Compact field charts

Sir,—It is often difficult to assess field examinations. Fields are often in the wrong order and comparison between one field and another difficult because the examinations are often performed under different conditions.

For six years we have found it easier to record Friedman fields on one sheet of paper. This we have achieved by reducing three standard Clement Clarke Field Charts Cat. No. 530 4010 on a photocopier from 230 mm × 210 mm to 210 mm × 100 mm. We then photocopy these reduced charts together and at the same time make a double sided copy to give us six reduced field charts on one sheet of paper.

In this way it is easier to achieve standardised conditions such as intensity of stimulus and the wearing of reading spectacles if needed. It is also easier to see definite changes from the first visit to up to six years later, thus avoiding, if possible, the all too frequent insidious loss of vision and field.

The charts were originally designed by A. Friedman and are produced by Clement Clarke International Ltd.

MICHAEL D'ORIORAND
Croydon Eye Unit, 33 Mayday Road, Thornton Heath, Surrey CR4 7XX

Diabetes and retinal function

Sir,—I refer to your leading article concerning a paper on an investigation into retinal function in the diabetic eye. 1 The mysterious absence of abnormality where abnormality would be expected is almost certainly due to the method used to investigate the visual fields.

Diabetes and retinal function

It should also be said that the number of papers on the subject is larger than the list of references indicates.

I have not reviewed the literature since 1969, 2 but even then there were references to scotomata in patients with diabetes. 3 There has been a much more recent study which the authors of the paper under discussion may not have seen. 4 The conclusions reached in this paper are similar to those reached in mine; scotomata are common in diabetic eyes and are possibly due to microangiopathy.

It is puzzling that Bek and Lund-Andersen failed to find visual field defects in view of the fact that they used the same apparatus as the authors of the most recent study.

J A ROTH
3 Clevedon Drive, Earley, Reading, Berkshire RG6 2XE


Diabetes and retinal function

Sir,—The paper presents parts of a systematic, comparative study of retinal morphology and neurosensory function in diabetic retinopathy. The authors employ a newly developed technique for accurate superimposition of visual field data on to the corresponding fundus morphology. 1 With this comparative technique scotomata have been found, which indicate that the loss of neurosensory function in diabetic retinopathy in many cases, but not always, may be ascribed to retinal microangiopathy. The authors’ tentative explanation of this inconsistency is that impaired supply of deeper retinal layers, such as choroidal vascular impairment or pigment epithelial dysfunction, may be involved with other factors in producing visual loss in diabetic retinopathy. These findings, and also findings that confirm the results of Roth 2 will be published later.

Since 1969 several papers have been published on computerised perimetric studies of diabetic retinopathy, as for example Trick et al. 3 However, to our knowledge the standard stimulus conditions developed for glaucoma screening (Goldmann stimulus size III combined with a stimulus spacing of 4·2 or 8·4 degrees) have been employed in all these studies. Except for proliferative diabetic retinopathy, where the scotoma to be found may be expected to be large, 4 these parameters are in our experience unsuitable for the detection of most of the small visual field scotomata characteristic of diabetic retinopathy. My colleagues and I have studied the influence of different perimetric stimulus variables on the ability to detect small scotomata, 5 and we have established that, besides a properly chosen small stimulus spacing, the stimulus size has to be chosen as small as possible. Therefore the most optimal parameters available on the Humphrey Field Analyzer (HFA) were chosen by combining Goldmann stimulus size I with a stimulus spacing of 1°. We believe that much important information has been lost in prior studies due to improper stimulus conditions, and due to the fact that a precise correlation between visual field data and the corresponding retinal morphology rarely has been made.

TOKE BEK
Department of Ophthalmology, University of Copenhagen, Gentofte Hospital, 2900 Hellerup, Denmark