A method for assessing the accuracy of surgical technique in the correction of astigmatism

Stephen B Kaye, Stephen H Campbell, Keith Davey, Allan Patterson

Abstract
Surgical results can be assessed as a function of what was aimed for, what was done, and what was achieved. One of the aims of refractive surgery is to reduce astigmatism; the smaller the postoperative astigmatism the better the result. Determination of what was done—that is, the surgical effect, can be calculated from the preoperative and postoperative astigmatism. A simplified formulation is described which facilitates the calculation (magnitude and direction) of this surgical effect. In addition, an expression for surgical accuracy is described, as a function of what was aimed for and what was achieved.

Modern methods of assessing corneal topography have greatly improved the understanding of the changes in corneal curvature which may be induced by surgery. Keratometry, refraction, or computerised corneal topography can be used to measure preoperative (K1) and postoperative (K3) astigmatism. A mathematical calculation is required merely however to determine the astigmatism induced by the surgery (K2)—that is, the difference between K1 and K3. It is accepted that it is inadequate to judge surgical effect (K2) by merely subtracting K3 from K1 without taking the meridians of K1 and K3 into account.1

The first part of this communication describes a formula to facilitate the calculation of K2, the measurement of which is necessary to evaluate and audit surgical technique, especially in refractive surgery. The second provides a simple function to assess the accuracy of the surgical technique.

Consider the following example: a patient’s preoperative refraction is plano/+5.00 at 180° and postoperatively is +4/+1.00 at 180°. The surgical effect (K2) therefore, was to flatten the horizontal meridian by 4 dioptres—the is to induce a +4-00 dioptre cylinder at 90°. When K1 and K3 do not lie in the same axis or are not at 90° to one another, then the calculation of K2 becomes more complex.1

In 1975 Jaffe and Clayman adapted an older method,1,4 to calculate K2 in cataract surgery. In essence the power of a cylinder (F) at an angle (θ) to its principal meridian, is described by the relationship F·cosineθ (Fig 1). Using this relationship they showed that the magnitude and direction (β) of K2 can be calculated from K1 and K3 by using the law of cosines (Fig 2 and equations 1 and 2 in Appendix).

This derivation, however, does not readily determine in which quadrant K2 lies—that is, 0° to 90° or 90° to 180°. If K1 is +1:5 dioptres at 25° and K3 is +3:00 dioptres at 100° (Fig 3), then from equation 1, K2 is plus or minus 4-36 D at 105°.

K1 = +1:50 D at 25°
K3 = +3:00 D at 100°
K2 = +4-36 D at 105°
A method for assessing the accuracy of surgical technique in the correction of astigmatism

Figure 4 (A) K_1 is $+5.00 \text{D}$ at 90°. K_2 is of equal magnitude to K_1 (that is, $+5.00 \text{D}$) and placed along the desired surgical meridian (90° to K1) at 0°, so that $K_3=0$. (B) The effectiveness of K_2, that is, $K_2' = K_1$ is $+5.00 \text{D}$ at 90° and K_2 is $+5.00 \text{D}$ at 10° (that is, 80° to K_1, or 10° away from the desired meridian) resulting in a residual astigmatism of $K_3=+1.74 \text{D}$. K_2' is the net effect of K_2 at 90° to K_1 – that is, $K_2a'-K_2b'$.

Figure 5 Surgical accuracy (SA) as defined by the function K_2'/K_2+K_3. Graph depicting SA for three values of K_2, as K_2 is rotated away from its optimum meridian. (A) $K_2=75K_1$, (B) $K_2=15K_1$, and (C) $K_2=25K_1$.

dioptries so that β is 14.96° or −14.96° (345.04°).

As shown in Figure 3 however, K_2 lies in the second quadrant, therefore β is 14.96° + 90° = 104.96°.

An alternative method for the calculation of K_2 and its location

This communication provides an alternative method enabling the direct calculation of β and K_2. Consider Figure 2, with K_1 at angle α and K_2 at angle β, resulting in K_3 at angle 0°. It can then be shown that:

$$K_2 = K_3 \cdot \cos 2(\beta - \alpha) - K_1 \cdot \cos 2(\beta - \alpha)$$

(Appendix, equation 3)

with β calculated directly from equation 4 (see Appendix). If K_2 is negative (a minus cylinder), conversion to a positive cylinder can be made by adding 90° to β if β is greater than 0, or subtracting 90° from β, if it is less than 0° (see Appendix).

Given the example above (Fig 3), where K_1 is 1.5 D at 25° and K_3, 3 D at 100°, then using equations 3 and 4, K_2 is -4.36D at 14.96°. If preferred, K_2 can then be converted to a positive cylinder – that is, $+4.36 \text{D}$ at 104.96° by adding 90° to β.

Assessing the accuracy of refractive surgery

Methods currently in use to further assess the effects of surgery are:

1. The vector of flattening (V_F) – that is, the steepest preoperative meridian minus the steepest postoperative meridian.
2. The vector of steepening (V_S) – that is, the postoperative flat meridian corresponding to the preoperative flat meridian minus the preoperative flat meridian.
3. The flat/steep ratio – that is, V_F/V_S.
4. The average change in spherical equivalents – that is, average postoperative measurements minus average preoperative measurements.

Collectively the size and direction of K_1 and K_3, the surgical effect, K_2, and the overall change in spherical equivalent, give a measure of surgical achievement. It is more difficult however, to provide a single measure which reflects surgical accuracy. K_3 by itself provides one measure – that is, the nearer K_3 is to zero, the better the surgical achievement. It does not reflect the magnitude of the surgical success (or failure), nor does it indicate whether the surgery was in the desired meridian. Furthermore, the ratio of the pre- and postoperative astigmatism – that is, K_3/K_1 does not distinguish, for example, between no effect – that is $K_3=K_1$, or twice the required effect, such that K_3 still equals K_1. Likewise, the departure from the desired surgical meridian is not indicated.

The ideal surgical meridian of K_2 is at 90° to K_1 (K_1 and K_2 both deemed positive or negative). Consider the following example, where K_1 is $+5 \text{D}$ at 90° (see Fig 4A). In order to correct this amount of astigmatism, a surgical cylinder of equal magnitude to K_1 would need to be placed at 90° to K_1. That is, $K_2=+5 \text{D}$ at 0° (or $K_2=-5 \text{D}$ at 90°). This would then result in no postoperative astigmatism, that is, $K_3=0$ (see Fig 4A).

If K_2' represents the net effect of K_2 in the desired surgical meridian (90° to K_1) (Appendix equation 5 and Fig 4B), then the ratio K_2'/K_2+K_3 provides a reasonable surgical accuracy (SA). In the above example, K_2' equals K_2 (Appendix, equation 5) so that surgical accuracy is:

$$\text{SA} = +5.0/(+5.0+0.0) = +1$$

If, however, surgery resulted in K_2 of $+5 \text{D}$ being placed at 10° (is 80° to K_1, Fig 4B), then the effectiveness of K_2 at 0° – that is, K_2', in reducing K_1 is $+4.67 \text{D}$ in the desired meridian, or 0.33 D less than the ideal (Appendix, equation 5). The resulting postoperative astigmatism is $+1.74 \text{D}$ and SA is $+6/7/(5+1.74) = 0.69$ (Figs 4B and 5).

If K_2 is placed nearer the meridian of K_1 than the desired meridian, then K_2' and therefore SA, are less than 0. This ratio for SA lies between −0.5 and +1 and reflects the magnitude of over- or undercorrection. A negative value also indicates a departure of more than 45° from the optimum meridian for K_2. A result of +1 indicates that both the magnitude and the
meridian of K2 were optimal. A single measure is thus provided with which to determine surgical accuracy. Figure 5 is a graph showing the effect on SA as the meridian of K2 is rotated through 180° for three different values of K2.

The equations for K2, b, b transposed, K2', and surgical accuracy have been written for use on a Lotus compatible spreadsheet and are given in the Appendix.

Appendix

CALCULATION OF K2 AND b

\[K2 = K1^2 + K3^2 - 2. K1. K3 \cos \alpha \]

(1)

K1 is the preoperative astigmatism at angle \(\alpha \), K3 is the postoperative astigmatism at angle \(\beta \), K2 is the surgically induced astigmatism or surgical effect at angle \(\beta \), where

\[\sin 2 \beta = (K3. \sin 2 \alpha - K1. \sin 2 \alpha)/K2 \]

(2)

From Figure 2,

\[K2 = (K3 - K1 \cos \beta - K1 \sin \beta - K3 \sin \alpha)/(K1 \cos \beta) \]

(3)

where

\[2 \beta = \arctan((K1 \sin 2 \alpha - K3 \sin 2 \beta)/(K1 \cos 2 \alpha - K3 \cos 2 \beta)) \]

(4)

If K2 is negative, conversion to the positive cylinder can be made as stated in the text, by adding or subtracting 90° to or from \(\beta \), if \(\beta \) is greater than or less than 0° respectively. This can be verified by taking the second differential of K2 with respect to \(\beta \) which is

\[dK2/d\beta^2 = -4K3 \cos 2 \beta + 4K1 \cos 2 \beta \]

Therefore, if K2 is negative, \(dK2/d\beta^2 \) is > 0 and K2 is a minimum for that value of \(\beta \). Adding or subtracting 90° from \(\beta \), will make K2 positive and a maximum, as \(d^2K2/d\beta^2 < 0 \).

SURGICAL ACCURACY

From Figure 4B, the effectiveness of K2 is that, K2', is K2' = K2a' - K2b'

\[K2' = K2 \cos \beta - (K2 \alpha + 90) - K2 \cos \beta (\beta - \alpha) \]

\[= K2 \sin \beta (\beta - \alpha) - \cos \beta (\beta - \alpha) \]

(5)

Surgical accuracy (SA), can be defined as

\[SA = K2'/\sqrt{(K2 + K3)} \]

(6)

FOR USE IN A SPREADSHEET

The following equations, when entered into the appropriate columns of a Lotus compatible spreadsheet, can be used to calculate surgical effect (K2), its angle \(\beta \) and the surgical accuracy.

\[K2 = K1 \times \cos(\pi/90 \times \beta) - K3 \times \cos(\pi/90 \times \beta) \]

\[\beta = 90 \times \pi/180 \times \arctan((K1 \times \sin(\pi/90 \times \beta) - (K3 \times \sin(\pi/90 \times \beta) \times (K1 \times \cos(\pi/90 \times \beta) - (K3 \times \cos(\pi/90 \times \beta)))) \]

\[\beta \text{ converted} = \begin{cases} 90 & \text{if } K2 < 0 \text{ AND } \beta < 0 \text{ AND } b > -90, \beta + 90, \text{ or } \beta < -90, b + 90, \text{ or } \beta < 0, b + 180 \text{, or } \beta > 0, b + 180 \end{cases} \]

*This allows K2 to be used as a positive cylinder and expresses b as an angle between 0° and 180°.

\[K2' = K2 \times \cos(\pi/90 \times \beta - \alpha) \times 2 - \cos(\pi/90 \times \beta - \alpha) \]

Surgical accuracy = K2' / (K2 + K3)