Symmetry of disciform scars in bilateral age-related macular degeneration

Michael J Lavin, Bora Eldem, Zdenek J Gregor

Abstract
The size of the final macular scar in subretinal neovascularisation (SRNV) is one of the most important determinants of final visual function in patients with subfoveal disease. We studied patients with bilateral macular scars from age-related subretinal neovascular membranes retrospectively in order to determine whether or not fellow eyes behave similarly. We found a significant correlation between eyes in terms of final scar size ($r=0.50$, $p<0.01$). We found that 50% of fellow eyes with large macular scars ($>3\times10^5\mu m^2$) had similar sized lesions, while only 16% of fellow eyes with small macular scars ($<0.5\times10^5\mu m^2$) had large scars ($p<0.01$). We discuss the significance of these findings in relation to the pathogenesis of subretinal neovascular membranes, and their implications for treatment.

Age-related macular degeneration (AMD) is the major cause of visual loss in the elderly.1 Approximately 10% of patients with AMD suffer subretinal neovascular membrane (SRNVM) formation and its complications, though this is responsible for most of the legal blindness in this disease.2 When eyes with similar visual acuities are compared, patients with SRNVMs have much poorer visual function than those with other forms of AMD.3 Since the quality of para-central visual function is related to the retinal distance from the fovea,4 and exudative AMD has a high incidence of bilaterality,4 we wished to know whether or not the retinal scar size resulting from exudative AMD was similar between eyes in bilateral cases. This could provide useful information on the likely visual prognosis in the good eye in individual patients and have important implications for possible treatment.

There is evidence that features of non-exudative AMD are symmetrical5 and that the type and extent of drusen formation is highly correlated between eyes in patients with non-exudative AMD.6 Although symmetry has been demonstrated for one complication of AMD, namely tears of the retinal pigment epithelium,7 it is not known whether or not the high degree of concordance seen in drusen is reflected in the behaviour of other exudative complications of AMD. Since SRNVMs form the bulk of cases of exudative AMD,8 we limited our study to cases with documented SRNVM formation.

While these SRNVMs may under some circumstances be amenable to laser treatment,9,10 a large number of SRNVMs are not treatable by conventional means.9 Since the final scar size, in the presence of foveal involvement, is a major determinant of subsequent para-central visual function,10 some workers have suggested that ablation of subfoveal membranes may be justified in order to limit the final scar size and reduce the resultant scotoma11 when the fellow eye has a poor outcome from AMD. The final scar size resulting from SRNVMs can be highly variable. We wished to know whether or not it would be possible to identify factors indicating a high risk of large scars forming.

Material and methods
We performed a retrospective study of patients with bilateral disciform macular scars resulting from age-related macular degeneration. Consecutive patients with bilateral disciform macular scars were identified from a database of patients attending the Retinal Diagnostic Department at Moorfields Eye Hospital. Stereoscopic colour photographs and fluorescein angiograms were examined in order to determine eligibility. Patients were included in the study only if their bilateral macular scarring was the result of subretinal neovascular membrane formation secondary to age-related macular degeneration. Patients with pigment epithelial detachment were included if there was clear evidence of subretinal neovascularisation. Patients with atrophic macular lesions, or geographic atrophy, were excluded. Patients who had had laser photocoagulation to either eye at any time were excluded. A minimum duration of subretinal neovascularisation of six months was required.

Stereo colour photographs and fluorescein angiograms were examined independently by two observers (ZJG and MJL), and scar size was measured by a standardised photographic slide overlay.1 The scar size was ascertained from colour photographs and fluorescein angiograms by measuring from the edges of subretinal fibrovascular tissue. The extent of subretinal fluid or blood was not included in these measurements. The area of fibrosis apparent on the colour photographs was usually less than the area of neovascularisation visible angiographically, and where a difference existed the larger measurement was used. Area approximations were arrived at by multiplying the length of the longest axis of the scar with the scar diameter perpendicular to it.

A total of 100 patients with bilateral established macular scarring resulting from subretinal neovascularisation in age-related macular degeneration were identified. Of these, 19 patients were not included owing to inadequate follow-up, leaving a study population of 81 patients.

Interobserver agreement error was tested with
Figure 1 Age and sex distribution of patients. Accurate age data not available for 4 patients.

A random series of 10 eyes. Measurements were similar between two observers for 10 eyes, with no error exceeding 10%.

Results

The patients ranged in age from 54 to 86 years, with a mean of 69.7 (SD 17.0) years (Fig 1). Patients with large scar sizes (>3 x 10^6 μm^2) tended to be older than those with small scars, but this difference was not statistically significant. Analysis of covariance found age was not a variable associated with scar size.

The distribution of scar size in our patients (Fig 2) appeared to have two peaks: an initial peak of under 0.5 x 10^4 μm^2 in area, accounted for 50/162 (30.9%) of eyes. While 28 eyes (17.2%) had scar sizes ranging between 0.5 and 0.99 x 10^4 μm^2, only small percentages of eyes fell in the intervening ranges of 1 to 3 x 10^4 μm^2 in area. A second peak was found in the 3 to 4 x 10^4 μm^2 range which accounted for 42/162 (25.9%) of eyes (Fig 2).

Scars of less than 0.5 x 10^4 μm^2 in area were found in 50 eyes of 35 patients. The distribution of scar sizes in the fellow eye of patients with one scar measuring less than 0.5 x 10^4 μm^2 is charted in Figure 3. In 38.8% (14/36) of fellow eyes, scars measured less than 0.5 x 10^4 μm^2, and 61.2% were less than 1 x 10^4 μm^2 in area. Only 16.7% (6/36) had large scar sizes (>3 x 10^6 μm^2).

Scars measuring 3 x 10^4 μm^2 or more in area were identified in 42 eyes of 28 patients. The distribution of scar sizes in the fellow eye of patients with one scar measuring 3 x 10^4 μm^2 or more is charted in Figure 3. In 64.3% (6/27) the scar in the fellow eye measured less than 0.5 x 10^4 μm^2, and in 28.6% (8/28) measured less than 1 x 10^4 μm^2. In 70.4% (17/24) the fellow eye scar was 3 or more x 10^4 μm^2 in area.

We compared the distribution of scar sizes in fellow eyes of eyes with small scars (<0.5 x 10^4 μm^2) with that of fellow eyes of eyes with large scars (>3 x 10^4 μm^2). The data summarised in Figure 4 were grouped into three size distributions (<0.99 x 10^4 μm^2, 1-2.9 x 10^4 μm^2, and >3 x 10^4 μm^2) to allow for small data sets in the mid range of sizes. A significant difference in distribution between the groups was found with the χ^2 test (χ^2=20.07, df=2, p<0.001).

Figure 3 Fellows of small scars compared with fellow eyes of large scars by scar size. (χ^2=20.07, df=2, p<0.001).

Figure 4 demonstrates that a correlation exists between the scar size in one eye and the scar size in the fellow eye. Although a number of outliers exist, a clear uptrend is present (r=0.53, p<0.001; 95% confidence level for correlation coefficient: 0.37-0.77).

We also assessed the degree of concordance of scar size using the x statistic. This produced a weighted x score of 0.547 (standard error= 0.153), indicating a degree of concordance rated as 'fair to good'.

We examined the scar sizes in 20 pairs of eyes with a minimum of six months' follow-up, and compared them with a group of 18 eyes with a minimum of three years' follow-up. There was no significant difference in the distribution of scar sizes between the two groups (p=0.36). We were concerned that eyes with a shorter duration of follow-up might have had evolving lesions which had not yet reached their final scar size. We re-examined the question of concordance of scar size for 43 patients with a minimum follow-
Symmetry of disciform scars in bilateral age-related macular degeneration

up period of 12 months, and found a weighted x score of 0.68. The time of presentation did not appear to influence subsequent scar size — that is the first affected eye did not have a tendency towards larger or smaller scars.

We examined lesions for the presence of pronounced pigmentation, intraretinal exudate, and persistent subretinal fluid. We identified 17 eyes in which pigment was a major feature of the AMD lesion. In eight eyes (47%) the macular scar size was less than 1.5x10^4 μm², while only 12-7% eyes with no pigment epithelial hyperplasia had lesions of this size (p < 0.001).

Circinate exudate was identified as a major feature of macular scars in 14 eyes, 12 of which (85-7%) had lesions measuring more than 3x10^4 μm².

Discussion

We have found a relationship between the scar size of one eye and the size of the scar in the fellow eye of eyes with SRNV secondary to AMD. This implies that factors peculiar to a particular patient have an important role in determining how advanced the process of subretinal neovascularisation and fibrosis may become. It has been noted that patients with AMD are significantly more likely to have a family history of central visual loss suggestive of AMD than controls. That genetic factors may contribute to the risk of AMD is suggested by the report of monozygotic twins with similar AMD lesions. This is supported by the finding that patients with AMD may have raised serum caeruloplasmin levels, and that this abnormality may be familial. The lower incidence of AMD in Asians and blacks provides further evidence for the importance of inherited factors.

Systemic associations with AMD have been documented, and these include elastotic degeneration of the dermis, reduced hand grip strength, and cigarette smoking. It is possible that the similarity in scar sizes between eyes in the same individual may reflect the effect of some underlying inherited systemic factor on the behaviour of SRNV complicating AMD.

Alternatively factors peculiar to the eyes, but symmetrical, may influence scar size. A recent study has found a marked degree of concordance in the characteristics of drusen of eyes with AMD in the absence of SRNV. While our study shows a degree of concordance, it is lower than that found by Barondes et al., and it may reflect the multitude of factors involved in fibrovascular scar formation. Since drusen type determines the relative risk of SRNV formation, the high degree of symmetry of drusen type and extent found by Barondes et al. may be a factor in the high frequency of bilaterality and the symmetry of SRNV secondary to AMD.

We have noted that almost half the eyes (47%) with pigmented scars have lesions measuring less than 1.5x10^4 μm². The retinal pigment epithelium plays a part in regulating the behaviour of SRNV complexes, and it is possible that this could be a factor in determining the final scar size and the correlation between eyes. It is not clear at what point in the evolution of a SRNV this feature becomes evident, but this could have prognostic implications.

Most of the eyes with considerable exudation had large macular scars (85-7%), and this may reflect the activity of the underlying SRNV, or its choroidoretinal vascular shunts. While a good degree of concordance of scar size between eyes was found for the study group as a whole (x = 0.54), we found that the degree of concordance was increased when we considered only those patients with at least 12 months’ follow-up (x = 0.68). This implies that some of the variation between eyes may be attributed to lesions which are slowly evolving and have yet to reach their final scar size.

Our findings have implications for treatment of individual patients. It is not uncommon to encounter a patient with an established macular scar from SRNV secondary to AMD in one eye, and a SRNV within the foveal avascular zone in the fellow eye. In such patients treatment carries a significant risk of compromising foveal function. While SRNVs with large vascular channels are thought to have slower growth, recent study could not identify any morphological features indicative of rapid growth. Our results suggest that, in patients whose established macular scar is small, the risk of developing a large macular scar in the remaining eye is approximately 16%, and aggressive treatment in these patients may not be justified. By contrast, in patients with a large established scar the risk to the paracentral visual function of the fellow eye is considerable, since 50% develop large scars, and aggressive treatment in these cases could be considered.

A further clinical problem is that of the eye with a single large scar resulting from SRNV secondary to AMD, and a fellow eye with AMD but no evidence of SRNV formation. Previous studies have suggested that these eyes are exposed to a 7-15% cumulative annual incidence involvement of the fellow eye with SRNV. This implies that 30-50% of fellow eyes would have suffered SRNV at five years. Since 50% of these eyes will have large scars, 25% of the original group are likely to develop bilateral severely incapacitating macular lesions. If one arbitrarily defines a large scar as any lesion larger than 2.0x10^4 μm², then the percentage rises to 32%.

In a review of a sequential series of patients with SRNV formation secondary to AMD, the majority had scar sizes larger than one disc diameter (68%). It is interesting to note a biphasic distribution of scar size in the study (Fig 2). This biphasic peak suggests that different factors determine whether an eye develops either a small or a large scar. Such an 'on or off' response is compatible with several types of cellular phenomena, and may be the end result of a retinal environment inhibitory to or stimulating SRNV formation. In this light it is interesting to note that the retinal pigment epithelium may have a major role in regulating the activity of laser induced experimental SRNVs and of vascular endothelial cells.

Some evidence suggests that inflammatory and immunocompetent cells may play a part in
the genesis of both the atrophic forms of AMD and its neovascular complications. Immuno-
logical responses vary markedly between individuals, and can effect damping or recruit-
ment – that is, ‘on or off’ responses. It is possible that factors such as these may explain in part the
marked variation between individuals in final scar size, the close symmetry between eyes, and the
bimodal distribution of scar sizes found in this study.

We considered whether our results could have been the result of biased case collection. We
included all sequential patients who fulfilled the entry criteria, but the high mortality in this age
group meant that a number of patients could not be included owing to inadequate follow-up.
However, we found no obvious differences in the initial photographs of those patients with
inadequate follow-up compared with those entered in this study. It is possible that the high
peak in the group with large scars may represent patients with severe disease who attend fre-
quently for visual aid; however, we found no difference in follow-up between the small scar
and large scar groups.

In summary, we have found that eyes with a large macular scar resulting from age-related
SRNVM formation have a high probability of developing a large scar if SRNVM forms in the
remaining eye. This has implications for the management of patients and for the design of
clinical trials.

We are grateful to Professor Alan Bird for his helpful comments and advice.

1 Ghafour M, Allan D, Foulds WS. Common causes of blind-
ness and visual handicap in the West of Scotland. Br J
2 Hyman LG, Lilienfeld AM, Ferris FL III, Fine SL. Senile
macular degeneration: a case-control study. Am J Epidemiol
3 Nasrallah FP, Jalil AE, Friedman GR, Trempe CL, McMeel
JW, Scheimpflug CJ. Visual results with low-vision aids in age-
related macular degeneration. Am J Ophthalmol 1988; 106:
730-4.
4 Weiter JJ, Wing GL, Trempe CL, Mainster MA. Visual acuity
related to retinal distance from the fovea in macular disease.
5 Gregor Z, Bird AC, Chisholm IH. Senile disciform macular
141-7.
6 Leibowitz H, Krueger DE, Maudner LR. The Framingham
Eye Study Monograph: an ophthalmological and epidemi-
ological study of cataract, glaucoma, diabetic retinopathy,
7 Coffey AJH, Brownstein S. The prevalence of macular drusen
8 Chuang EL, Bird AC. Bilaterality of tears of the retinal
9 Berkow JW. Subretinal neovascularization in senile macular
10 Rabinovitch RS, Bird AC, Chisholm IH. Senile disciform macular
degeneration: features indicating suitability for photocoagu-
11 Folk JC. Aging macular degeneration: clinical features of
12 Bressler SB, Bressler NM, Fine SL, McCormick P, Auer C.
Subfoveal neovascular membranes in senile macular
degeneration: relationship between membrane size and
13 Guyer DR, Fine SL, Maguire MG, Hawkins BS, Owens SL,
Murphy RP. Subfoveal choroidal neovascular membranes in
age-related macular degeneration: visual prognosis in eyes
with relatively good initial visual acuity. Arch Ophthalmol
1984; 104: 702-5.
14 Meatrose MA, Magargal LE, Donoso LA, Goldberg RE,
Edmonds SE. Vision parameters in krypton and laser
photocoagulation of subfoveal neovascular membranes.
15 Fleiss JL. Statistical methods for rates and proportions. 2nd ed.
16 Landis RJ, Koch GG. The measurement for observer agree-
ment for categorical data. Biometrics 1977; 33: 159-74.
17 Meatrose MA, Magargal LE, Lucifer AC. Identical twins with
subretinal neovascularization in complicating senile macular
18 Newcombe DA, Swartz M, Leone NC, Hewitt AT, Wolford F,
Miller ED. Macular degeneration and elevated serum
19 Hoskinson M, Mizuno K, Ichikawa H. Aging alterations of
retina and choroid of Japanese: light microscopic study of
macular region of 176 eyes. Jpn J Ophthalmol 1984; 28:
89-102.
20 Gregor ZJ, Joffe L. Senile macular changes in the black
21 Blumenkranz MS, Russell SR, Robey MG, Kurt-Blumenkranz
R, Penneys N. Risk factors in age related maculopathy
complicated by choroidal neovascularization. Ophthalmology
22 Bressler NM, Bressler SB, Gragoudas ES. Clinical character-
istics of drusen in patients with exudative versus non-
exudative age-related macular degeneration. Retina 1988; 8:
109-14.
23 Smiddy WE, Fine SL. Prognosis of patients with bilateral
24 Miller H, Miller B, Ryan SJ. The role of retinal pigment
epithelium in the involution of subretinal neovascularization.
25 Toeters W, Bird AC. The development of neovascularization
of senile disciform macular degeneration. Br J Ophthalmol
26 Klein ML, Jorizzo PA, Watzke RC. Growth features of
choroidal neovascular membranes in age-related macular
27 Strachman ER, Fine SL, Hillis A. The second eye of patients
with senile macular degeneration. Arch Ophthalmol 1983;
101: 1191-3.
28 Glaser BM, Campochiaro PA, Davis JL Jr, Jerdan JA. Retinal
pigment epithelial cells release inhibitors of neovasculariza-
29 Penfold PL, Killingsworth MG, Sarks SH. Senile macular
degeneration: the involvement of giant cells in atrophy of
the retinal pigment epithelium. Invest Ophthalmol Vis Sci
30 Penfold PL, Provis JM, Billson FA. Age-related macular
degeneration: ultrastructural studies of the relationship of
leucocytes to angiogenesis. Graefes Arch Clin Exp Ophthal-
mol 1987; 225: 70-6.