Bilateral corneal contusion and angle recession caused by an airbag

EDITOR,—Airbags have been installed as standard equipment on most new cars in order to enhance automobile safety. Several reports of airbag associated injuries have recently appeared.1-7 We describe herein a case of severe ocular trauma caused by an airbag to a front seat passenger.

CASE REPORT
A 24-year-old woman was the belted front seat passenger involved in a car accident in a 1994 model car. The driver was killed in the accident. Our patient suffered mild contusion of the chest, Collar’s fracture of the right arm, and multiple abrasions and blunt contusion marks on the face. An ophthalmic examination revealed visual acuity limited to hand movement in the right eye, and to only light perception in the left eye. The eyelids were swollen, with marked chemosis and subconjunctival haemorrhages. Opacities cornea and hyphaema were noted in each eye. No details of the fundus could be detected in either eye. A diagnosis of airbag injury was made and her eyes were irritated with water.

On examination 2 days later, visual acuity was 20/50 in the right eye and remained unchanged in the left eye. The cornea was thick with Descemet’s folds and haemorrhages were present over the irides. Sphincterotomy in the left eye gave the left pupil an oval shape. The fundus was indiscernible, and the ultrasound examination demonstrated attached retina and clear vitreous.

Two weeks after the accident, visual acuity improved to 20/50 in both eyes. Intraocular pressure was 12 mm Hg in both eyes. Gonioscopy showed an angle recession of one nasal quadrant in the right eye, and an angle recession of the whole circumference in the left eye. The rest of the anterior segment examination was unremarkable in both eyes. The right fundus was normal; however, retinal haemorrhages and oedema were present in the left eye.

One month later, the uncorrected visual acuity was 20/20 and intraocular pressure was 16 mm Hg, again in both eyes. The slit-lamp and fundus examinations were within normal limits in both eyes.

COMMENT
Airbags are designed primarily to protect the driver and passengers from crashing against the steering wheel, dashboard, or windshield during frontal collisions. They inflate in about 10 ms in response to sudden longitudinal deceleration of approximately 20 kph and deflate within seconds. Gaseous and particulate components (sodium hydroxide, carbon monoxide) are emitted in the vehicle interior at airbag deployment.1

Although airbags are designed to be a safety device, they have recently been reported to be associated with facial and ocular injuries.1-7 Skin abrasions and eyelid ecchymoses, the most common facial injuries, are usually short lived. Ocular injuries include orbital fractures, abrasions, hyphaema, angle recession, lens subluxation, commotio retinae, choroidal rupture, retinal and vitreous haemorrhage, and retinal tears and detachment.2,4 The airbag striking the face at high velocity and with great force is probably responsible for such injuries.

Keratitis and corneal oedema have also been reported, and were attributed to the fine alkali aerosol released from the bag.1

Our patient’s injuries were most probably inflicted by the airbag hitting the face, and the corneal oedema resulting in that water was almost certainly caused by the aerosol released from the airbag.

Airbag injuries to a front seat passenger are rare because airbags were initially installed on the driver’s seat, causing only the driver to suffer these kinds of injuries.

The medical community should be alert to the potential ocular injuries induced whenever an airbag is activated: immediate irrigation of the eyes with water is recommended followed by a prompt referral to an ophthalmologist.

ADI MICHAELI-COHEN
Department of Ophthalmology, Sourasky Medical Center, Tel-Aviv, Israel

HANOC HASSHTAN
Department of Surgery A, Sourasky Medical Center, Tel-Aviv, Israel

Correspondence to: Dr Adi Michaeli-Cohen, Department of Ophthalmology, Sourasky Medical Center, 8 Weizman Street, Tel-Aviv 64239, Israel.

Accepted for publication 11 December 1995


Airbag injury during low impact collision

EDITOR,—The fact that motor vehicle trauma continues to be a leading cause of morbidity and mortality in America, and the overwhelming evidence that airbags reduce fatality in frontal crashes has led to airbags being standard equipment on many new and domestic cars.1 However, reports of airbag associated ocular injuries are increasing with the more widespread use of these devices.2-9 Because of the nature of the motor vehicle accident in the previously reported cases of airbag associated injuries the amount of trauma the patients may have sustained without the airbag may have been significant.

We report a case of a driver who had significant ocular and upper extremity trauma, due to airbag deployment while parking her car. The passenger, who was not subjected to an airbag, was uninjured. Because of the nature of the accident, and the uninjured passenger, we speculate that our patient may have sustained minimal injury if her airbag had not deployed.

CASE REPORT
A 49-year-old woman, wearing sunglasses, with a three point lap-shoulder seatbelt was parking a 1992 Toyota Camry when she hit a pole head on. She was travelling forward, at about 16 km/h (10 mph) in a parking lot. The passenger in the car, who was reading, thought the driver stopped abruptly, and was not hurt. The driver looked up at the pole and the driver’s airbag had deployed. There was no passenger-side airbag, and the passenger was not injured.

The driver of the car was treated for head and brow lacerations. On ophthalmic examination, her visual acuity was 20/25 right eye and 20/400 left eye. The left cornea had a large, interpapillary epithelial defect, with prominent Descemet’s folds centrally. The ultrasound biomicroscopy was 7.0 in both the left eye and sweeping of the conjunctival fornices yielded several pieces of glass from the patient’s shattered sunglasses, which were found broken on the car floor. Each eye was irrigated with balanced salt solution, followed by normal saline. Fundus examination showed a vitreous haemorrhage, without view of the retina. Contact ultrasonography revealed that the retina was attached. She also had bilateral and ulnar fractures, and required orthopaedic surgery. Three days after the accident, the patient’s vision improved to 20/10, with resolution of the vitreous haemorrhage. Fundus examination showed an attached retina without retinal tears.

COMMENT
The airbag in the car that this patient was driving is designed to deploy in response to a collision force greater than that created by a crash into a fixed, non-deforming barrier at approximately 19–25 kph (12–16 mph). However, a sharp impact like a rock striking the undercarriage of the vehicle may trigger airbag deployment. Whether the airbag malfunctioned and activated without sufficient forward deceleration force, or something under the vehicle triggered the airbag, is not known. It may also be that the airbag sensor was accurate and fully operational, since our patient was travelling at about 16 km/h.

There is abundant evidence that airbags reduce fatalities when deployed for high speed frontal crashes.1 The airbag is expected in response to sudden longitudinal decelerations which, in turn, activate the ignition of a sodium azide propellant cartridge. The liberation of nitrogen gas from the combustion of sodium azide results in instant inflation of the airbag.2 During inflation, the airbag is propelled out of its storage compartment at speeds typically more than 160 km/h (100 mph).4 Airbag associated ocular injuries occur from the blunt trauma or the liberation of gas when the airbags inflates. Ocular injuries from airbag associated injuries include hyphaema, alkali keratitis, and vitreous and retinal haemorrhage.2-4 It has been suggested that eyeglass wear presents an additional risk factor for ocular injury during airbag inflation.9 Polycarbonate lenses have an increased resistance to impact shatter over glass or other types of plastic. However, shattering of the frames appears to be a greater problem.

Further study in this area is warranted.

No one knows for sure what injuries the driver avoided by the airbag inflation. But, considering the impact of the collision and the direction of this patient’s body, it seems reasonable to assume the injuries the driver sustained because of the airbag are more significant than she would have sustained without it.

Our case is interesting because of the extensive injuries, from a low impact