Ocular melanocytosis associated with intracranial melanoma

EDITOR,—Ocular melanocytosis (melanosis oculi) is a rare congenital abnormality characterised by hyperpigmentation of the episclera and uveal tract, and caused by increased numbers of melanocytes.12 Unlike the naevus of Ota, in which the oral and nasal mucosas, palate, tarsal, tarsal, orbital, and ocular tissues, and melanocytomas can also be involved, ocular melanocytosis is confined to the eye.3 In this report, a patient with ocular melanocytosis who developed ipsilateral intracranial melanoma is described.

CASE REPORT
A 33-year-old right-handed, fair-skinned male patient was hospitalised because of left hemiparesis and right central facial palsy that progressed gradually in 3 months. Ophthalmic examination revealed his best corrected visual acuity to be 20/60 in the right and 20/20 in the left eye. The left eye was unremarkable. There were prominent patchy areas of episcleral pigmentation of the right eye (Fig 1). The iris and choroid were hyperchromic compared with the left eye. He also had mild exposure keratitis. There was no evidence of any degree of pigmentation in the right periorbital skin and in the visible areas of distribution of ophthalmic and maxillary divisions of the trigeminal nerve. Magnetic resonance imaging studies demonstrated a well-defined, right-sided, large intracranial mass close to the mesencephalon (Fig 2). The tumour was hypertense compared with the adjacent tissues on T1-weighted images. The mass was removed surgically with the presumptive diagnosis of meningioma. However, histopathological examination of the tumour showed malignant melanoma with positive reactions to HMB-45 and S-100 antibodies. Careful systemic evaluation for a possible primary site was negative and the case was classified as primary intracranial melanoma. The patient then received whole brain radiotherapy.

COMMENT
Intracranial non-metastatic melanocytic tumours may sometimes be associated with cutaneous pigmented lesions. These lesions include neurocutaneous melanosis, cellular blue naevus, and the naevus of Ota.4 It is currently believed that the neural crest from which the melanocytes are derived, also contributes to the formation of meninges and the pia mater.5 There is evidence that malignant melanoma can develop in areas where abnormal melanocytes have been deposited during migration from the neural crest to the dermis.6 Leptomeningeal melanosis can be associated with these cutaneous lesions and is considered to predispose to intracranial melanomas.7 There is an established association between the naevus of Ota and melanomas of the iris, choroid, optic tract, or the orbit.8,11 Ocular melanocytosis on the other hand, classically known to affect the ocular structures only, has a 25% chance of developing intraocular melanoma.9,10 In these patients, melanoma may arise from the choroid or ciliary body but extremely rarely from the iris.11 Melanocytoma of the optic nerve head can also be encountered.12 Recently, cavernous haemangioma of the optic disc in a patient with ocular melanocytosis has been described.13 However, to the best of our knowledge, intracranial melanoma along with ocular melanocytosis has not been reported in the English language journals.

Our patient demonstrates that neurological signs and symptoms in the presence of ocular melanocytosis should alert the clinician to the possibility of a central nervous system melanoma. Moreover, ocular melanocytosis should be added to the list of pigmented skin and ocular disorders that may be associated with intracranial melanomas.

HAYYAM KIRATLI
SEVGÜL BILGİC
MÜCAHİT SATILMIS
Hacettepe University School of Medicine,
Department of Ophthalmology, Ankara, Turkey

Correspondence to: Hayyam Kiratli, MD, Hacettepe Hastanesi, Göz Anabilim Dali, Sihhiye 06100, Ankara, Turkey

Accepted for publication 12 July 1996

REFERENCES

Vitreous photocoagotomy

EDITOR,—Pigmented free floating vitreous cysts are rare ophthalmic findings whose origins remain uncertain. They were first reported by Tansley in 1899. The cysts are often asymptomatic and found only during ophthalmic examination for other reasons. Occasionally, they can give rise to troublesome, intermittent blurring of vision, flashes, and shifting field defects. A number of treatment modalities have been proposed, including pars plana vitrectomy and argon laser photocoagotomy.12-14 However, these techniques have disadvantages. A case of symptomatic pigmented posterior vitreous cyst treated by Nd:YAG laser photodisruptive cystotomy is reported.

CASE REPORT
A 50-year-old man, a professional archer, presented to the vitreoretinal department with a 1 year history of a large floater, causing intermittent blurring of vision in the right eye. This was particularly disabling when he tilted his head to the right in order to aim to shoot. His corrected visual acuity was 6/6 in each eye and ophthalmoscopy revealed a large, round, free floating posterior vitreous cyst with glistening wall, flecked with surface pigment, the right eye (Fig 1A). B scan ultrasound demonstrated a right sided, solitary, round 5.4 mm cyst situated near the retina within the synecretic posterior vitreous. A partial posterior vitreous detachment was present in the region corresponding to the cyst, although the posterior hyaloid face was mainly attached (Fig 1B). No other cysts were identified. There was no history of previous ocular trauma or inflammation.

In view of the symptoms, the patient underwent argon laser photocoagotomy. A 200 mm spot at a setting of 100 ms and 400–600 mW was aimed at the anterior wall of the cyst through the central and peripheral mirrors of a coated three way mirror fundus lens. The laser was focused in the anterior cyst wall without cyst rupture and a photocoagulation reaction in the retina behind.

The patient subsequently underwent Q switched Nd-YAG laser (Coherent) photocoagulation at a setting of 0.6 mJ single pulse using a vitreous contact lens (LASAG CGV1). The beam was focused on the anterior cyst wall and three pulses were delivered, each puncturing the wall, causing immediate collapse, shrinkage, and gravitation of the cyst (Fig 2A). The symptoms were relieved immediately. At 2 months follow up, the patient remained asymptomatic with a visual acuity of 6/6. Funduscopy showed immobile remnants of the cyst wall overlying the inferior retina and further B scan ultrasound documented a shrunken cyst measuring 1.6 x 2.2 mm (Fig 2B).

COMMENT
Primary vitreous cysts are rare and their origin is uncertain. They were previously presumed to be congenital remnants of the hyaloid
which the cyst was mobile within a small cav- 
ity in the posterior vitreous overlying the optic 
nerve and macula, highlighted the controversy 
over their pathogenesis.3 Orellana and col-
leagues reported on the microscopic appear-
ance of a free floating vitreous cyst with its 
wall made up of a layer of heavily pigmented 
cuboidal cells, intermingled with non-
pigmented cells, forming papillae. Electron 
microscopy showed the lining cells to contain 
mature and immature melanosomes, polar-
ised basement membrane, and apical micro-
villi.4 These findings support the hypothesis 
that the cysts originate from the pigmented 
ciliary epithelium and that trauma may play a 
role in their development. Awan, however, 
reported a history of trauma in only 2.7% of 
cases.5

The likelihood is that vitreous cysts origi-
nate from different intraocular structures, the 
vascularised, attached cysts from hyaloid 
vascular remnants and pigmented, free float-
ing cysts from the ciliary body epithelium. 
Although the majority are asymptomatic, 
troublesome symptoms can arise when they 
float across the visual axis or come within 
its vicinity. In the case reported, the onset of 
symptoms may have been associated with 
increased mobility of the cyst due to liquef-
action of the surrounding vitreous gel or partial 
posterior vitreous detachment.

The severity of symptoms occasionally war-
rants treatment. Surgical excision through the 
pars plana has been reported,4 but there is 
potential for serious complications from this 
approach. Argon laser photocystotomy offers 
an alternative to surgical treatment,4 but its 
effectiveness depends on the presence of 
extensive pigment in the cyst wall and there is 
a risk of inadvertent retinal photoacoagulation. 
Neodymium:YAG laser has previously been 
used for the treatment of persistent subin-
traretinal limiting membrane and posterior 
hyaloid face haemorrhages, vitreous floaters, 
vitreous adhesions, and for the lysis of vitreous 
bands.6 7 In the case described, Nd:YAG laser 
was effective in disrupting the wall of a poste-
rior vitreous cyst. Although the cyst did not 
disappear completely, disruption of the cyst 
wall caused a reduction in its size. In addition, 
the cyst wall, being denser than the sur-
rounding liquefied vitreous, gravitated out of 
the visual axis with relief of symptoms.

In conclusion, vitreous cysts, though rare, 
can give rise to intractable visual symptoms. 
Surgical treatment is hazardous and argon 
laser photocystotomy may not be effective. 
We report the successful treatment of a posterior 
vitreous cyst by Nd:YAG laser photocystotomy.

The authors thank Ms M Restori for carrying out the 
ultrasound examination.

H TABANDEH
P J ALLEN
F K LEAVIER
Moorfields Eye Hospital, London

Correspondence to: H Tabandehe, Moorfields Eye Hospital, London EC1V 2PD.

Accepted for publication 28 June 1996

1 Orellana J, O’Malley RE, McPherson AR, Font 
RL. Pigmented free floating vitreous cysts in two 
young adults: electron microscopic observations. 
2 Awan KJ. Biomicroscopy and argon laser photocystotomy of free floating vitreous cyst. Ophthal-
4 Ellington AR, Watson DM. Mobile vitreous 
5 Francois J. Pre-papillary cyst developed from 
remnants of the hyaloid artery. Br J Ophthal-
6 Hildorf C. Uber einen Fall einer einseitigen 
Glaskorperecyst. Ophthalmologica 1965;149:12– 
20.
7 Feman SS, Strauss BR. Cyst of the posterior 
8 Awan KJ. Multiple free floating vitreous cysts 
with congenital nystagmus and esotropia. J Paed-
9 Raymond LA. Neodymium:YAG laser treatment 
for haemorrhages under the internal limiting 
membrane and posterior hyaloid face in the 
10 Tsai WF, Chen YC, Su CY. Treatment of 
vitreous floaters with neodymium YAG laser. Br 

Sudden unilateral visual loss and brain 
infarction after autologous fat injection 
into nasolabial groove

Ennour.—Central retinal artery occlusion (CRAO) following cosmetic surgery seems to be 
a very rare and devastating disease inducing sudden visual loss. Even if vigorous 
and massive treatment is advocated initially, the prognosis of visual recovery is very disap-
pointing.

In this paper, we report one case of CRAO 
combined with brain infarction resulting from 
an autologous fat injection for cosmetic prob-
lems.

We confirmed CRAO by fluorescein angiog-
raphy and brain infarction by magnetic reso-
nance imaging (MRI) and four vessel angio-
graphy.

To our knowledge, there have been no 
reports of CRAO combined with brain infar-
cation in autologous fat injection procedures.

This case gives a warning to cosmetic plas-
tic surgeons and ophthalmologists of the 
importance of careful manipulation and im-
mEDIATE awareness and treatment of iatrogeni-
cally induced ocular complications.

CASE REPORT

A 42-year-old woman came to the emergency 
room in an irritated state. Two hours earlier,