melanoma and an enucleation was performed. Histopathological examination revealed a predominantly spindle B cell malignant melanoma (18×12×18 mm), occupying the nasal calotte from the cribriform body to the optic nerve (Fig 2a). A remarkable feature was the presence of a prominent disciform scar at the posterior pole with an extension into the temporal and nasal mid periphery (Figs 2a and 2b). The site of the choroidal biopsy, identifiable by an intraocular suture was in opposition to the disciform lesion, but at a considerable distance to the anterior edge of the melanoma (Fig 2b).

COMMENT

Despite the initial intention of local resection of the presumed melanoma, the intraoperative visualisation of an unaffected choroid left an aspiration biopsy the only reasonable mode of action. Negative cytological results in conjunction with an extensive clinical examination failed to establish the diagnosis of melanoma. Moreover, the vitrectomy which disclosed a central disciform and a similar peripheral lesion was even more misleading, since the presence of a central disciform lesion is more commonly associated with disciform lesions elsewhere than choroidal melanomas.4

To our knowledge, comprehensive studies on the accuracy of subretinal fluid aspiration in presumed intraocular tumours do not exist. However, in fine needle aspiration biopsy a 100% sensitivity rate in cases with adequate cytological material decreased to 84% when insufficient material was included.5 Conceivably, this limitation also applies to the subretinal fluid aspiration. To our knowledge the implications of two different pathological processes within the same globe have not been stressed yet.

The following reasons might explain the sampling error in our case. Migration of RPE cells into the subretinal fluid was described in cases of choroidal melanoma, but their presence is unhelpful for the distinction between melanoma and benign processes with RPE cell proliferation. Similar observations were made by Augsburger et al1 and by Reese.6 Our case also demonstrates that a vitreous aspirate is useless, unless the tumour has perforated the retina.

Histologically the biopsy site, identified by intrascleral sutures, was in close proximity to the disciform scar, but far from the tumour. Presumably, it was this disciform scar that misled the surgeon during the operation and was the source of the RPE cells and haemophagocytes in the cytopathological specimen. Therefore, the statement of Augsburger et al1 that a negative cytological diagnosis is not unequivocal proof of the absence of a malignancy, is particularly important in cases where a combined pathology is anticipated.

Dr W Sekundo was supported by Deutsche Forschungsgemeinschaft (DFG grant Se 641/1-2) and is currently affiliated with University of Bonn Eye Hospital, Bonn, Germany.

The authors are obliged to Dr B E Damato, A M Wylie, and T Barrie, who participated in the care of this patient and referred her to us.

WALTER SEKUNDO
WILLIAM R LEE
DEPARTMENT OF PATHOLOGY,
UNIVERSITY OF GLASGOW

Correspondence to: Dr med Walter Sekundo,
Universitäts-Augenklinik, Sigmond-Freud-Strasse
25, 53105 Bonn, Germany.

Accepted for publication 26 January 1995


Bilateral sudden visual loss due to sphenoid mucocele in Albright’s syndrome

EDITOR.—Fibrous dysplasia, the replacement of bone by abnormal fibrous tissue, may occur in association with endocrine abnormalities and cutaneous pigmented patches as Albright’s syndrome or without such manifestations as isolated fibrous dysplasia. With craniofacial involvement, visual loss may be caused by compression of the optic nerves or chiasm,1 by dysplastic bone or haemorrhage into dysplastic bone.2 We report the first reported case of visual loss due to sphenoid mucocele in Albright’s syndrome.

CASE REPORT

Three weeks before presentation a 20-year-old woman experienced pain around the right eye followed by deterioration of vision in the right eye. A week later, painless visual loss occurred in the left eye. Direct questioning elicited a history of spontaneous right sided long bone fractures and precocious puberty. Albright’s syndrome had been diagnosed at the age of 8 years.

On examination, she was of short stature and had a flat pigmented lesion on her buttock; no other abnormality was found. The vision in the right eye was perception of light and in the left eye, counting fingers.

Using a 30/1000 white target the visual field in the right eye was unrecordable and in the left eye was restricted to an island of 15°. There was minimal temporal pallor of both
Figure 1 Appearance of optic discs at presentation.

Optic discs but the nerve fibre layer appeared normal and the discs were flat (Fig 1). Serum haematology and biochemistry were normal with the exception of a raised alkaline phosphatase.

Computerised tomography (Fig 2) showed a midline cystic tumour with irregular edges and fluid levels which involved sphenoid, ethmoid, and maxillae. This was felt to be consistent with fibrous dysplasia and sphenoid mucocele.

Surgical decompression was undertaken the same day. A large cavity formed by the expanded sphenoid was entered via a transethmoidal approach, and an ostium fashioned from it into the nasal cavity. Histological examination of the wall of the cavity showed no evidence of malignancy and was characteristic of mucocele.

Ten days after surgery, her vision improved to 3/60 right, 6/12 left, with a centrococcal scotoma in the right eye and a paracentral scotoma in the left eye. One month after surgery her vision was 6/9 in each eye with small paracentral scotomas, and the appearance of the optic discs was unaltered. One year after surgery, vision was 6/9 in each eye.

Comment

Sphenoid mucocele may produce clinical syndromes by compression of the optic nerves, chiasm, oculomotor nerves, or pituitary gland. Pain, visual loss, and diplopia are the commonest symptoms. Differential diagnoses include pituitary tumour, cranio-pharyngioma, meningioma, sinus neoplasm, clivus chordoma, and internal carotid aneurysm. Computerised tomography shows a homogeneous isodense or hyperdense sellar or parasellar lesion, and magnetic resonance imaging a high intensity signal on T1 and T2 weighted images.

Sphenoid mucocele has not previously been reported in Albright’s syndrome. Visual loss was, however, ultimately attributed to sphenoid mucocele in one woman age 20 with isolated fibrous dysplasia, in whom an intracranial tumour had initially been diagnosed, but had failed to respond to steroids and radiotherapy. Bone biopsy indicated the presence of fibrous dysplasia, and a haemorrhagic sphenoid mucocele found to encircle both optic nerves at craniotomy; however, vision had been no light perception in both eyes for some time before surgery and did not improve following it. This is in marked contrast with the present case in which, despite severe visual loss before surgery, a good visual outcome was obtained because of prompt diagnosis and surgical intervention. The parallels in optic nerve compression by dysplastic bone, in which a better visual prognosis is associated with a short duration of visual loss.

It is important that sphenoid mucocele be recognised as a cause of visual loss in patients with Albright’s syndrome. Patients are typically young, visual loss may be profound and bilateral, and prompt diagnosis and surgical decompression sight saving. A history of spontaneous fractures, endocrine dysfunction, and characteristic radiological appearances may provide diagnostic clues.

J G F DOWLER
M D SANDERS
National Hospital for Neurology and Neurosurgery, London

P M BROWN
Queen Elizabeth Military Hospital, London

Correspondence to: J G F Dowler, Moorfields Eye Hospital, City Road, London EC1V 2PD.

Accepted for publication 10 January 1995


Traumatic intraorbital aerocele with pneumocephalus

Editor.—We report the case of orbital aerocele with pneumocephalus due to orbital stab wound. Only two cases of orbital aerocele have been described previously, both caused by surgical trauma. The case we present is unique in several aspects; it was caused by non-surgical trauma, was acute, resolved spontaneously, and was associated with pneumocephalus. The absence of any ocular injury is also unusual.

Case Report

A 25-year-old man attended the accident and emergency department. He had sustained a stab wound with a kitchen knife to his left orbit and complained of pain and blurred vision in his left eye. Examination 1 hour after the incident revealed left corrected visual acuity 6/36, right 6/6, marked left periorbital swelling and a stab wound entry on the lateral aspect of the left lower lid, 1 cm below the lid margin, 2–5 cm long, 0.5 cm wide. There was proptosis which was not reducible, marked restriction of eye movements, chemosis, but no sign of conjunctival or scleral laceration visible externally. The cornea was oedematous and intraocular pressure was 40 mm Hg. The pupil reacted sluggishly with no definite relative afferent pupillary defect and there was no sign of intracranial injury.

Orbital x-ray (Fig 1) showed a radiolucent area within the left orbit. Computed tomography scan (Fig 2) showed a large collection of intraorbital, mainly intracranial, air with opacification. Intracranial air was demonstrated in the left parasellar subarachnoid space. Over the next 9 hours the degree of proptosis reduced spontaneously. Eye movements, intraocular pressure, and corneal appearance returned to normal. Visual acuity improved to 6/9. In view of the intracranial air the patient was observed closely for signs of infection but developed no complications. Prophylactic

Figure 1 Plain x-ray of orbits, showing a loculated collection of gas in the left orbit.