CORRESPONDENCE

Fundal white dots: observations from a murine model of congenital ocular toxoplasmosis

EDITOR,—In the BJO Ben Ezra and Forrester have reviewed extensively current knowledge concerning the phenomenon of multiple evanescent white dot syndrome (MEWDS), a specific clinical entity which is characterised by the presence of evanescent or permanent, small, discrete subretinal lesions, which occur in the absence of vitreous inflammation.¹

Multiple pale lesions² ³ (Fig 1) can be observed in the outer retina of a small proportion of mice with experimentally induced congenital ocular toxoplasmosis.⁴ These focal lesions, which closely resemble MEWDS in humans, were clearly seen in the peripheral retina using indirect microscopy, and imparted an orange hue to the underlying choroid. The lesions were observed in the eyes of approximately 16% of congenitally infected mice and occurred either unilaterally or bilaterally. They were only observed from 3 weeks postpartum.

Histopathological examination of these refractive disturbances⁵ ⁶ within the otherwise transparent murine retina revealed that they consisted of focal elevations of the photoreceptor layer (Fig 2). Clusters of inflammatory cells in the form of lymphocytes and macrophages were a consistent feature and were located between the photoreceptor and pigmented epithelial layers of the disorganised retina. Immunocytochemical labelling consistently failed to reveal Toxoplasma antigen within or in apposition to these lesions.⁷

Three dimensional reconstructions (Fig 3) of these lesions using serial sections of resin embedded tissue and standard SAS GRAPH routines, revealed that they were consistently dome-shaped, and did not result from artefactual folds in the tissue consequent upon processing or cutting of the retina.

It is our contention that the focal cellular infiltrates are likely to impair the intrinsic processing mechanisms for removal of photoreceptor elements with the result that focal elevations of the photoreceptors appear in the retina; these are then perceived clinically, under direct illumination, as small discrete elevations. They were evanescent in some eyes in which progression to atrophy of the photoreceptor layer had taken place in association with retinal vasculitis. This led us to hypothesise that there may be an autoimmune component associated with the pathogenesis of the ocular toxoplasmosis in the mouse model.⁸

Ben Ezra and Forrester suggest that extravasated focci of leucocytes will render the white dot lesions pale relative to the surrounding unaffected tissue when the fundus is illuminated with white light. Based on our own observations with the mouse model of ocular toxoplasmosis, we would concur with this notion. We contend further, however, that an additional contributor to the clinically observed white dot syndrome may be architectural modification to the overlying deep retina into dome-shaped configurations. This would result in refractive anomalies as well as reflectance of some of the incident light impinging on the retina. Such optical effects would also impart to the lesions a paler coloration relative to the surrounding non-affected areas.

JOHN HAY
GORDON N DUTTON
Tennent Institute of Ophthalmology, 38 Church Street, Glasgow G11 6NT

Reply

EDITOR,—Hay and Dutton refer to ‘multiple pale lesions’ in the model of congenital ocular toxoplasmosis in mice and believe that they are similar to the ‘white dots’ observed in humans in various conditions we reviewed. We believe that they are confusing atrophic retinal patches and/or diffuse aberations in the mouse model of congenital ocular toxoplasmosis with the evanescent (choroidal – retinal pigment epithelium) white dots we have described in our paper. We, therefore, would not concur with their assumption that the patches they observe are comparable with the white dots observed in humans.

DAVID BEN EZRA
Department of Ophthalmology,
Hudassah Medical Organisation, Jerusalem, Israel

JOHN V FORRESTER
Department of Ophthalmology,
University of Aberdeen

Natural outcomes of stage 1, 2, 3, and 4 idiopathic macular holes

EDITOR,—In order to evaluate the results of surgical intervention in the treatment of macular holes it is essential that we understand the natural history and visual progress of all four stages of macular holes. The paper by Hikichi et al in the BJO¹ was heralded in the accompanying editorial as providing just such an insight into the natural history of idiopathic macular holes. However, I would like to highlight some striking similarities between their data on stage 2 macular holes presented in this study and those reported by the same authors in an article entitled ‘The natural history of stage 2 macular holes’, published in the American Journal of Ophthalmology² (Table 1).

The authors may suggest that publication of such data is justified as this study is the first to document the natural history of all four stages of macular holes in a single article. However, the data on stage 3 and 4 holes do little more than echo the authors’ findings in

Further References:

Table 1:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Natural History</th>
<th>Visual Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>2</td>
<td>Progressive</td>
<td>Progressive</td>
</tr>
<tr>
<td>3</td>
<td>Progressive</td>
<td>Progressive</td>
</tr>
<tr>
<td>4</td>
<td>Progressive</td>
<td>Progressive</td>
</tr>
</tbody>
</table>