Automated perimetry in glaucoma – room for improvement?

The objective of static threshold automated perimetry in glaucoma is the efficient detection of visual field defects and the accurate measurement of progressive field loss.

Automated perimetry is a psychophysical test of visual function necessarily dependent upon the subjective response of the patient. The test involves the detection of a stimulus, the luminance of which is greater than that of the background of a given constant luminance. Threshold static perimetry expresses the minimum detectable stimulus brightness at individual locations within the visual field in terms of sensitivity units (decibels) and provides a contour of the height and shape of the hill of vision. The numerical information, which is an estimate of the true threshold, is usually compared with that from a database of normal individuals of the same age. Abnormality of the visual field at any single examination can be expressed by a variety of graphical techniques such as the grey scale plot, and by statistical procedures such as the visual field indices, cluster analysis, the total and pattern probability plots, and the glaucoma hemifield test. Visual field progression can be evaluated for the field as a whole, for any region of the field, or for any stimulus location in terms of comparison with results from previous examinations by using regression analysis techniques. The change in sensitivity at a given stimulus location can also be compared with the expected variation in stable glaucoma patients. The explanation for any statistically proved progressive field loss should always be compatible with the clinical assessment.

Automated perimetry is limited by the fact that the outcome of any given examination is affected by a large number of factors including those specific to the patient and/or technician and those particular to the measurement technique. Such factors determine the absolute value of sensitivity at the given location and also the variability in the response at that location both within a single visual field examination (that is, the short term fluctuation), and between examinations (that is, the long term fluctuation), and can limit the usefulness of automated perimetry for the evaluation of visual field progression. Indeed, the level of fluctuation can be such that it is often impossible from inspection of the results of two sequential visual field examinations to determine whether progression has occurred. Confirmation of progression often necessitates a repeat examination with the consequent resource implications. Indeed, progression is frequently deemed to have occurred only by retrospective examination of a large series of field plots.

Some factors can be controlled by the clinician, such as the pupil size and the correction of refractive error, but other factors may be more difficult to eliminate. Indeed, the coexistence of cataract (which may be progressing) also affects the quality of the recorded information and confounds interpretation of the data at any given examination and during follow up. Probably the single most important factor influencing the quality of the visual field examination, and yet largely ignored by current perimetric software, is the interaction of the nature of the patient’s response with the technique of the examination procedure. Some evidence as to the quality of patient performance is given by the reply to the catch trials which assess the number of fixation losses, and the number of false positive and false negative responses. Nevertheless, the performance of the patient is likely to be governed by factors such as motivation and anxiety. Furthermore, the current psychophysical determination of perimetric threshold using a bracketing technique is generated from substantially more stimulus presentations than the clinical ideal. Indeed, the initial lack of familiarity with the requirements of the task and the relatively long duration of the examination have been manifest in the learning and fatigue effects respectively. The learning effect – namely, an improvement in sensitivity at a given stimulus location, can occur within a single examination of a given eye, between eyes at the same visit, and between subsequent examinations. The improvement is particularly noticeable over short follow up periods, and is more pronounced at the extremities of the central 30 degree field. The fatigue effect, whereby sensitivity decreases during the examination, becomes more pronounced as the length of the examination increases, is greater in the second eye examined, and increases with age.

To date, attempts to enhance the quality of the patient response have largely centred on the development of methods for improving data acquisition. The introduction of faster thresholding strategies has reduced the duration of the perimetric examination largely at the expense of increased variability compared with the standard threshold strategy. Other approaches for improving data acquisition have included the use of fewer stimulus locations, larger stimuli, or repeated thresholding of the given stimulus locations. No attempt has been made to enhance the quality of the recorded data. The contribution of Fitzke and colleagues, published in this issue (p 207), illustrates the potential of filtering techniques (frequently used in image processing) to reduce the variability, inherent in static threshold automated perimetry and hence improve the quality of the data. Indeed the index of spatial variability, also reported in this issue by Crab and colleagues (p 213), based on filtering techniques, provides a further statistical tool for the evaluation of glaucomatous loss. The advent of new thresholding strategies based on
Automated perimetry in glaucoma – room for improvement?

C O'BRIEN

Princess Alexandra Eye Pavilion, Chalmers Street, Edinburgh EH3 9HA

Department of Vision Sciences, Aston University, Aston Triangle, Birmingham B4 7ET