Trachoma still undefeated

STIR—Your interesting editorial about problems still outstanding in the study of trachoma was drawn to my attention recently and revived pestle memories of this disease. After spending a substantial part of my working life in various tropical countries I have seen and treated a large number of cases in various stages of the disease.

In August 1939 as the very junior regimental medical officer of an Indian battalion under embarkation orders for the Middle East, in the course of a pre-embarkation medical inspection, I found that some 80% of the Sikh company had trachoma, these men were all from the Punjab in north west India. The disease was relatively inactive but the question of fitness for active service arose. On the eve of war, the whole battalion's move might have been delayed due to the unfitness of virtually one whole company. This was a matter for a more senior opinion than mine and the station ophthalmic specialist was sent to cover me. He confirmed the diagnosis and passed them all 'fit.' The battalion went to North Africa but I was diverted to Burma so I was unable to follow their fortunes. Subsequent experience of trachoma among Indian troops convinced me that the hypothesis of a pre-existing etiological agent was right, but that the hypothesis of an infective agent was wrong. Trachoma was fairly common in the Indian Army especially among soldiers recruited from the dry, dusty, northern parts of the country. In the high state of hygiene in which they lived, even on active service, few developed serious complications. It seemed therefore that there must be other factors causing the development of those complications which often cause blindness—namely entropion and gross corneal pathology.

I next met the disease in its endemic form as ophthalmic specialist in the Gold Coast, as it was then called, from 1948–52. From a combined analysis of cases seen personally, in the eye clinic of the Gold Coast Hospital in Accra and on tour in the Northern Territories, I was able to show that the incidence and severity of the complications of trachoma were far greater amongst the inhabitants of the dry dusty Northern Territories than those in the coastal area. At that time facilities for pathological and bacteriological investigation were limited so findings were based on clinical observation. From 1961 to 1966 I was working in the Jane Furse Anglican Mission Hospital, a large hospital in Sekukhuneland, a very dry dusty area of the Northern Transvaal. Once again I was struck by the high incidence of trachoma, commonly complicated by entropion and ultimate blindness. Thanks to the interest and help of Dr A Davies, the Medical Superintendent and Pathologist at the hospital, it was possible to demonstrate in some of the more severe cases, an accumulation of silica in the scarred conjunctiva and superior tarsi removed at operation. Those Africans who had spent long periods working in the gold mines away from Sekukhuneland rarely went blind from the later complications of trachoma. These men had lived in barracks where hygiene standards were high.

During my last overseas appointment I spent two years as a government ophthalmic special-

ist in the two main government hospitals in the coral island of Mauritius in the Indian Ocean. The population, then about 860,000, consisted of several settled communities, in descent mainly Indian, European, African, Chinese or a mixture of these. I have no figures for the total number of ophthalmic consultations but some idea may be deduced from the fact that I performed just under 1600 cataract extractions during the two years in the island. Mauritius is based on coral and remarkably free from dust. I did not see a single case of trachoma.

Most of the sociodemographic risk factors in all the rural areas in which I worked in my opinion similar to those described in a rural Egyptian village. Proper latrine facilities should reduce the fly density and one mode of transmission during the infective stage of the disease. However, if our findings in the Transvaal, of silica deposits in the tarsal conjunctiva in more advanced cases can be repeated in other areas, then there would be evidence that provision of adequate washing facilities as well as latrines may be equally important.

JOHN W R SARKIES
Isle of Man Postgraduate Medical Centre, Noble's Hospital, Westmoreland Road, Douglas, Isle of Man

Penetrating keratoplasty for keratoconus

STIR—I would like to congratulate Sharif and Casey on an excellent description of the long-term success of penetrating keratoplasties for keratoconus. However, their study design may have underestimated the probability of graft failure. Figure 4 shows the Kaplan-Meier survival curve of their 100 grafts during the course of the study. They found most failures occurred in the first 500 days (1–37 years). In their materials and methods section, they state only keratoconus patients with a minimum of 4 years' follow up were included in the study. It would therefore appear that the only failures included were those that kept coming back with a failed cornea for some reason, or those that had been regrafted and followed for the minimum of 4 years. Patients having failed corneas without retransplantation and being lost to follow up before 4 years would have been excluded in their study design. It has been my experience that some patients with failed corneal grafts do not have a regraft and are not interested in follow up. Though I suspect their success rate will still be quite high, it would be interesting to know how many total keratoplasties for keratoconus were performed during the study period, and how many of those that did not have follow up had failed corneal grafts or episodes of rejection.

As their data pointed out, a large portion of individuals undergoing corneal transplant surgery for keratoconus are young males. As a group, young males are more prone to be involved in activities that could lead to traumatic rupture of the graft wound with loss of the graft or even the eye. They are also more prone to being involved in accidents because of relocating or being inattentive to the care of their eye. The overall number of these individ- uals having adverse events may be small but could still significantly change the survival data.

Their study appears to be an important one which provides excellent information on many of the long-term complications and outcomes of eyes having penetrating keratoplasty for keratoconus. However, in order to have an accurate survival analysis all consecutive cases performed during their study period would need to be included.

FRANCIS W PRICE
Cornell Consultants of Indiana, 9005 North Meridian Street, Suite 100, Indianapolis, Indiana 46206, USA

Penetrating keratoplasty for keratoconus

STIR—We would like to thank Dr Price for his comments and thoughtful remarks on our paper.

The total number of penetrating keratoplasties for keratoconus performed in our unit during the study period was 148; 100 of these cases were included in the study as they fulfilled our criteria of a minimum follow-up period of 4 years.

However, in order to determine the long-term survival of the grafts, so the remaining 48 cases (with shorter follow-up periods) were excluded from the study. Analysis of this subgroup was carried out and it showed that the average follow-up period was 2 years. Forty five grafts (out of 48) were still clear at the end of the follow-up period (93%). Two of the three graft failures occurred secondary to irreversible rejection episodes and the third graft suffered a primary graft failure. Thus, this survival analysis of the unpublished subgroup shows similar findings to those detected in our study with long-term follow-up.

The other point raised by Dr Price was in relation to the male predominance in our study (68%), and the possibility that this could change the survival data.

Further analysis of all the 148 keratoplasties revealed that traumatic wound dehiscence occurred in four cases only, and all were females (male to female ratio was 1:1). Out of the 48 cases, who were lost to follow-up within the first 4 years postoperatively, 25 were females (52%). Contrary to Dr Price's suggestion, all these findings support our initial observations that male to female ratio in our study did not significantly influence the survival data.

K W SHARIF
Cornea Plastic Unit and Eye Bank, The Queen Victoria Hospital, East Grinstead, Sussex PH19 1DZ

Diabetic radiation morbidity

STIR—Features of ocular radiation vasculopathy were first described in 1933 and have been well characterised. Diabetes and other diseases that affect small vessels (hypertension, collagen vascular diseases, and chemotherapy), possibly increase the risk of radiation induced vasculopathy. However no study has proved this. We reviewed retrospectively 469 uveal melanoma patients all treated with either 106P Brachytherapy or helium ion irradiation and compared both visual outcome and complications in diabetic and non-diabetic patients.

All patients were examined in the Ocular