CORRESPONDENCE

Circannually herpetic eye attacks: questionable significant rhythmicities

EDITOR,—Gamso et al.1 have reported significant circannual rhythms of epithelial herpetic keratitis in males, especially in the age groups 6–10 years and 45 years and older. No such rhythms were found in females. If the authors of the paper had made additional subdivisions, again according to age, sex, and contact lenses implanted, probably W would have four further interesting circannual rhythms—for instance, in patients with blue eyes, but not brown or green eyes, and only in females 15–29 years of age.

Although the problem of multiple choices and multiple studies on a subject is not mentioned in the statistical guidelines published in the BMJ and recommended in the instructions for authors in the BJO, it is of utmost importance. Instructive in this connection is the witty story told in a recent issue of the Scientific American,2 which emphasizes the risk that some of the one in 20 chances may lead to believing in a mirage.

PHILIP COHEN PO Box 3
Koriat Tzion 36501, Israel

Reply

EDITOR,—I assume that Dr Cohen's comments stem in part from viewing our results as numerical entities rather than biological events. Consequently, he refers to the distribution patterns as (possible) random and suggests the use of oversophisticated analytical methods which, in our view, are obsolete for analysing the straightforward observations of the present study.

ISRAEL E ASHKENAZI Tel Aviv University, Sackler School of Medicine, Department of Human Genetics, Ramat Aviv, Tel Aviv 99978; PO Box 39040, Israel

Modulation of amblyopia therapy

EDITOR,—It is with great interest that I read the paper by Lloyd et al in the September issue of the BJO.

There is no doubt that surgery of the monocular cataract and removal in the September issue of the BJO. To my surprise, I have observed, is more effective in achieving a significant improvement in visual acuity. However, the experience in most centres of paediatric ophthalmology around the world has led to the realization that full compliance with contact lens wear and occlusion therapy against amblyopia have been very difficult to achieve in most of these cases. Furthermore, unavoidable contact lens loss and intermittent clinical signs induced by the occlusion therapy have precluded a constant and undisturbed aphakic correction.2 Therefore, the final visual

outcome in children with monocular congenital cataract has been unanimously very poor despite the fact that during the preverbal period these children had a good optokinetic (OKN) response with the amblyopic eye fixating and behaving 'normally' with the sound eye patched. Because of these results, I advocated the use of intraocular lenses in these cases and published the initial observations in a selected group of children in 1983.3

Outstanding in their achievement of excellent visual results were the small numbers of various aphakic eyes following congenital cataract reported by Bell et al4 and the ones studied in the present papers by Lloyd et al.1 In both of these reports, the visual acuity of the aphakic eyes has been mostly based on extrapolation of the visual evoked potential amplitude or by the preferential looking pattern of these children is translating now into a 20/20 visual acuity or it is hardly a 20/80 or less visual acuity. This information is, in my opinion, crucial and of utmost importance to all paediatric ophthalmologists facing the dilemma of choosing the best aphakic correction for their little patients suffering from unilateral congenital cataracts.

DAVID BENEZRA Jerusalem, Israel

Reply

EDITOR,—We thank Dr BenEzra for his interest in our paper. We agree that cataract removal is only a small part of the complex and prolonged management of unilateral congenital cataract. Accurate aphakic correction (usually via contact lens fitting) and regular photopic follow up are also necessary, combined with rigorous amblyopia therapy. Good long term results with contact lens wear have been shown to be achievable in a high proportion of aphakic infants1 and we thus disagree with the statement that final visual outcome in monocular congenital cataract managed with contact lenses is invariably poor. Since the early paper by Bell et al,2 other major centres have reported good recognition acuity results using similar methods to our own3 and indeed achieved some degree of binocularity in a few children.5

The two children in our study who were more than 3 years old at the end of the study had single visual acuities of 6/9 part phakic and 6/12 part aphakic (case 2). These children, together with the others reported in our paper, are part of an ongoing study and will be the subject of a follow up paper. Their recognition acuities so far appear comparable with other similar studies.6

The use of intraocular lenses in infancy is probably the way forward but has until recently been fraught with surgical and refractory difficulties. Ongoing primate work may, in the long run, provide us with a better idea of optimal implantation protocols in infancy7 and perhaps allow us to move away from the long term use of contact lenses.

I C LLOYD Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WH

J G DOWLER Moorfields Eye Hospital, City Road, London EC1

R KISS L SPEEDWELL D A THOMPSON R J RUSSELL-EGGITT

D TAYLOR Great Ormond Street Hospital for Sick Children, London WCIN 3JH

NOTICES

Royal Society of Medicine, Section of Ophthalmology

The following meeting (beginning at 5 pm) is open to RSM members and their guests only.

NEW HORIZONS IN THERAPEUTICS, 9 May 1996

The identification of human tumour antigens: a strategy for developing tumour vaccines; New developments in the management of CMV retinitis; The development of ophthalmic drugs; The challenge of gene therapy in the context of eye diseases.

Further details: Alyson Taylor, Sections Officer, Royal Society of Medicine, 1 Wimpole Street, London W1M 8AE. (Tel: 0171 290 2985; fax: 0171 290 2989.)