Detection of eicosanoids in epiretinal membranes of patients suffering from proliferative vitreoretinal
diseases

Albert J Augustin, F H Grus, F Koch, M Spitznas

Abstract

Aim—Arachidonic acid is metabolised via lipoxygenase to 15-HETE (15-hydroxyeicosatetraenoic acid) and 15-HPETE (15-hydroperoxyeicosatetraenoic acid), which are believed to influence proliferation in tissue culture. 15-HETE is the reduction product of 15-HPETE. Cell proliferation is believed to be decreased by 15-HPETE and increased by 15-HETE. The aim of this study was to investigate epiretinal membranes for the presence of these lipoxygenase products and to compare membranes from different disease processes.

Methods—Epiretinal membranes of 15 patients suffering from proliferative vitreoretinopathy (PVR; n=7) and proliferative diabetic retinopathy (PDR; n=8) were removed during vitrectomy and analysed by means of thin layer chromatography. The plates were evaluated by digital image analysis.

Results—Both 15-HETE and 15-HPETE were identified in membranes from eyes of patients with PVR and PDR with HETE values significantly higher (p<0.05) than HPETE values (HETE/HPETE ratio = 5.2).

Conclusion—This study demonstrates that eicosanoids are present in the epiretinal membrane tissue of patients with PVR and PDR. Considering that HETE increases cell proliferation while HPETE inhibits it, it is conceivable that eicosanoids are an additional factor contributing to the regulation of membrane growth in proliferative retinal disorders. Thus, inhibition of lipoxygenase could be a therapeutic approach in these diseases.

Department of Ophthalmology, University of Bonn, Germany
A J Augustin
F H Grus
F Koch
M Spitznas

Correspondence to: Albert J Augustin, MD, Department of Ophthalmology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.

Accepted for publication 14 October 1996
and typical densitograph of a PVR membrane with 15-HETE and 15-HPETE bands. Statistical analysis was performed using Student’s *t* test.

Results

Both 15-HETE and 15-HPETE were identified in epiretinal membranes from patients with PVR and PDR by means of thin layer chromatography. The HETE values were significantly higher (p<0.05) than the HPETE values (HETE/HPETE ratio = 5.2; Fig 2). This indicates that HPETE is metabolised to HETE in membrane tissue. There was no significant difference between PDR and PVR values.

Discussion

The pathogenesis of both proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR) is still poorly understood. Retinal ischaemia/hypoxia is still considered the most important factor for the development of PDR, whereas the retinal pigment epithelium and breakdown of the blood–retinal barrier are believed to be major factors leading to the development of PVR. In addition, several molecules and other cell types as well as oxidative reactions with subsequent inflammation could be identified as being involved in the disease processes of PDR and PVR.

Several cytokines and growth factors are believed to contribute to the pathogenesis of PDR. Prostaglandins causing macrophage activation and inflammatory reactions as well as other cells of the immune system have been identified in PDR. Esser and coworkers demonstrated that macrophages from several subpopulations including inflammatory phase macrophages are present in membranes from PDR.

In membranes removed from PVR eyes various cell types such as RPE cells and macrophages could be identified. It could also be demonstrated that growth factors, prostaglandin E, complement, and cytokines originating from macrophages are able to induce inflammatory responses and are mitogenic. Several inflammatory pathways such as the arachidonic acid pathway are activated. In the present study we found 15-HETE values being significantly higher than 15-HPETE values in the epiretinal membrane tissue of patients with PVR and PDR.

Considering that HETE increases cell proliferation while HPETE inhibits it, it is conceivable that lipoxygenase products are an additional factor contributing to the regulation of membrane growth in proliferative retinal disorders. The (anti-)proliferative effects have already been proved in other models and are believed to be due to the generation of free radicals by the hydroperoxide (HPETE) and mitogenic response by hydroxide (HETE).

The lipoxygenase inhibitor NDGA was shown to reduce cell growth in several different cell lines. Similarly, indomethacin, an inhibitor of the cyclo-oxygenase pathway, has a slight antiproliferative effect in proliferative retinal disorders. This seems to be contradictory because the production of prostaglandin

Figure 1 Photograph and densitograph of a PVR membrane with 15-HETE (HE) and 15-HPETE (HP).

Figure 2 15-HETE and 15-HPETE values in epiretinal membranes from patients with proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). The HETE values were significantly higher (p <0.05) than HPETE values (HETE/HPETE ratio = 5.2).
D₂ (PGD₂), an antiproliferative metabolite of the cyclo-oxygenase pathway, is inhibited by indomethacin. However, cyclo-oxygenase inhibition also leads to higher HPETE values. This is believed to be the result of an increased shunt through the lipoxygenase pathway, thus resulting in reduction of cell proliferation by HPETE. Since, on the other hand, peroxides, such as glutathione peroxidase and reduction equivalents (electrons), are present, HPETE is converted to HETE, resulting again in tissue proliferation. This fact helps to explain why indomethacin only exerts a slight effect on membrane growth. Thus, the inhibition of lipoxygenase, which prevents the production of HETEs, could be a promising new therapeutic approach in proliferative retinal disorders. Consecutive stimulation of cyclo-oxygenase could then lead to additional antiproliferative effects through the production of PGD₂.

A part of this study was presented at the ARVO meeting, May 1995, Fort Lauderdale, Florida, USA.

This work was supported by 'Aktion Kampf der Erblindung' (AKDE).