Bilateral corneal contusion and angle recession caused by an airbag

EDITOR,—Airbags have been installed as standard equipment on most new cars in order to enhance automotive safety. Several reports of airbag associated injuries have recently appeared. 1-7

We describe herein a case of severe ocular trauma caused by an airbag to a front seat passenger.

CASE REPORT

A 24-year-old woman was the belted front seat passenger involved in a car accident in a 1994 model car. The driver was killed in the accident. Our patient suffered mild contusion of the chest, Collar’s fracture of the right arm, and multiple abrasions and blunt contusion marks on the face. An ophthalmic examination revealed visual acuity limited to hand movement in the right eye, and to only light perception in the left eye. The eyelids were swollen, with marked chemosis and subconjunctival haemorrhages. Opaque corneas and hyphaema were noted in each eye. No details of the fundus could be detected in either eye. A diagnosis of airbag injury was made and her eyes were irrigated with water. On examination 2 days later, visual acuity was 20/50 in the right eye and remained unchanged in the left eye. The cornea was thick with Descemet’s folds and haemorrhages were present over the irides. Sphincterotomy in the left eye gave the left pupil an oval shape. The fundus was indiscernible, and the ultrasound examination demonstrated attached retina and clear vitreous.

Two weeks after the accident, visual acuity improved to 20/50 in both eyes. Intraocular pressure was 12 mm Hg in both eyes. Gonioscopy showed an angle recession of one nasal quadrant in the right eye, and an angle recession of the whole circumference in the left eye. The rest of the anterior segment examination was unremarkable in both eyes. The right fundus was normal; however, retinal haemorrhages and oedema were present in the left eye.

One month later, the uncorrected visual acuity was 20/20 and intraocular pressure was 16 mm Hg, again in both eyes. The slit-lamp and fundus examinations were within normal limits in both eyes.

COMMENT

Airbags are designed primarily to protect the driver and passengers from smashing against the steering wheel, dashboard, or windshield during frontal collisions. They inflate in about 10 ms in response to sudden longitudinal deceleration of approximately 20 kph and deflate within seconds. Gaseous and particulate components (sodium hydroxide, carbon monoxide) are emitted in the vehicle interior at airbag deployment. 1

Although airbags are designed to be a safety feature, they have recently been reported to be associated with facial and ocular injuries. 1-7 Skin abrasions and eyelid ecchymoses, the most common facial injuries, are usually short lived. Ocular injuries include orbital fracture, abrasions, hyphaema, angle recession, lens subluxation, commotio retinae, choroidal rupture, retinal and vitreous haemorrhage, and retinal tears and detachment. 1,2 The airbag striking the face at high velocity and with great force is probably responsible for such injuries. Keratitis and corneal oedema have also been reported, and were attributed to the fine alkali aerosol released from the bag. 1

Our patient’s injuries were most probably inflicted by the airbag hitting the face, and the cornea’s surface requiring irrigation with water was almost certainly caused by the aerosol released from the airbag.

Airbag injuries to a front seat passenger are rare 2 because airbags were initially installed on the driver’s side, causing only the driver to suffer these kinds of injuries.

The medical community should be alert to the potential ocular injuries induced whenever an airbag is activated: immediate irrigation of the eyes with water is recommended followed by a prompt referral to an ophthalmologist.

ADI MICHAELI-COHEN
DEPARTMENT OF OPHTHALMOLOGY
SOURASKY MEDICAL CENTER
TEL-AVIV, ISRAEL

ED HADDAD
HANOC KASHHTAN
DEPARTMENT OF SURGERY A
SOURASKY MEDICAL CENTER
TEL-AVIV, ISRAEL

Correspondence to: Dr Adi Michaeli-Cohen, Department of Ophthalmology, Sourasky Medical Center, 6 Weizman Street, Tel-Aviv 64239, Israel.

Accepted for publication 11 December 1995


Airbag injury during low impact collision

EDITOR,—The fact that motor vehicle trauma continues to be a leading cause of morbidity and mortality in America, and the overwhelming evidence that airbags reduce fatalities in frontal crashes has led to airbags being standard equipment on many new and domestic cars. 1 However, reports of airbag associated ocular injuries are increasing with the more widespread use of these devices. 2-7 Because of the nature of the motor vehicle accident in the previously reported cases of airbag associated injuries the amount of trauma the patients may have sustained, without the airbag, may have been significant.

We report a case of a driver who had significant ocular and upper extremity trauma, due to airbag deployment while parking her car. The passenger, who was not subjected to an airbag, was uninjured. Because of the nature of the accident, and the uninjured passenger, we speculate that our patient, who has sustained minimal injury if her airbag had not deployed.

COMMENT

A 49-year-old woman, wearing sunglasses, with a three point lap-seatbelt was parking a 1992 Toyota Camry when she hit a pole head on. She was travelling forward, at about 16 km/h (10 mph) in a parking lot. The passenger in the car, who was reading, thought the driver stopped abruptly, and was not injured. The angle of impact was 7° to the right pole and the driver’s airbag had deployed. There was no passenger-side airbag, and the passenger was not injured.

The driver of the car was treated for head and brow lacerations. On ophthalmic examination, her visual acuity was 20/25 right eye and 20/400 left eye. The left cornea had a large, interpalpebral epithelial defect, with prominent Descemet’s folds centrally. The right cornea was 7.0 in both diameter. The movement of the left eyelid and sweeping of the conjunctival fornices yielded several pieces of glass from the patient’s shattered sunglasses, which were found broken on the car floor. Each eye was irrigated with balanced salt solution, followed by normal saline. Fundus examination showed a vitreous haemorrhage, without view of the retina. Contact ultrasonography revealed that the retina was attached. She also had peripheral and ulcer fractional cystoid macular edema and orthopaedic surgery. Three days after the accident, the patient’s vision improved to 20/70, with resolution of the vitreous haemorrhage. Fundus examination showed an attached retina without retinal tears.

There is abundant evidence that airbags reduce fatalities when deployed for high speed frontal crashes. 8 The airbag is designed to deploy in response to a collision force greater than that created by a crash into a fixed, non-deforming barrier at approximately 19-25 km/h (12-16 mph). However, a sharp impact like a rock striking the passenger compartment of the vehicle may trigger airbag deployment. Whether the airbag malfunctioned and activated without sufficient forward deceleration force, or something under the vehicle triggered the airbag, is not known. It may also be that the airbag sensor was accurate and fully operational, since our patient was travelling at about 16 km/h.

There is abundant evidence that airbags reduce fatalities when deployed for high speed frontal crashes. 8 Although this patient was wearing sunglasses, the airbag deployment is certainly reasonable to assume the injuries the driver sustained because of the airbag are more significant than she would have sustained without it.

Our case is interesting because of the extensive injuries, from a low impact...