LETTERS TO THE EDITOR

Ocular symptoms due to organophosphorus gas (Sarin) poisoning in Matsumoto

EDITOR,—Sarin (isopropylmethylphosphonofluoridate) is one of the organophosphorus nerve gases and was developed from the organophosphorus pesticides by German scientists.1 By blocking the activity of cholinesterase (ChE), Sarin causes muscarinic action, nicotinic action, and central nervous effect.2 At midnight on 27 June 1994, acute gas (Sarin) poisoning occurred in Matsumoto city, Nagano prefecture.3 This accident finally left seven people killed, 56 hospitalised, and more than 500 injured.

We report the typical case of a 24-year-old man who suffered from Sarin poisoning and the ocular symptoms and findings of 51 patients who were examined at our hospital and eye clinics in Matsumoto city.

CASE REPORT

On the morning of 26 June a 24-year-old man suffering from acute gas poisoning was referred to us. The principal symptoms that the patient noticed after the attack were dimming of his vision and rhinorrhea. His best corrected visual acuity, measured by Landolt ring, was 1.2 in both eyes. Pupil diameter was 1.5 mm. The pupillary light reflex was barely discernible. A major observation on slit-lamp biomicroscopy was conjunctival hyperaemia and no superficial punctate erosions of the cornea (Fig 1). Fundus examination with an undilated pupil was normal. A Goldmann visual field was performed which showed generalised constriction of the isopters. Serum ChE was 124 IU/l (normal 109–249). Despite the normal ChE, acute organophosphorus poisoning was suspected. Typical steroid ophthalmic drops were prescribed for the conjunctival hyperaemia. Goldmann visual fields were improved the following day, while the pupillary diameter was still 1.5 mm, and the light reflex was sluggish. After 3 days his pupil diameter was 3.0 mm, but the light reflex was still slightly slow. Conjunctival hyperaemia was absent.

Ocular signs and symptoms were analysed in 51 patients involved in the Sarin poisoning incident in Matsumoto city. The ages of the patients ranged from 15 to 76 years, with a mean of 37 years. The patients indicated that the following conditions resulted from Sarin poisoning: dimmed vision (39%), ocular pain while looking at light and near objects (21%), red eye (16%), blurred vision and discomfort when attempting to read near object (14%), out of focus (14%), small pupil (12%), vitreous floaters (8%), itching (8%), photophobia (8%), narrow view (6%). On examination, by history and chart review, the patients also manifested the following: miosis (less than 4 mm 80%; less than 2 mm 41%), conjunctival hyperaemia (41%), contraction of the visual field (25%), lower intraocular pressure (21%). The pupillary diameter was initially small and it increased with passage of time (Fig 2). In those patients who underwent physical examination, including visual fields, conjunctival hyperaemia and concentric contraction of the visual fields were common within the first 4 days following the accident; but those conditions generally improved. Visual acuity did not appear to be diminished in most patients. The mean intraocular pressure measured immediately after Sarin exposure was 3.0 mm Hg lower than that after a few days. Patients with ocular symptoms had normal plasma cholinesterase. Miosis was easily reversed with either a topical atropine or a tropicamide-phénylphéline hydrochloride mixture. Dilating the pupil also relieved the ocular pain of ciliary spasm that was experienced by several of the patients. Only two patients had superficial punctate erosions of the cornea and conjunctiva. There were no abnormalities of the posterior pole in any of the patients. The usual ophthalmic medications consisting of topical steroids, artificial tears, mydriatics, and antibiotic drops were prescribed for the patients.

COMMENT

Although the literature contains some references1-5 to experiments on patients who agreed to be exposed to Sarin, there are few reports4-8 of accidental exposure to this poison. To our knowledge, this incident was the first where Sarin was used against a civilian population. In this single attack, seven people died and over 500 were injured. Miosis of acute organophosphorus poisoning has been attributed to suppressed activity of cholinesterase in the iris sphincter muscle. The change of pupillary diameter after Sarin exposure is very similar to the change reported in some papers.4 5

The most common complaints of the victims were dimmed vision and constriction of the visual field. It is interesting to note that Sarin had been reported to affect the central nervous system7 of the retina, specifically the rods and cones.8 We speculate that the dimmed vision and constriction of the visual fields may not have resulted solely from the miosis, but perhaps may reflect the damaging effect of Sarin on the retina and the optic nerve.

We feel that low intraocular pressure resulted from decreased resistance to the outflow of the aqueous humour. We also feel that Sarin directly affected the ciliary muscle by causing ciliary spasm and ocular accommodation palsy. There have been no long term reports on the effect of Sarin on ocular sympotms. The patients are being followed for observation.

We thank K Ohta, N Katsi, H Kimura, J Amaya, F Amari, T Hoya, and K Norose for examining the patients. We also thank M Nakamura, K Nakamura, K Nonaka, T Nonaka, T Hatakeyama, S Hirabayashi, Y Koido, T Koido, S Mima, and T Miyazawa for submitting the reports and medical records of the patients.

MASAHIKO NOHARA
KATSUZO SIGAWA
Department of Ophthalmology,
Shinshu University School of Medicine,
Matsumoto, Japan.

Correspondence to: Masahiko Nohara, MD, Department of Ophthalmology, Shinshu University School of Medicine, Asahi 3-1-1 Matsumoto 390, Japan.

Accepted for publication 1 August 1996


Achiasma in a case of midline craniofacial cleft with seaseas nystagmus

EDITOR,—We present a case with a midline craniofacial defect who had a nasoethmoidal encephalocele and seaeas nystagmus. Monocular flash visual evoked potentials (VEPs) showed an asymmetrical ocipital distribution which reversed when the other eye was stimulated (crossed asymmetry) indicating a chiasmal abnormality. No chiasm was detected on magnetic resonance imaging (MRI).

CASE REPORT

A female infant presented at 4 months of age for assessment of a midline craniofacial cleft.