LETTERS TO THE EDITOR

Mollicute-like organisms

Sir,—It was a thrill for me to read the article ‘Chronic orbital inflammatory disease: parasitisation of orbital leucocytes by mollicute-like organisms’ by Wirostko, Johnson, and Wirostko.1 Their thesis in an important series of papers is that cell wall defective bacterial forms may play some role in human ocular pathology.

Some years ago I also published a series of papers on this topic, two of which1,2 were submitted as a thesis to the American Ophthalmological Society (but not accepted). I continue to believe that the last word has yet to be written and that other researchers such as Dr Wirostko and colleagues may well vindicate the bibliography below.

It is interesting that my coworker, Carolyn Barth, successfully defended a PhD thesis on this same work at Wayne State University. At the time I felt, and to a certain extent still do, that pure scientists are more receptive to ideas which come from their perceived notions than are my senior ophthalmological colleagues.

PHILIP H. HESSBURG

Total hyphaema following streptokinase administration eight days after cataract extraction

Sir,—A 76-year-old man underwent an uneventful left sided extracapsular cataract extraction and intraocular lens (one piece, 7 mm) implantation under local anaesthesia. One day after surgery the visual acuity in the operated eye was 20/40 and improved to 20/25 with pinhole. Intraocular pressure was 12 mm Hg, and results of anterior and posterior segment examination were normal, except mild anterior uveitis. Neither hyphaema nor iris abnormalities were noted. The patient was treated with topical chloramphenicol 0·2% and dexamethasone phosphate four times a day. He had no systemic illness and did not take any other systemic or topical medication.

Eight days after surgery he was examined by us, four hours after the intravenous administration of 750 000 units of streptokinase for massive anterior wall myocardial infarction. The patient complained that vision in his left eye had deteriorated in the previous 30 minutes. Examination revealed hyphaema in the anterior chamber of the left eye, reaching to about one-third of the anterior chamber’s height and progressing in 20 minutes to total hyphaema, with reduction of visual acuity to hand movements only. The bleeds obscured the iris, lens, and posterior pole details. The intraocular pressure was 14 mm Hg, and extensive subconjunctival haemorrhage was also noted.

The visual acuity of the right eye was 20/70 owing to nuclear cataract. The intraocular pressure was 12 mm Hg, and anterior and posterior segments were normal.

The patient’s medical treatment was not altered, and the macroscopic hyphaema resolved within the next 48 hours. Microscopic hyphaema was noted for another 48 hours. During that time intraocular pressure was between 12 and 15 mm Hg, and visual acuity gradually improved.

Streptokinase is an enzyme that causes conversion of plasminogen to plasmin, which breaks up thrombi by cleaving fibrinogen. Intravenous administration of streptokinase is a standard and early treatment option for patients with acute myocardial infarction; it improves survival and left ventricular function.

We describe for the first time a case of total hyphaema, following administration of streptokinase in a patient eight days after an uneventful extracapsular cataract extraction and intraocular lens implantation. There was no other trauma to the eye, the patient was not treated with anticoagulants, and he did not undergo external cardiac massage. Furthermore a peripheral iridectomy was not performed during the operation. Thus we believe that the bleeding was caused by the streptokinase activity, and that surgery was probably the contributing factor. We cannot completely eliminate the possibility that the hyphaema might have been spontaneous.

Intracocular streptokinase has been used to treat experimental traumatic hyphaema, and it seems to shorten the time for its resolution.1,3 Our patient had rapid resolution of the hyphaema within four days, indicating the possible action of streptokinase. We did not use anticoagulants, lidocaine, or any other antithrombotic agents for two reasons: streptokinase activity may improve survival, and it also may help the hyphaema to resolve.

Our conclusion is that one has to be aware of the standard use of streptokinase in patients with myocardial infarction, as there is a possibility of intracocular bleeding in those patients who recently underwent intraocular surgery. Decisions on treatment with streptokinase should be taken after it has been established that the patient’s life is not in immediate jeopardy, and, if consulting with a cardiologist, our recommendation is not to defer treatment with it.

MICHAEL CAHANE
ISAAC ASHKENAZI
ISAAC AVNI
MICHAEL BLUMENTHAL
Goldschneider Eye Institute, Children’s Medical Center, Tel Hashomer Tel Aviv University, Sackler School of Medicine, 52621 Israel


BOOK REVIEWS


As its name implies, this is a textbook of ophthalmic plastic and reconstructive surgery, not a practical guide or manual. It has been written as a sequel to Practical ophthalmic plastic and reconstructive surgery by M J Reeh, C K Beyer, and G M Shannon, which was published in 1976. The author states that he wants the book to be comprehensive, and he is to be congratulated on having achieved this. The many excellent references ensure that, although the book is not encyclopedic, every opportunity is provided for pursuing the subject further.

The usual subjects expected in a comprehensive textbook on ocuoplasty surgery are discussed, such as anatomy, entropion, ectropion, nasolacrimal duct obstruction, lacrimal sac, orbital, and surgical fractures. In addition there are chapters devoted to basic principles of ophthalmic plastic surgery, congenital and craniofacial anomalies, and blepharoplasty. The chapter on basic principles is particularly rewarding, including a discussion of wound healing, informed consent, skin preparation solutions, needles, suture materials, wound approximation, dog ears, flaps, and grafts. It is extremely useful to have insight into the principles of craniofacial surgery in a textbook which manages to remain so compact and to have a chapter devoted to the management of blepharoplasty with a description of the alternative of several new techniques such as excision and botulinum toxin injections.

Although the book is described as the sequel to Practical ophthalmic plastic and reconstructive surgery, it is in no way a new edition and is only the sequel because it is produced by the same publisher, with a ‘foreword’ by the two surviving authors of its predecessor. It is written very much by one author, ably helped by guest chapters on craniofacial abnormalities and orbital tumours, and reflects the author’s personal approach to various problems which are not always those most used at present in ophthalmic plastic surgery, such as the two-pedicle tarsal rotation flap technique for treating lid retraction. He clearly does not like cryotherapy for the management of adnexal tumours, and it is not even mentioned when discussing carcinoma in situ, Bowen’s disease, at the limbus. In other areas such as medial canthoplasty in the blepharophimosis syndrome both the more recognised and the author’s individual techniques are described.

In summary, this is an excellent comprehensive textbook reflecting the author’s personal approach to ophthalmic plastic surgery. It has been produced to a very high standard, with good drawings that have been photographed rather than the simpler line diagrams of its...