Symptomatic abnormalities of dark adaptation in patients with age-related Bruch’s membrane change

Robert L Steinmetz, Robert Haimovici, Chris Jubb, Frederick W Fitzke, Alan C Bird

Abstract
Some patients with age-related changes at the level of Bruch’s membrane and good visual acuity report poor vision in dim light, fading vision in bright light, and a central scotoma noticeable in the dark. Ophthalmic examination, scotopic thresholds, and dark adaptation kinetics were recorded in 12 eyes of 12 patients with such symptoms. All had macular drusen which were hypofluorescent on fluorescein angiography in nine subjects, and six had evidence of prolonged choroidal filling on fluorescein angiography. Scotopic thresholds were depressed in six patients who all experienced a central scotoma in the dark or poor night vision. The kinetics of dark adaptation were abnormal in all 10 patients in whom reliable measurements were possible. The findings suggest that visual symptoms reflect abnormality of both scotopic sensitivity and the time course of dark adaptation in patients with age-related Bruch’s membrane change.

(Br J Ophthalmol 1993; 77: 549–554)

Loss of visual acuity in age-related macular degeneration is usually attributed to geographic atrophy, choroidal neovascularisation, or retinal pigment epithelial detachment. Visual deficits in the absence of these events are less well recognised. It is evident that some patients describe visual symptoms despite good acuity and few ophthalmoscopic changes of age-related macular disease other than drusen. These deficits vary under different levels of illumination but cannot be attributed to intraocular light scattering from corneal or lens opacities or pupillary abnormalities. Some patients report worsening vision after several minutes in bright sunlight or slowed recovery after exposure to bright light. Others had good vision in bright light but with visual difficulties in dim illumination. A central scotoma noticed in the dark is also described. Abnormal dark adaptation has been recorded previously in patients with age-related macular degeneration. In these reports, however, no correlation was sought between the abnormalities recorded and visual symptoms. We performed scotopic threshold perimetry and dark adaptation in 12 consecutive patients with macular drusen and good acuity in order to identify whether or not the symptoms reflected measurable functional deficit.

Patients and methods
Patients with age-related maculopathy seen in the retinal diagnostic department at Moorfields eye hospital were asked a series of questions pertaining to their visual function at different light levels, and were asked to return for psychophysical testing if they had symptoms which could not be readily accounted for by the examination findings. Patients were excluded if their corrected visual acuity was worse than 6/12, there was greater than 1 dioptr of correction, or there was retinal pigment epithelial detachment, serous retinal detachment, subretinal neovascularisation, geographic atrophy, a history of intraocular inflammation, surgery, glaucoma, cataract, or diabetes mellitus, or if they were unable or unwilling to take part in the study. No patient included in this study had a history of hepatic or biliary cirrhosis, chronic bowel disease, protein calorie malnutrition, or sickle cell anaemia, conditions which are known to cause abnormal dark adaptation. In addition to complete ophthalmic examination and psychophysical testing, patients underwent fundus photography and fluorescein angiography. A group of people matched by age and sex who had no clinical evidence of Bruch’s membrane change and who were asymptomatic served as a comparison group. All subjects gave informed consent, and the study was approved by the ethical committee of Moorfields Eye Hospital.

The eye with the best measured visual acuity was selected for psychophysical testing. A pupillary diameter of at least 6 mm was achieved by instilling one drop of 2.5% phenylephrine, and 1% cyclopentolate. Patients were placed in a dark room for 45 minutes. No significant differences in dilated pupil size were noted between our study patients and an age-matched comparison group. Testing was performed without spectacle correction to eliminate variables such as spectacle tint, thickness, base curve, and reflections. The fellow eye was patched for all testing.

A Humphrey field analyser (San Leandro, CA) modified for use under scotopic conditions was used to perform static perimetry with the 30-2 programme. The patient was seated at the Field Analyzer with head position controlled by a chin and forehead rest 30 cm from the target, and was instructed to look at the red fixation light. An infrared source illuminated the bowl, and an infrared CCD camera (Philips, Eindhoven, Holland) was used to monitor eye movements. With the background illumination turned off, a stimulus of wavelength 450 nm, duration 0.5 seconds, and Goldmann V size was used to perform threshold static. Five patients (Nos 4, 6, 8, 11, 13) also underwent dark adapted threshold testing with a red stimulus produced using a 608 nm cut off filter. Goldmann size III and V stimuli were also used to determine dark adapted thresholds at two retinal locations selected for further study of the dark adaptation.
Table 1 Clinical details of subjects. Case 5 did not have fluorescein angiography

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Symptoms</th>
<th>Visual acuity</th>
<th>Study eye</th>
<th>Druen</th>
<th>PCFC</th>
<th>Fellow eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>F</td>
<td>poor vision in bright light</td>
<td>6/9</td>
<td>discrete</td>
<td>no</td>
<td>pigment epithelial detachment</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>M</td>
<td>poor vision in bright light</td>
<td>6/6</td>
<td>hypofluorescent confluent</td>
<td>yes</td>
<td>disciform scar</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>F</td>
<td>central scotoma in the dark</td>
<td>6/6</td>
<td>hypofluorescent confluent</td>
<td>yes</td>
<td>disciform scar</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>M</td>
<td>poor night vision, slow DA</td>
<td>6/6</td>
<td>hypofluorescent discrete</td>
<td>yes</td>
<td>disciform scar</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>F</td>
<td>central scotoma in the dark</td>
<td>6/6</td>
<td>hypofluorescent discrete</td>
<td>–</td>
<td>disciform scar</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>71</td>
<td>M</td>
<td>poor vision in bright light</td>
<td>6/6</td>
<td>confluent</td>
<td>yes</td>
<td>drusen</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>M</td>
<td>poor night vision, slow DA</td>
<td>6/9</td>
<td>hypofluorescent subconfluent</td>
<td>no</td>
<td>drusen</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>M</td>
<td>central scotoma in the dark</td>
<td>6/12</td>
<td>hypofluorescent subconfluent</td>
<td>yes</td>
<td>drusen</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>M</td>
<td>central scotoma in the dark</td>
<td>6/12</td>
<td>hypofluorescent subconfluent</td>
<td>yes</td>
<td>drusen</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>F</td>
<td>central scotoma in the dark</td>
<td>6/9</td>
<td>hypofluorescent subconfluent</td>
<td>yes</td>
<td>drusen</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>71</td>
<td>F</td>
<td>central scotoma in the dark</td>
<td>6/9</td>
<td>hypofluorescent subconfluent</td>
<td>no</td>
<td>disciform scar</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>M</td>
<td>central scotoma in the dark</td>
<td>6/9</td>
<td>hypofluorescent subconfluent</td>
<td>yes</td>
<td>disciform scar</td>
<td></td>
</tr>
</tbody>
</table>

PCFP = prolonged choroidal filling phase

DA = dark adaptation

This was performed on the Humphrey field analyser controlled by an external computer. The median age was 76 years (range 54–86). There were seven men and five women. Three patients (Nos 1, 2, 6) reported that their vision decreased after several minutes in bright light or that they recovered their vision very slowly after exposure to bright light, often preferring to avoid going out of doors on bright, sunny days. Seven patients (Nos 3–5, 8, 9, 11, 12) had good vision in daylight and greater difficulties in poor illumination. The remaining two patients (Nos 7, 10) noted poor vision in both bright light and in the dark preferring intermediate light levels. Five (Nos 3, 5, 9, 10, 12) described a central scotoma that began early in dark adaptation.

The study eye of every patient had 6/12 or better vision, and 10 of 12 patients had 6/9 or better acuity. All were phakic without optically significant nuclear sclerosis on biomicroscopy. All patients had macular drusen in the study eye, and one (No 4) also showed a diffuse yellow comparison for perimeter and dark adaptation curves. Dark adapted thresholds were considered abnormal if there was a 10 dB or greater elevation when compared with age-matched controls tested in a similar manner. The outermost location on the 30-2 programme and the two locations above and below the blind spot were excluded from this analysis. The rod cone break was determined by visual inspection. Datum points after this time were used to determine the time constant of rhodopsin regeneration using curve fitting software, and an equation of the form log (I) = A + B (e^(-t/τ)). Return of prebleach sensitivity was defined as the time at which the average of the last five measurements came within 5 dB of the average of the prebleach measurements. Dark adaptation was considered to be prolonged if return of prebleach sensitivity occurred outside the range for normal subjects in the same decade of life.

Results

Twelve patients with age-related maculopathy, and visual difficulties at different levels of light are included in this study (Table 1; Figs 1–4). Five (Nos 3, 5, 9, 10, 12) described a central scotoma that began early in dark adaptation.

The study eye of every patient had 6/12 or better vision, and 10 of 12 patients had 6/9 or better acuity. All were phakic without optically significant nuclear sclerosis on biomicroscopy. All patients had macular drusen in the study eye, and one (No 4) also showed a diffuse yellow comparison for perimeter and dark adaptation curves. Dark adapted thresholds were considered abnormal if there was a 10 dB or greater elevation when compared with age-matched controls tested in a similar manner. The outermost location on the 30-2 programme and the two locations above and below the blind spot were excluded from this analysis. The rod cone break was determined by visual inspection. Datum points after this time were used to determine the time constant of rhodopsin regeneration using curve fitting software, and an equation of the form log (I) = A + B (e^(-t/τ)). Return of prebleach sensitivity was defined as the time at which the average of the last five measurements came within 5 dB of the average of the prebleach measurements. Dark adaptation was considered to be prolonged if return of prebleach sensitivity occurred outside the range for normal subjects in the same decade of life.

Table 2 Dark adaptation results. Cases 5 and 8 had sensitivities which were too poor to undertake dark adaptation. The retinal coordinates refer to the degree of visual angle from fixation on the Humphrey perimenter. The rod/cone break and recovery time are in minutes. See text for calculation of time constants

<table>
<thead>
<tr>
<th>Case</th>
<th>Retinal coordinate</th>
<th>Scotopic sensitivity</th>
<th>Rod/cone break</th>
<th>Recovery time</th>
<th>Time constant*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.9</td>
<td>47</td>
<td>36</td>
<td>70</td>
<td>4-3</td>
</tr>
<tr>
<td>2</td>
<td>9.9</td>
<td>45</td>
<td>28</td>
<td>61</td>
<td>2-2</td>
</tr>
<tr>
<td>3</td>
<td>9.9</td>
<td>32</td>
<td>32</td>
<td>65</td>
<td>3-0</td>
</tr>
<tr>
<td>4</td>
<td>15.15</td>
<td>43</td>
<td>20</td>
<td>65</td>
<td>2-1</td>
</tr>
<tr>
<td>6</td>
<td>9.9</td>
<td>42</td>
<td>25</td>
<td>2-2</td>
<td>10-2</td>
</tr>
<tr>
<td>7</td>
<td>3.3</td>
<td>35</td>
<td>25</td>
<td>2-3</td>
<td>25-0</td>
</tr>
<tr>
<td>9</td>
<td>9.9</td>
<td>41</td>
<td>20</td>
<td>70</td>
<td>4-2</td>
</tr>
<tr>
<td>10</td>
<td>9.9</td>
<td>40</td>
<td>30</td>
<td>70</td>
<td>2-2</td>
</tr>
<tr>
<td>11</td>
<td>9.9</td>
<td>41</td>
<td>35</td>
<td>70</td>
<td>2-9</td>
</tr>
<tr>
<td>12</td>
<td>9.9</td>
<td>38</td>
<td>38</td>
<td>90</td>
<td>3-3</td>
</tr>
<tr>
<td>Normals</td>
<td>38-55</td>
<td>10-18</td>
<td>38-55</td>
<td>0-9-1-9</td>
<td>5-4-15-2</td>
</tr>
</tbody>
</table>

*Goldmann size V stimulus; †Still elevated by <0-5 log units; ‡Still elevated by <1-0 log units.

Figure 1 (A) Case 3. A 76-year-old woman noticed a central scotoma at night that began shortly after the lights were extinguished. Visual acuity was 6/9. The drusen were most prominent between the fovea and optic nerve.
Symptomatic abnormalities of dark adaptation in patients with age-related Bruch’s membrane change

Bruch’s membrane change in the macula similar to that seen in Sorby’s fundus dystrophy although this condition was excluded by lack of family history. Fluorescein angiography was available in the study eye in 11 of 12 patients. Drusen of the posterior pole were predominantly or entirely hypofluorescent in nine patients and were hyperfluorescent in two as defined in a previous study.13 Prolonged choroidal filling was seen on fluorescein angiography in six patients (Nos 3, 4, 6, 9, 10, 12) (Fig 2B). The fellow eye of patients studied showed a variety of age-related changes. Five patients (Nos 6–10) had drusen only in the fellow eye which in three cases were confluent or nearly confluent within the fovea (Nos 6, 7, 9). The remaining six had subfoveal scars. Plasma vitamin A levels were performed in six patients (Nos 5, 6, 8, 10, 11) which were within the normal reference range.

The dark adapted foveal threshold was variable, ranging from 1 to 24 dB above normal values (Table 2, Figs 1–4). The scotopic threshold in the central 30° was depressed by at least 10 dB in at least some locations in six patients (Nos 5, 6, 8, 9, 10, 12). Mesopic threshold perimetry did not suggest selective involvement of either the rod or the cone system. These patients reported poor vision in dim illumination or a central scotoma in the dark.

Reliable data on the time course of dark adaptation were obtained in 10 of 12 patients. Subjects 5 and 8 had up to 30 dB threshold elevations on scotopic perimetry and dark adaptation data were unreliable. The time to the return of prebleach sensitivities exceeded the range for our comparison group in nine of 10 cases (Table 2, Figs 1C, 2D, 3C, 4C). In eight (Nos 1–4, 7, 9, 11, 12) at least one location tested had not returned to initial threshold 60 minutes after light adaptation (Figs 1C, 2D). The time constant of rod sensitivity recovery was abnormal in at least one location in nine patients. In three of these (Nos 2–4) there was a slow drift-like
recovery of sensitivity and reliable time constants could not be derived. Cone regeneration constants were abnormal in all but one patient (No 10). This became evident only after curve fitting and was not generally apparent by visual inspection. In some locations, only the cone time constant was elevated (Nos 3, 6, 9–12), whereas in other locations both the rod and cone time constants were prolonged (Nos 1–4, 6, 7, 9, 11, 12) (Table 2).

The relationship of scotopic sensitivity to the kinetics of dark adaptation varied from one patient to another. Six patients had normal dark adapted static perimetry with abnormal dark adaptation kinetics (Nos 1, 2, 6, 7, 9, 11) and in four (Nos 3, 4, 10, 12) both the dark adapted thresholds and the time course of dark adaptation were abnormal. The rod and cone time constants were prolonged both in locations where recovery of sensitivity was full and in areas with a decreased final sensitivity. In some locations tested (Nos 3, 10, 12), the time constant of rod adaptation was normal despite elevated final thresholds. There was little difference in the dark adaptation measurements between Goldmann size III and size V stimuli other than the expected offset due to neural summation (Fig 3C).

In two patients increasing deficit was recorded over time although there was no change in visual acuity (Figs 1B, 2C).

Correlation between the clinical characteristics and the psychophysical results are illustrated in Figures 1–4.

Discussion
The visual symptoms reported by our patients with age-related maculopathy appear to be due to loss of visual function which can be readily revealed by scotopic perimetry and measurement of dark adaptation. Areas of diminished scotopic sensitivity in the central retina could be reliably mapped with the Humphrey field analyser, were often quite sharply demarcated, and, in general, corresponded well with the patients’ subjective deficit. The functional losses were generally more impaired at locations closer to the fovea. These defects may occur in patients with excellent visual acuity and unremarkable fundus changes, and may cause significant handicap in life.

The cause of abnormal function in the absence of complications of Bruch’s membrane change is unknown. Mild metamorphopsia and decreased reading ability especially in dimmed illumination, has been recognised in patients with extensive drusen centrally.14 Eyes with extensive drusen and hyperpigmentation may have reduced macular sensitivity especially if the fellow eye has exudative age-related maculopathy. However, it is unlikely that the symptoms reported by our patients could be explained by the drusen alone. There is no good relationship between the extent of drusen and the absolute threshold,15 and the retinal sensitivity over a drusen is not depressed compared with adjacent non-drusen
Symptomatic abnormalities of dark adaptation in patients with age-related Bruch's membrane change

One explanation for the functional disturbance was derived from observations in Sorsby's fundus dystrophy. Admittedly the concepts are unproved, but they are based on several pieces of circumstantial evidence. In Sorsby's fundus dystrophy a layer of material up to 50 μm thick appears in the inner portion of Bruch's membrane. Patients with Sorsby's fundus dystrophy may have visual difficulties under different light levels similar to the symptoms recorded in the current study. Furthermore, psychophysical studies show up to 30 dB losses in scotopic sensitivity, and prolongation of dark adaptation before there is any compromise of visual acuity. It was suggested that this abnormal material may form a barrier to diffusion between the choroid and retinal pigment epithelium, and that the functional deficits are due to lack of metabolic supply to the outer retina. Predictably, a homologous situation would exist in age-related macular disease due to thickening of Bruch's membrane, and the physiological disturbance would be greater if Bruch's membrane contained high levels of neutral lipids causing it to become hydrophobic. The observation of wide variation in both the total quantity of lipids and the ratio of phospholipids and neutral lipids in Bruch's membrane from elderly donors is compatible with this concept. In some eyes this material is deposited as a diffuse layer rather than as discrete deposits which may impair metabolic exchange between the retinal pigment epithelial cell and the choroidal capillaries. Two additional characteristics of the eyes included in this study support this view. There is evidence that a high content of neutral lipids is indicated by the presence of hypofluorescent drusen; in nine of the 11 patients in whom fluorescein angiography was available the drusen did not fluoresce. It has been suggested that a barrier to metabolic exchange is implied by abnormal filling of the choriocapillaris on angiography; six of our patients had this angiographic sign.

The pattern of visual loss recorded in our patients is in some ways similar to that seen in vitamin A deficiency, in which dark adaptation is prolonged initially but in which cone function is spared and final scotopic thresholds are normal. The lack of systemic vitamin A deficiency does not exclude a localised shortage of vitamin A caused by impaired exchange across Bruch's membrane.

Alternatively, it is possible that progressive metabolic impairment of the pigment epithelium may result from accumulation of intracellular lipofuscin which occurs with age. A similar situation exists in fundus flavimaculatus in which functional deficit is similar to that recorded in our patients, although the rod cone break and early portion of rod adaptation are preserved.

The relationship between the scotopic threshold, rod cone break, and the time course of dark adaptation varied from one patient to another implying that there may not be a uniform progression of disease. The variability of these results suggests that they represent either different stages of the single sequence of events or reflect different structural or metabolic abnormalities at the level of the photoreceptor cells. In these subjects the photoreceptor outer segments may be reduced in volume, there may be reduction of the number of photoreceptor cells, abnormality of outer segment structure, or increased regeneration time of rhodopsin. Predictably, each of these would give rise to different combinations of functional defects.
Whether these reflect different disease mechanisms, or different reactions to a similar pathological process is not evident.

Long term review of our patients will be required to determine whether or not these functional abnormalities imply a higher risk of vision threatening complications of age-related maculopathy.

This work was supported by grants from The Wolfson Foundation, the Wellcome Trust, and the Medical Research Council of the UK.

1 Genensky SM, Berry SH, Bikson TH, Bikson TK. Visual environmental adaptation problems of the partially sighted: final report (#CPS-100-HIEW). Center for the partially sighted, Santa Monica Hospital Medical Center, January 1979.
31 Wede RA. Do years or quanta age the retina? Photochem Photobiol 1989; 50: 429-38.