CORRESPONDENCE

The south Asian cataract management study

EDITOR,—In reading the preliminary report evaluating the clinical outcome of intracapsular cataract extraction (ICCE) with aphakic correction either via anterior chamber intraocular lens (AC IOL) implants or aphakic spectacles in a developing country setting I was given cause for alarm with regard to the assessment of the differences in visual outcome.

While the study is ongoing, I think it is important to recognise that a varying percentage (16–25%) of standard ICCE patients in a developing country setting will lose their spectacles and have problems adapting to the magnified image, forcing some patients not to wear them at all.2,4 By the same token, the quality of vision and life enjoyed by those patients with AC IOL implants is likely to be superior to those patients relying on aphakic spectacles, or none at all. However, the report’s stress on the stringent use of visual acuity measures alone and its conclusion that ‘there was no significant difference in visual outcome between study groups’, fails to address adequately the variation attributable to spectacle- and non-spectacle using aphakic patients in determining the overall differences in visual outcomes between the two study groups.1 In regard, recent instruments developed to measure both the preoperative and postoperative visual function and quality of life aspects of cataract patients within the context of a developing country setting offer an avenue for further exploration of the relationship between visual acuity and overall patient satisfaction with the visual outcome of cataract surgery.7

ANDREW F SMITH
Preventive Ophthalmology and Epidemiology Unit,
Department of Ophthalmology,
Dalhousie University, Halifax,
Nova Scotia, Canada B3J 2Y6


Peters’ anomaly

EDITOR,—I read with interest the recent letter by Saitoh et al describing an infant with both Peters’ anomaly and Peters’ anomaly.1 Unfortunately the description which follows the case description is marred by a failure to mention some significant discoveries which have been made in this field over the past few years. I would like to bring to their attention the finding of a deletion of the PAX6 gene in a child with aniridia and Peters’ anomaly, and an intragenic mutation of the same gene in a family with heterogenous anterior segment malformations including Peters’ anomaly.2 Deletions and mutations of the PAX6 gene were sought in these patients for the following reasons. The PAX6 gene was known to be deleted or mutated in aniridia, and cases of aniridia with Peters’ anomaly had been described.1,4 Furthermore, deletions and mutations of Pax-6, the mouse homologue of PAX6, had been found in the Small eye mouse which phenotypically resembles aniridia and Peters’ anomaly.4

The PAX6 gene plays a crucial role in development as illustrated by the discovery of malformations in Drosophila, zebratilh, Drosophila, Caenorhabditis elegans, and sea urchin. Recent experiments using targeted expression in Drosophila led to the production of supernumerary ectopic eyes giving support to the idea that Pax6 is the ‘master control’ gene for eye formation.5

The expression pattern of PAX6 has been investigated in both human and mouse.11,12 These studies found expression in ocular precursor derivatives from neuroectoderm and head surface ectoderm which give rise to the corneal epithelium, the lens, the posterior layers of the iris, the ciliary body, the retina, and the optic nerve. The primary defect in aniridia and Peters’ anomaly caused by PAX6 mutations must therefore lie within these tissues and fits well with the spectrum of clinical abnormalities seen in those disorders—that is, corneal opacification at the subepithelial level, incomplete separation of the lens, persistent lens stalk, central corneal leucoma, iridocorneal adhesions, iridocorneal adhesions, iris hypoplasia, cataract, macula dysplasia, and corneal endothelial abnormalities occurring within the neural crest cell mesenchyme. This principle should still hold true for cases of Peters’ anomaly not due to abnormality of the PAX6 gene. Some of these may result from a primary disorder of neural crest cells but this has yet to be proved.

TIM JORDAN
Southall Eye Unit,
Southampton General Hospital,
Trensmo Road, Southampton SO16 6YD


Reply

EDITOR,—We also have an interest in the recent discoveries of the association between anterior segment anomalies and PAX6 locus. At present, we are analysing the PAX6 locus of an aniridia syndrome patient and applying the polymerase chain reaction, single strand conformation polymorphism, and sequencing analysis methods.14 Jordan’s alternative explanation is interesting.