LETTERS TO THE EDITOR

Aspirin is a hazard for vitreoretinal surgery

EDITOR.—Aspirin is known to have a significant effect on platelet function. Seven days are required to reverse its effects completely.1 Whereas it is easy to discontinue aspirin in advance of elective surgery, this is not possible for emergency procedures.2 There have been no reports of increased morbidity relating to the use of aspirin in vitreoretinal surgery.3 We observed significant intraoperative haemorrhage in three patients undergoing emergency vitreoretinal surgery while on aspirin. One required subsequent vitrectomy, one cleared without further intervention, and one developed severe proliferative vitreoretinopathy.

CASE REPORTS
Case 1
A 59-year-old man presented with a retinal detachment. He claimed he was on no medication other than urgent conjunctival repair of his retinal detachment he suffered a suprachoroidal haemorrhage. This progressed to a dense vitreous haemorrhage within 24 hours. On subsequent questioning, he stated that he was taking one aspirin a day as recommended by his doctor but he had forgotten to mention this preoperatively. One week postoperatively he developed increased intraocular pressure which failed to respond to maximal medical therapy but returned to normal after a vitrectomy procedure.

Case 2
A 65-year-old man underwent conventional retinal detachment surgery with external drainage of subretinal fluid. He suffered an intraoperative haemorrhage which took 2 months to clear. On direct questioning subsequently, he admitted to taking one aspirin a day as self-medication for his circulation but had failed to mention this preoperatively.

Case 3
A 70-year-old man underwent cataract extraction by phacoemulsification with local anaesthesia. This was complicated by a dropped lens nucleus. Two weeks postoperatively, the intraocular pressure remained elevated on maximal medical therapy with residual lens material in the vitreous cavity and severe intraocular inflammation. He therefore underwent a vitrectomy with removal of the residual lens material complicated by severe intraoperative haemorrhage. Postoperatively on direct questioning, the patient admitted to using one aspirin a day to thin his blood but had not informed anyone of its use before either of his surgical procedures. The haemorrhage persisted for a further 2 weeks but the retina remained attached on ultrasound. At a subsequent visit, the haemorrhage had begun to clear but the retina was detached with severe proliferative vitreoretinopathy (grade C2). It was felt that the visual potential for this eye was poor and further surgical intervention was not pursued.

COMMENT
These cases illustrate the potential for significant haemorrhagic complications in patients undergoing emergency vitreoretinal surgery who are routinely using aspirin. None of our patients considered aspirin a significant drug and did not inform anyone of its use during their preoperative assessment. Since aspirin is becoming a widely used drug, often on a routine basis and without formal medical prescription, specific questioning should be undertaken regarding its use in patients undergoing vitreoretinal surgery.

CHRISTINA J FLAXEL
ROLF K BLACH
Moorfields Eye Hospital, London

Correspondence to: Christina Flaxel, MD, Vitre-Retinal Unit, Moorsfields Eye Hospital, Chili Road, London EC1V 2PD.

Accepted for publication 19 January 1996

The 'pupil snap' sign of posterior capsule rupture with hydrodissection in phacoemulsification

EDITOR.—Hydrodissection till the nucleus rotates freely is one of the most critical manoeuvres during phacoemulsification. Fluid is injected firmly under the anterior capsular rim to separate the nucleus from the capsular bag. Three cases of complications arising from hydrodissection are presented. All were recorded on videotape and analysed critically.

CASE REPORTS
Three patients, aged 55–65 with 2–3+ nuclear sclerosis underwent hydrodissection in the presence of intact, 5–6 mm capsularhorses before phacoemulsification. In two patients, hydrodissection was done through the main incision and in one, through the side port. In each case, sudden marked pupillary constriction of about 30% was noted during hydrodissection, the 'pupil snap' sign. In all three, as phacoemulsification proceeded, the nucleus started tilting backwards and posterior capsular rupures were suspected. Phacoemulsification was then abandoned, the wound enlarged, and the nucleus delivered with an irrigating vetch in each case. Large posterior capsular ruptures which spared the anterior capsular rim were confirmed. Limited anterior vitrectomies were performed and posterior chamber implants successfully implanted into the ciliary sulci.

COMMENT
In these three patients, sudden marked pupillary constriction was noted during hydrodissection. I have called this the 'pupil snap' sign to describe the abruptness of the moment when the posterior capsule ruptures and the pupil constricts with a sudden jerk. The patients were all found to have large posterior capsular ruptures with intact anterior capsular rims implying that the ruptures occurred in the posterior capsule and were not zonular dehiscences.

The ruptures possibly occurred as a result of overvigorous hydrodissection. The cannulas used were 27 gauge, syringes were 5 ml, and firm pressure was used during hydrodissection. In the first patient, it was felt that using hydrodissection through three ports contributed significantly to the rupture as the anterior chamber was largely watertight. I no longer hydrodissect through the side port. In the next two cases, however, the ruptures occurred with hydrodissection through the main ports.

The sudden pupillary constriction probably represents the moment of posterior capsular rupture at which time the fluid injection overrides the posterior capsule with posterior displacement of the lens diaphragm. This manner of sudden rupture may be related to the strong equatorial cortical adhesions in the lens which cause a build up of fluid and pressure until such time as the adhesions break or the capsule ruptures. According to Howard Fine's description of cortical cleavage dissection in which the anterior capsule is slightly tented up before injection followed by depression of the nucleus to break these adhesions may prevent this complication.1

The complications of hydrodissection are not well documented. In a large cataract surgery report, Powe et al reported that the incidence of posterior capsular rupture associated with phacoemulsification ranged from 0-46% to 3-9%.2 Posterior capsular rupture usually occurred during phacoemulsification and irrigation/aspiration. In the Atlas of complications in ophthalmic surgery,3 the risk of posterior capsular rupture during vigorous hydrodissection is acknowledged but it says that the rupture is usually recognised during nuclear removal. In Mastering phacoemulsification,4 various techniques of hydrodissection are highlighted. However, no mention is made of potential complications. In the book Phacoynamics,4 again complications of hydrodissection are not mentioned.

Hydrodissection is crucial to successful phacoemulsification. It should, however, be done carefully to minimise the possibility of posterior capsular rupture. I have described an early sign of posterior capsular rupture during hydrodissection, the 'pupil snap' sign. Recognition of this sign and its significance may alter the management of a case and avoid the potentially disastrous complication of a dropped nucleus.

RONALD YEOH
Eye Clinic Singapore, 02-38 Gleneagles Avenue Block, Gleneagles Hospital, 6A Napier Road, Singapore 1025

Accepted for publication 18 January 1996