We have performed platelet aggregation studies on two patients with FEVR—a 7-year-old boy with total blindness and his 14-year-old female cousin, who is mildly affected. The boy’s total blindness at 3 months of age has been described elsewhere. Neither subject had been exposed to any antiplatelet agents within the two weeks prior to the study. Coagulation studies were conducted and the results compared with the normal ranges of values in our laboratory. Platelet aggregation to added arachidonic acid (1.5 mmol/l), adrenaline (5 μmol/l), collagen (1.0 mg/ml), ristocetin (1.5 g/l, 1.2 g/l, and 0.5 g/l) and adenosine diphosphate (ADP) (1 and 10 μmol/l) was within normal limits in each patient as compared with that of healthy controls. Platelet counts and morphology were normal, as were prothrombin times, partial thromboplastin times, and fibrinogen levels. Factor VIII and von Willebrand’s factor were also within the normal range in each patient. The only abnormality noticed was the boy’s bleeding time of 13 minutes (normal range 2–9 minutes) and his lack of adenosine triphosphate (ATP) secretion as measured by the luciferin-luciferase method using a lumigenagrometer. This finding is consistent with storage pool disease. The cousin’s bleeding time and ATP secretion were normal.

Although we found no abnormality of platelet aggregation in response to arachidonic acid in either patient, the prolonged bleeding time and storage pool disease in the boy may have aggravated his condition, resulting in his total blindness, which brought him to medical attention originally. An additional feature of his history may be significant. Shortly after his birth his mother reports being treated with high doses of aspirin for endometritis while breast feeding him. The combination of FEVR, his storage pool disease, and aspirin exposure may explain his severe clinical course. While Chaudhuri et al.’s report of platelet aggregation defects in response to arachidonic acid has yet to be verified in other FEVR patients, this case supports the contention that platelet abnormalities may contribute to the severity of FEVR.

C A FRIEDRICH, K A FRANCIS, AND H C KIM
Department of Medicine, Box 284,
University of Minnesota Hospital and Clinics,
Harvard Street at East River Road,
Minneapolis, MN 55455, USA

References

Call it lentectomy
Sir, Congratulations to Drs Grossman and Peyman on the report of their very successful application of this procedure. Following Dr Peyman’s pioneering work in this area we adopted his procedure and have been similarly gratified with a low rate of complications and very successful results.

Dr Peyman has been a persistent advocate of the term ‘pars plicata’, which is anatomically correct. Now if we can just get him to call it a lentectomy, then he will have it 100% proper. (Ectopia lenti’s is another condition which is very well treated by his procedure.)

PAUL E ROMANO
Gainesville,
Florida.
USA

References

Sir, I appreciate the kind comments of Dr Romano on our paper. His suggestion is correct, and we will use the proper terminology.

GHOLAM A PEYMAN
LSU Eye Center,
New Orleans,
Louisiana.
USA

Eye protection for welders
Sir, Mr G P H Brittain emphasises the need for adequate eye protection at all times for amateur welding especially using the MIG welder (metal arc inert gas welder). Fortunately the two patients reported on by Mr Brittain had a full visual recovery. We reported a case of foveal injury by an amateur welder which produced permanent visual loss, further emphasising the potential seriousness of the injury that can occur.

KENNETH G ROMANCHUK
Department of Ophthalmology,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada S7N 0X0

References

Obituary
Professor T Krzawicz

Professor Tadeusz Krzawicz, who died in September 1988 at the age of 78 years, was born in Lwow in 1910.
Initially he had started to study mining engineering following the example of his father and grandfather, but he soon realised that medicine was more attractive to him.

He entered the medical faculty at the University of Lwów and, graduating in 1938, became an assistant in the eye department of the university hospital. He remained in this position during the second world war and occupation first by Russia then by Germany and finally again by Russia. During this last period he served with the Polish army as an ophthalmic specialist in Lublin.

After demobilisation he became consultant ophthalmologist in the eye department of the newly created University of Lublin and was promoted to professor in 1957. Apart from his important discovery of the use of cryotechniques in surgery he was also responsible for leading research in the fields of biochemistry, immunology, corneal structure, and experimental refractive keratoplasty. In all he published more than 100 papers on these and related subjects, becoming a member of the Polish Academy of Science in 1957. However, it is for cryosurgery that he will be chiefly remembered.

Professor Krwawicz relates in his autobiography how the idea of cryoextraction came to him during experimental work on rabbits in which he was having difficulty achieving intracapsular lens extraction. He noticed the strength of the adhesion of a frozen probe to the lens and decided to try this method for lens extraction. After preliminary work on rabbits he progressed to human subjects, with the excellent results that surgeons trained from 1960 until the mid-1980s will recognise. (It is remarkable that many surgeons trained during the last few years may hardly have seen a cryoextraction, so rapid has been the switch to modern extracapsular techniques.) He published his method first at the Congress of Polish Ophthalmologists in 1960, where it was received with enthusiasm. The method was soon adopted widely, though his original method using ‘dry ice’ (carbon dioxide snow) and alcohol was sometimes misunderstood, so that ordinary frozen water was used. Eventually other types of cryoprobes were introduced, and the technique became virtually standard practice in many of the major centres of ophthalmology the world over. He spoke at the Oxford congress in 1965 and was greeted with applause.

Tadeusz Krwawicz was born and spent his early years in the country, so that his chief delights were country pursuits and a love of nature. He was never so happy as in the woods with his two beloved dogs enjoying the general atmosphere whether by night or day. The recipient of many awards and honours in both eastern and western Europe, he travelled widely in response to invitations from many parts of the world. He was the first president of the Cryophthalmological Society. Sadly his wife died in an accident some years ago. His son also became an ophthalmologist. In Professor Krwawicz Poland has lost a great representative in world ophthalmology.

Book reviews


There are very few scientific books that fall into the category of ‘I could not put it down’ but this one which most certainly does. Within its pages the reader is instantly captivated by the highly readable prose of an un doubted leader in the field of retinal physiology. John Dowling is, however, not only a distinguished research worker: he is also one of those few individuals whose intellect and understanding are coupled with the ability to teach, enthuse and stimulate his readers.

The book is a brilliant review of retinal physiology past and present and is written in such a fashion that students at all levels will find it invaluable. It starts with an overview of the ways in which research workers have utilised progressively more complex biological organisms in order to investigate the functions of neurones and ultimately the brain. In this initial review the role of the retina and vision research is highlighted, and the appropriateness of the book’s subtitle immediately becomes apparent, as indeed the retina is an approachable part of the brain. Professor Dowling then goes on to give a thorough and systematic account of the retina and the ways in which modern research have begun to enable an understanding of its functions. He starts by giving a beautifully illustrated account of the various types of retinal neurones, their detailed anatomy, and their location. In this section he also enhances the morphological descriptions of retinal elements by interrelating them with a number of different aspects of infor-