LETTERS TO THE EDITOR

Amiotosis in human donor corneal endothelium - a serendipity?

Sirs,-It is generally accepted that the human corneal endothelium does not usually replicate. Kaufman et al.1 described a single dividing (amitotic) cell in the donor cornea of a 50-year-old man, and more recently Laing et al.2 reported a putative mitotic figure by clinical specular micrographs in a case of graft rejection. They suggested that mitosis represents an additional healing mechanism to repair by cell reorganisation, migration, and enlargement. Since the human endothelium cannot at present be studied continuously but at short intervals in vivo, a given cell cannot be monitored at different phases of division. Hence evidence for mitosis or amitosis must be circumstantial and based on isolated clinical or histological observations. Any report of suspected cell division adds to this circumstantial evidence.

We wish to report the finding of binucleate cells by scanning electron microscopy (SEM) in the endothelium of purportedly normal adult and infant donor corneas. One cornea was from a 65-year-old woman with a normal ocular history. The cause of death was cardiac failure, and the globe was enucleated 12 hours post mortem. The other was from a case of cot death at the age of 3 months. The eye was enucleated four hours post mortem. A corneoscleral button was excised from each and prepared for SEM. During random scanning a single binucleate cell was found in the adult corneal endothelium. It was larger than the adjacent cells and its posterior plasmalemma appeared intact. At higher magnification, an apparent cleavage line was visible between the nuclei (Fig. 1). Owing to the suspicion that mitosis occurs in infant corneas used for keratoplasty,3 dividing cells were specifically sought in the infant endothelium. A single binucleate cell was found (Fig. 2).

Recently coalescence of endothelial cells, which creates binucleate or multinucleate cells, has been implicated as a repair mechanism.4 However, as indicated by other observers,5 the binucleate state is equally explained by nuclear division. A consideration of the binucleate state should include normal mitosis, amitosis, cell fusion, cell rest, or indeed artefact. The lack of cytoplasmic cleavage in the cases reported here suggests incomplete mitosis or amitosis - a process in which the nucleus divides without cytoplasmic cleavage.

It is not known when human corneal endothelial cells lose their ability to divide, and conclusions regarding endothelial cell regeneration cannot be drawn from the chance findings of binucleate cells. However, the circumstantial evidence to date indicates that complete cell division, if it occurs in the mature corneal endothelium in vivo, is very infrequent and cannot adequately replace damaged or dead cells. Therefore all care should be taken to avoid the loss of cells during the preparation of donor corneas for transplantation, and, if methods of handling infant corneas (which possess twice the number of cells of adult corneas and which may be in the process of cell multiplication) can be improved, then the very young donor cornea is to be recommended.

The authors wish to thank Mr R J Buckley, FRCS, for reading the manuscript, the Department of Medical Illustration for photographic processing, and Miss Sheila Work for secretarial assistance.

ISRAEL N NARTEY
Moorfields Eye Bank
EMIL S SHERRAII
WILLIAM NG
Department of Clinical Ophthalmology,
Institute of Ophthalmology,
City Road, London EC1 2PD


Correspondence to Dr I N Narrey, Moorfields Eye Hospital, City Road, London EC1 2PD.

Measurement of corneal diameter

Sirs,-The measurement of corneal diameter was the subject of a recent paper by Robinson et al.1 The ocular dimensions, and changes due to normal or abnormal processes, are of particular interest to ophthalmology.2 While Robinson et al.3 address important issues, several aspects of their paper deserve further comment.

The definition of corneal diameter is critically important to the resultant measurements and, arguably, to the biological import of such measurements. Previous values of corneal diameter reflect a lack of uniformity in definition and method.4 Robinson et al.5 apparently adopted the horizontal visible iris diameter (HVID) as their definition of the horizontal corneal diameter (HCD).

Figure 1: SEM of adult corneal endothelium (x 860). Arrowhead indicates binucleate cell.

Figure 2: SEM of infant corneal endothelium (x 2800). Arrowhead indicates binucleate cell with cleavage line.
Anatomically HCD can be measured with reference to the external scleral sulcus, a small furrow at the corneoscleral transition zone. The visible iris will vary with peripheral thickness and transparency, and thus HVID would be expected to be a variable underestimate of HCD. Parenthetically, plane-projected diameter is measured by HVID and HCD under-estimate the true corneal line surface distance. The difference between HVID (measured by Robinson et al.1) and HCD may have non-trivial effects on recording corneal size. For example, peripheral corneal thickness changes with age, and measurements of HVID may not accurately reflect corneal growth.

The authors claim (p 572) that 'the photographic method is more accurate: diameters may be measured to the nearest 0.05 mm from the photographs compared with ±0.25 mm with calipers or 3.0-5.5 mm with a ruler.' The photographic method has undoubtedly the best resolution, and hence probably the best repeatability, but nowhere do Robinson et al. establish the superior accuracy of the photographic method. In other words, photographic determination may provide HVID estimates of good precision, but HVID may not be an accurate indicator of HCD, or the true corneal diameter. The photographic method offers a simple yet accurate means of monitoring corneal diameter.

L STEPHEN KWOK Lions Eye Research Laboratory, LSU Eye Center, Louisiana State University School of Medicine Medical Center, New Orleans, LA, USA

BOOK REVIEWS


This short publication gives precise information on the rationale and recommendations for the treatment and prevention of vitamin A deficiency. Details of alternative strategies for the prevention of xerophthalmia are discussed as well as matters pertaining to the logistics of implementing various programmes. It is essential reading for all physicians involved in child care in developing countries.

A FOSTER

Notes

Public health ophthalmology

A special master degree programme in preventive ophthalmology will again be offered during 1990-1 by the Johns Hopkins Medical Institutions under the auspices of its Dana Center for Preventive Ophthalmology, a World Health Organisation collaborating centre. The programme is designed for individuals interested in initiating, developing and providing leadership to national or regional blindness prevention activities and in conducting serious clinical epidemiological research. Five to ten places are available for participants from developing and developed countries. A small stipend may be available to some participants to help defray living expenses. Further information from: Program Coordinator, Preventive Ophthalmology Program, DCPO, Wilmer Institute, Room 120, Johns Hopkins Hospital, 600 N Wolfe Street, Baltimore, Maryland 21205, USA.

Preventive ophthalmology

The Dana Center for Preventive Ophthalmology of the Wilmer Institute of Johns Hopkins School of Public Health will hold the third Master's Degree Programme in Preventive Ophthalmology during the 1990-1 academic year. The course is designed to educate ophthalmologists from developed and developing countries in the application of epidemiological and other public health techniques to prepare them to assume leadership positions in clinical and public health research activities and prevention of blindness programmes. Some funds are available to help supplement the costs of participants from developing countries. Further information from: PHO Program Coordinator, Dana Center for Preventive Ophthalmology, Wilmer Institute, Room 120, Johns Hopkins Hospital, 600 N Wolfe Street, Baltimore, MD 21205, USA.

AIDS and loss of vision

The first International Conference on 'AIDS and vision loss' will be held on 25-26 January at the Marriott Hotel, New York, USA. Further details from American Foundation for the Blind (Fay Ellis), 15 West 16 Street, New York NY 10011, USA (tel 212 620-2029).