Anatomically HCD can be measured with reference to the external scleral sulcus, a small furrow at the corneoscleral transition zone. The visible iris will vary with peripheral thickness and transparency, and thus HVID would be expected to be a variable underestimate of HCD. Parenthetically, plane-projected distances such as HVID and HCD underestimate the true corneal linear surface distance. The difference between HVID (measured by Robinson et al) and HCD may have non-trivial effects on recording corneal size. For example, peripheral corneal thickness change with age and measurements of HVID may not accurately reflect corneal growth. The authors claim (p 572) that 'the photographic method is more accurate: diameters may be measured to the nearest 0.05 mm from the photographs compared with ±0.25 mm with calipers or ±0.5 mm with a ruler.' The photographic method has undoubtedly the best resolution, and hence probably the best repeatability, but nowhere do Robinson et al establish the superior accuracy of the photographic method. In other words, photographic determination may provide HVID estimates of good precision, but HVID may not be an invariable indicator of HCD, or the true corneal diameter. One study found that HVID<HCD and, while HVID and HCD are reasonably correlated, HVID can be an inaccurate indicator. For an HCD of 11-6 mm, the 95% confidence range for HCD was 12.1-13.7 mm. The problem of reconciling the need for accurate corneal diameter, with that of simplicity and suitability for clinical application was nicely resolved by Martin and Holden, of Sydney, Australia. Martin found that fluorescent tubes can be positioned in front of the eye such that the corneal topographic image is discontinuous at the external scleral sulcus, thus disclosing the true corneal diameter (HCD) as the horizontal distance between the discontinuities. Combined with the advantages of photography, Martin's method offers a simple yet accurate means of measuring corneal diameter.

L STEPHEN KWOK
Lions Eye Research Laboratories, LSU Eye Center, Louisiana State University School of Medicine Medical Center, New Orleans, LA, USA

5 Correspondence to L Stephen Kwok, PhD, LSU Eye Center, 2020 Gravier Street, Suite B, New Orleans, LA 70112-2234, USA.

Sr.- We thank Dr Kwok for his interest in our article. We agree that the definition of corneal diameter is critically important, but unfortunately no satisfactory definition is forthcoming. The problem is exemplified by the statement, 'there is a gradual transition of clear cornea to opaque sclera, the superficial third becoming opaque earlier than the deeper two thirds'. Later on these same authors comment on the difficulty of defining this junction histologically, as there is a gradual transition from cornea to sclera. It is implicit therefore that no single measurement can adequately define the corneal boundaries, and it is not surprising that a wide range of values is quoted in the literature. We therefore elected to measure the parameter most readily identified - that is, white-to-white. The long-term aim of our study, albeit not stated in the article, was to develop a technique for using a portable apparatus, which would enable 'corneal diameter' to be measured simply and repeatedly in preterm neonates and children, some of whom may suffer ocular malformations or infantile glaucoma. We did not use the corneoscleral furrow as a measuring point for the following reasons: it is difficult to see; there is no information as to its presence in the neonate, infantile glaucoma, or other globe malformations; and finally its relationship to limbal histology has not been defined. We do not doubt the value of the method using catoptric imagery and the corneoscleral furrow but question its application to the study of corneal growth in preterm neonates. Martin and Holden used catoptric imagery to measure both the white-to-white and corneal diameter in 50 eyes, but eye casts were made in only five of these patients. For these eyes no comparison was made between either the white-to-white or corneal diameters measured using catoptric imagery and the white-to-white or corneal diameter in vivo. We concur with Dr Kwok that we have not established the superior accuracy of our method as a measure of the 'true' corneal diameter, but for the reasons stated above this probably cannot be contained in a single measurement.

JUDITH ROBINSON
AUSTRIA R FIELDER
Department of Ophthalmology, University of Birmingham, Birmingham, and Midland Eye Hospital, Church Street, Birmingham B3 2NS


BOOK REVIEWS


This short publication gives precise information on the rationale and recommendations for the treatment and prevention of vitamin A deficiency. Details of alternative strategies for the prevention of xerophthalmia are discussed as well as matters pertaining to the logistics of implementing various programmes. It is essential reading for all physicians involved in child care in developing countries.

A FOSTER


This is a well-illustrated short atlas of all the manifestations of AIDS. It has a good basic introduction on aetiology, immunology, and the origin and spectrum of the disease. A description of diseases in the different systems of the body follows. The section on eyes is rather brief. It finishes with some good advice on counselling of patients and prevention of transmission of the disease; with a particular note on cautions for doctors. I think this is a good book for those needing an overview of the disease in easily palatable form.

RONALD J MARSH

NOTES

Public health ophthalmology

A special master degree programme in preventive ophthalmology will again be offered during 1990-1 by the Johns Hopkins Medical Institutions under the auspices of its Dana Center for Preventive Ophthalmology, a World Health Organisation collaborating centre. The programme is designed for individuals interested in initiating, developing and providing leadership to national or regional blindness prevention activities and in conducting serious clinical epidemiological research. Fines to 10 places are available for participants from developing and developed countries. A stipend may be available to some participants to help defray living expenses. Further information from: Program Coordinator, Preventive Ophthalmology Program, DCPO, Wilmer Institute, Room 120, Johns Hopkins Hospital, 600 N Wolfe Street, Baltimore, Maryland 21205, USA.

Preventive ophthalmology

The Dana Center for Preventive Ophthalmology of the Wilmer Eye Institute and John Hopkins School of Public Health will hold the third Master’s Degree Program in Preventive Ophthalmology during the 1990–91 academic year. The course is designed to educate ophthalmologists from developed and developing countries in the application of epidemiological and other public health techniques to prepare them to assume leadership positions in clinical and public health research activities and prevention of blindness programmes. Some funds are available to help supplement the costs of participants from developing countries. Further information from: PHO Program Coordinator, Dana Center for Preventive Ophthalmology, Wilmer Institute, Room 120, Johns Hopkins Hospital, 600 N Wolfe Street, Baltimore, MD 21205, USA.

AIDS and loss of vision

The first International Conference on ‘AIDS and vision loss’ will be held on 25–26 January at the Marriot Hotel, Washington, USA. Further details from American Foundation for the Blind (Bay Ellis), 15 West 16 Street, New York NY 10011, USA (tel 212 620-2029).