of the serum protein transferrin and hemapexin.
22 Soltys HD, Brody JI. Synthesis of transferrin by human
23 Schuller E. In: Baillere II. Les proteines de liquide cephalo-
rachidien et les maladies immunitaires du systeme nerveux.
Institut Behring-Medialog, 1981.
25 Dossetor J, Whittle HC, Greenwood BM. Persistent measles

Accepted for publication 15 July 1986.