LETTERS TO THE EDITOR

Ocular signs associated with a rhodopsin mutation (Cys-167→Arg) in a family with autosomal dominant retinitis pigmentosa

EDITOR,—Retinitis pigmentosa (RP) comprises a group of inherited progressive retinal degenerative conditions characterised by typical fundus alterations, loss in visual field, and severely reduced or unrecordable electroretinograms (ERG). The first reported disease-related mutations in the human rhodopsin gene, described in 1990 by Dryja et al., was a heterozygous G→A transversion in the second nucleotide of codon 23. Since then many further mutations have been identified to a current total of about 90.

Here we describe, for the first time in the literature, the clinical phenotype associated with a Cys-167→Arg mutation (TGC→CGC in exon 2) in an Italian family affected by autosomal dominant retinitis pigmentosa (ADRP). The same mutation was noted by Dryja et al., but there has been no report of correlated clinical data.

CASE REPORT

Four patients (see Fig 1) of a family from the Campania region of southern Italy, have been studied.

Patient II-1
This patient, a 45 year old woman, had central visual acuity 20/50 in both eyes with −3 −3 in right eye and −4 −2.50 in left. Nascent posterior subcapsular cataract and vitreous corporules were present. Fundus examination revealed waxy optic disc pallor, attenuated retinal vessels, atrophic RPE, and bone spicules in the middle periphery on 360° (Fig 2). Goldmann kinetic visual field examination showed a marked reduction in retinal sensitivity in both eyes, especially in the nasal sectors. ERG showed a microvoltage photopic graph with an implicit time of the b wave equal to 52.20 ms, with a differential width of 10.75 μV. The scotopic graph was extinguished.

Patient III-2
This patient, an 8 year old male, showed a corrected visus 20/25 in both eyes with +1.50 × 100° in the right and left eye. The fundus, Goldmann visual field and the Goldmann-Weekers adaptometry examination were similar to the patient III-1. ERG gave a microvoltage photopic graph with implicit time of the wave equal to 32 ms and implicit time of the b wave equal to 52.20 ms, with a differential width of 10.75 μV. The scotopic graph was extinguished.

Patient III-3
This patient was first examined at 16 months. Fundus examination showed atrophic RPE changes and bone spicules in mild periphery. At age 7, he was re-examined and found to have a corrected visus of 20/25 in both eyes with +1. Goldmann visual field examination showed a marked reduction in retinal sensitivity in both eyes, especially in the nasal sectors. ERG showed a microvoltage photopic graph with an implicit time of 52.40 ms and an implicit b wave time of 53.70 ms, with a differential width of 14.7 μV. The scotopic graph was extinguished.

COMMENT
This study has correlated a mutation Cys-167→Arg of the rhodopsin gene with phenotypic type I in an Italian family. The mutation segregated with the clinical disease, and all affected patients showed a similar phenotype. The disease has a very early onset: in the youngest subject the diagnosis was made at 16 months of age. The first symptoms in all subjects were night blindness and visual field shrinkage (restricted side vision). Examination of the fundus of the eye identified a typical RP form, with vessel narrowing and osteoblast-like pigmentation in the middle retinal peripheral area in four sectors.

Atrophic changes of the RPE in the macular region and in the middle periphery were identified only in the patient II-1. Electroretinography showed an early alteration of a scotopic action, whereas cone function was not completely compromised until almost age 18.

Clinical examination repeated yearly for up to 7 years in three subjects indicated that the disease progresses very slowly.

Furthermore, the exact mechanism involved in affecting the visual cycle is difficult to imagine. Cysteine at position 167 of the rhodopsin gene is highly conserved during the evolution of mammals, but there has been no report of eye disease of visual cells is unknown. Also, only rods express the rhodopsin gene, and the cones use different photopigments, so that it remains mysterious that both cones and rods are affected in RP. In many cases of retinal degeneration cells undergo apoptotic death; but it is not known whether apoptosis is involved in all the forms of induced or degenerative photoreceptor death. Such mechanisms are just coming under scrutiny.

The authors would like to thank the family for its contribution to these studies. The authors were also grateful to Professor G Imbucci, of ORAO association; A Terracciano for technical assistance, and to Servizio di Tecnologie Biomolecolari, Area di Ricerca CNR Naples, where the sequences were performed. This work was supported by Telethon-Italy, grant no E546 to AC and CNR grant no CTB.94.2863 to ER; MGM is a Telethon-Italy fellow.

FRANCESCA SIMONELLI MARIO RINALDI ANNA NESTI FRANCESCO TESTA ERNESTO RINALDI Eye Clinic, Second University of Naples ALFREDO CICCODICOLA LUISA FLAGIELLO MARIA GIUSEPPINA MIANO VALERIO VENTRUTTO MICHELE D’URSO International Institute of Genetics and Biophysics, CNR, Naples, Italy

Correspondence to: Professor Ernesto Rinaldi, Eye Clinic, Second University of Naples, Via Fasanini, 5-80131 Naples, Italy.

Accepted for publication 21 January 1998

Haemangiosarcoma of the breast, metastatic to the ciliary body and iris

EDITOR,—Angiomatous tumours of the ciliary body and iris are very rare. Even metastatic foci of angiosarcomas are not seen often in this location. This is why we are publishing our case of disseminated haemangiosarcoma.
with metastatic involvement of the ciliary body and the iris. The eye maintained useful function until the patient’s death 1 year after the appearance of the focus in the eye.

CASE REPORT

Clinical observation
A 53 years old woman was admitted to our eye clinic for deterioration of vision in her left eye and headaches. A tumorous focus involving the ciliary body and the radical part of the iris was revealed both clinically by ultrasound and with magnetic resonance imaging (MRI). The tumour had grown laterally at the 3 o'clock position (see Fig 1A and appeared to have a solid structure. The diameter of its base was about 6 mm. The vision was 6/12 when the patient was first examined but quickly deteriorated to light perception only, because of the blood in the anterior chamber. After removal of the blood from the anterior chamber, the vision improved again to 6/12. The intraocular pressure was normal (18–20 mm Hg) at all times.

Haemangiosarcoma of the right breast treated by ablation and actinotherapy was noticed in the patient’s medical history. The original tumour had grown within the breast stroma. Its diameter was about 3–4 cm. The histological pattern varied from relatively well formed vascular channels surrounded by multilayering endothelium to poorly differentiated solid areas formed by poorly differentiated cells with frequent mitoses. Epithelioid differentiation was not noticed. Some areas were haemorrhagic. There were no risk factors for angiosarcoma such as previous radiotherapy in the patient's history. The patient was HIV negative. Because of tumorous dissemination in the skin and brain, ocular surgery was abandoned. Removal of blood from the anterior chamber was necessary once more before the patient’s death, 1 year later; otherwise, chemotherapy remained the only suitable treatment. However, the intraocular focus stopped its macroscopical growth and even partly regressed after chemotherapy by cyclophosphamide and vincristine (compare Fig 1A and B). The eye maintained useful function with measurable vision for 1 year until the patient’s death due to haemorrhage from metastasis in the brain at the end of July 1993. Postmortem examination of the left eye confirmed histologically the haemangiosarcomatous origin of the intraocular focus.

Histopathology

Gross examination of the eyeball
The enucleated left eyeball measured 23 × 23 × 22 mm with 4 mm of optic nerve. The pupil was slightly oval owing to lateral pressure on the nasal side. Transillumination and opening of the globe revealed approximately half rounded infiltrate which involved the lateral part of the ciliary body (see Figs 1B and 2A). The centre of this infiltrate was at the 3 o’clock position, its vertical diameter was 5 mm and horizontal diameter was 3.5 mm. The aqueous and vitreous were clear. The

Figure 1 (A) Patient’s left eye at the time of diagnosis of the intraocular tumorous focus. (B) The same eye after the patient’s death before postmortem histological processing. The arrows indicate half rounded tumorous focus within the ciliary body. Note the difference in the size of tumorous focus.

Figure 2 (A) Histological section from the same eye in the low power magnification. Note the haemorrhage and the artificial cavity after another haemorrhage within the tumour. Anterior synchiae closing the chamber angle in the region around the tumorous focus are also visible. Haematoxylin and eosin staining, magnification ×12.5. (B) The same specimen as in (A), tumorous infiltrate under high power magnification. Note the tendency to form blood vessel spaces and cellular atypias. Haematoxylin and eosin staining, magnification ×500.
persistent papillary membranes

editor—persistent papillary membranes (ppms) which are large enough to interrupt the visual axis are uncommon. if left untreated they may cause stimulus deprivation amblyopia.1,2 there is evidence that early treatment to remove obstructions of the visual axis in infants may minimize the risk of amblyopia.3 we report a case of bilateral persistent papillary membranes which were successfully treated surgically before the patient was 6 weeks old.

case report

a healthy baby induced at 41 weeks was born by normal vaginal delivery following a normal pregnancy. he weighed 8 lb 8 oz (3.8 kg) and was noted to have an abnormal red reflex from both eyes on routine ophthalamic check by a neonatologist as they are frequently served by neonatologists as they are frequently seen in premature babies. they can be used to identify the gestational age of a newborn infant (between 27 and 34 weeks) and they are the most frequent primary sites of the intraocular metastases.1 median survival time of patients with metastasis to the anterior segment is only 5.4 months, which is significantly worse than with metastasis to the orbit (15.6 months) or posterior pole of the eye (7.2 months).9 the overall survival of patients with any form of angiosarcoma is very limited.9 since survival of our patient was 1 year after diagnosis of the intraocular metastasis, chemotherapy seems to have been relatively beneficial for our patient.10

josef sach

johana krepełkova

pavel kuchynka

eye clinic of 3rd medical faculty, charles university, prague, czech republic

correspondence: josef sach, md, eye clinic of 3rd medical faculty, srobarova 50, 100 00, prague 10 - vinohrady, czech republic.

accepted for publication 20 january 1998

3 pobler e, gonzales-palacios f, jimenez fj. different immunoreactivity of endothelial markers in well and poorly differentiated areas of angiosarcomas. virchows arch 1996;428:217-21.

7 silverman lr, deligdisch l, mandel l, et al. chemotherapy for angiosarcoma of the breast. apropos of 4 cases with a review of the literature. ann j ophthalmol 1975;29:472-82.

8在美国留学1年以后

9 bobin y, dolo be d, besnard c, et al. angiosarcoma du sein. a propos de quatre cas avec revue de la litterature. (angiosarcoma of the breast. apropos of 4 cases with a review of the literature). bull cancer 1991;78:1037-44.

comment

remnants of papillary membranes are very common occurring in 95% of normal newborn babies.1 early development of the crystalline lens at about the sixth week coincides with the growth of the tunica vasculosa lentis which nourishes it. the anterior portion of this is continuous with the papillary membrane which draws its blood supply from the capillaries which arise from the branches of the long posterior ciliary arteries and the major arterial circle.1 the papillary membrane is fully developed by 9 weeks' gestation. these blood vessels begin to undergo remodeling and regression in a process involving phagocytosis by macrophages at around 5 months' gestation. dysfunction of macrophage invasion and phagocytosis is thought to play a role in the pathogenesis of ppms.3 ppms are thought to be derived from the tunica vasculosa lentis (tvl) and have normally disappeared by the 34th week of gestation.9 these membranes are often observed by neonatologists as they are frequently seen in premature babies. they can be used to identify the gestational age of a newborn infant (between 27 and 34 weeks) and they failed to have any effect. the membrane strands were cut with vitreous scissors and the freed membrane was repositioned with macroscopic forceps. there was a small amount of bleeding from one of the more vascularised strands of membrane but the other smaller vessels retracted without bleeding. the provisc was removed with a simco irrigation/aspiration canula. the corneal wounds each required a single 10/0 nylon suture which were removed under anaesthetics 3 months postoperatively.

the visual axis was clear following surgery and there was no evidence of cataract. histology showed a thin membrane of spindle-shaped cells some of which were pigmented. a fine network of blood vessels extended through the membrane.

follow up of the child 5 months after the operation revealed no evidence of cataract formation in either eye. the eyes were straight and visual assessment showed that he objected to occlusion of each eye equally with a binocular acuity of 6/10 using cardiff cards.
continue to regress at the same rate as if the child had not been born prematurely. There is some more recent evidence that intrauterine stress, particularly from chronic maternal hypertension, may accelerate the disappearance of these membranes. In some cases, these membranes may be distinguished from congenital idiopathic microcoria which results from underdevelopment of the dilator pupillae.

Although not commonly associated with any other pathology there has been a previous report of positive toxoplasma serology occurring in a 30 week premature baby with PPMs. There has also been a report of PPMs occurring in an infant with congenital rubella virus. We believe that any child with a congenital abnormality of the anterior chamber should be screened for possible intrauterine infections. A series of five cases of persistent membranes associated with congenital dystrophy myotonia have been described. There have also been reports of PPMs occurring with a variety of other abnormalities of the anterior chamber which in some cases seem to be familial with autosomal dominant inheritance but in our case there was no family history. There have been case reports of spontaneous haemorrhage occurring form PPMs but these are unusual.

When persistent PPMs are usually so small as to be of no clinical significance. However, during the first 4 months of life, there is a small but real risk of retinal detachment or retinal break.

Smaller membranes than the ones we report have been successfully treated with mydriatic therapy until spontaneous involution occurred. However, the smallest useful pinhole size (and presumably pupil aperture) is thought to be 1.5 mm without which normal visual development is unlikely to take place. In our patient, the visual axis, especially on the right side, was completely obstructed even when the pupils were dilated and consequently we thought that the risk of amblyopia using this treatment strategy was high. Early surgical treatment may be considered at this age, especially if the membrane is described in this condition at 5 days of age with good fixation and a clear visual axis a year later. If there is clear evidence that the membranes are shrinking over the first few weeks of life then it may be reasonable to wait for spontaneous resolution. In other cases there was no evidence of resolution over a period of 3 weeks and this contributed towards the decision to operate.

There have been reports of neodymium:YAG laser treatment to remove similar membranes from teenage children for cosmetic reasons. The long term risk of cataracts from this technique is likely to be high particularly if it were to be used on an infant. There are no published studies of long term follow up of these patients. We believe that a conventional surgical technique is more appropriate than laser treatment in an infant although the operator must be aware of the risk of inducing cataract from unnecessary contact with the lens.

There is growing evidence that the severity of deprivation amblyopia is minimised by earlier treatment to remove any obstruction to the visual axis particularly in the case of unilateral congenital cataracts. It is likely that a similar critical period applies to bilateral visual obstruction. Some authors feel that there is no visual advantage to be gained by removing these membranes after the sensitive period for visual development is over although modest improvements have been reported in teenagers. If bilateral membranes are large enough to put a child at significant risk of amblyopia then it is our view that a surgical approach to this condition should be taken within the first 6 weeks of life as after this time the amount of irreversible visual dysfunction from amblyopia may well increase. Patients treated surgically for this condition should be followed up carefully because of the long term risk of developing cataract, amblyopia requiring patching, and glaucoma which may accompany congenital abnormalities of the anterior segment.

eurolintima is a familial condition with autosomal dominant inheritance. Although the operator must be aware of the reasons. There have been reports of neodymium:YAG laser treatment with hourly drops of prednisolone occurring 5 months postoperatively. This was treated with hourly drops of prednisolone acetate 1% for 2 weeks.

There are several cases of persistent pupillary membranes which were associated with loose corneal sutures occurred 5 months postoperatively. This was treated with hourly drops of prednisolone acetate 1%. Three weeks later an enlarging
white mass, initially 0.75 mm in diameter, appeared elsewhere on the host endothelium (Fig 2). A subsequent cul- ture confirmed Candida glabrata.

Amphotericin B 10 μg in 0.1 ml was injected into the anterior chamber, with subconjunctival injection of amphotericin B 300 μg in 0.5 ml. Topical amphotericin B 0.15% 1 hourly and prednisolone 1% 2 hourly were given. Both injections were repeated at 3 and 20 days. The uveits settled, topical amphotericin was discontinued, and the graft remains clear 2.5 years later on prednisolone drops once daily.

No toxic effects have been noted from intracameral or topical amphotericin B.

COMMENT

Endophthalmitis flared up twice associated with intensive topical and/or oral steroid. Candida glabrata was cultured from the transport medium and the recipient anterior chamber, implicating the donor cornea as the source of infection. Candida glabrata is a relatively resistant organism and treatment was guided by antifungal susceptibility testing of the isolate. This suggested that the isolate was resistant to fluconazole (minimum inhibitory concentration, MIC >128 mg/l) and itraconazole (MIC 16 mg/l), but was of intermediate sensitivity to econazole (MIC 1 mg/l) and variable sensitivity to voriconazole (variously on different tests) (Table 1). The latter may explain econazole’s failure to prevent infection becoming established. Although the isolate was sensitive to amphotericin B (MIC <0.25 mg/l), this was avoided as prophylaxis because of potential toxicity; however, no toxic effects occurred when it was used despite use of antimicrobial agents in the medium. Over 2.5 years Bristol Eye Bank records showed four occasions, including the present incident, when corneas were grafted and the transport medium was subsequently found to be infected. Two cases developed endophthalmitis (Candida and glabrata), while two remained clear of infection (Pseudomonas sp and Penicillium sp). Over 4500 corneas from the Bristol Eye Bank were grafted during this time, thus the incidence of known graft transmitted endophthalmitis is 0.04%. While accepting that some cases may go unreported, this can be compared with an overall incidence of postoperative endophthalmitis in the literature of 0.1–0.8% following corneal grafting with corneas stored at 4°C, and of 0.09% following extracapsular extraction.

This patient remained asymptomatic throughout, with early detection and successful treatment of the infection.

FIONA M CHAPMAN
Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP

KATHERINE E ORR
Department of Microbiology, Freeman Hospital, Newcastle upon Tyne NE7 2DN

W JOHN ARMITAGE
DAVID L EASY
Department of Ophthalmology, Bristol Eye Hospital, Bristol BS1 2LX

DAVID G COTTRELL
Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP

Correspondence to: D G Cottrell.
Accepted for publication 21 January 1998

Table: Antifungal susceptibility testing of initial Candida glabrata isolate.

<table>
<thead>
<tr>
<th>Antifungal</th>
<th>MIC (mg/l)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>0.25</td>
<td>sensitive</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>>128</td>
<td>resistant</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>16</td>
<td>resistant</td>
</tr>
<tr>
<td>Econazole</td>
<td>1 and 4 (variously on different tests)</td>
<td>intermediate</td>
</tr>
</tbody>
</table>

Bilateral orbital fat prolapse in cutis laxa

EORR—The association of ocular abnormal- ity with cutis laxa has been described only in de Barsey syndrome, a rare condition in which cutis laxa is associated with corneal clouding, mental retardation, and athetosis.1 2 Orbital fat prolapse is not uncommon and occasionally occurs bilaterally, usually in older patients. We describe the occurrence of bilateral orbital fat prolapse at an unusually young age in a patient with autosomal recessive cutis laxa.

Figure 1 Almost 6 months postoperatively: white mass at different site on host endothelium.

Figure 2 Prolapsed orbital fat beneath temporal bulbar conjunctiva of the right eye. The anterior edge is indicated by arrows.

Figure 2 Characteristic facies of cutis laxa in a 37 year old woman showing a prematurely aged appearance, lax redundant skin, downward slanting palpebral fissures, and a broad flat nose. Prolapsed orbital fat is visible beneath temporal subconjunctiva of the right eye.

CASE REPORT

A 37 year old woman with autosomal recessive cutis laxa and characteristic facies (Fig 1) presented with a soft, mobile, pale yellow mass beneath the temporal bulbar conjunctiva of each eye, but more prominently on the right (Figs 1 and 2). The overlying conjunctiva was mobile and neither mass had a visible posterior limit. There was no history of previ- ous periocular pathology, trauma, or surgery and ocular examination was otherwise normal.

Incisonal biopsy of each mass was performed under local anaesthetic to relieve irri- tation. The tissue was located in the sub- Tenon’s space and continuous posteriorly with intracranal orbital fat. Histological examination revealed normal adipose tissue without dermal elements.

COMMENT

Cutis laxa (generalised elastolysis) is charac- terised clinically by generalised lax pendulous skin which hangs in redundant folds and recoils only slowly after stretching.3 4 Histologically, there is sparsity, fragmentation, and aggregation of elastic fibres in the dermis.5 Possible pathogenic mechanisms are increased tropoelastin degradation and reduced elastin production—skin fibroblasts have diminished production—skin fibroblasts have diminished elastin synthesis and secretion.

Aged appearance. Herniae, diverticula, pulmonary emphysema, cor pulmonale, and aortic aneurysm are important complications resulting from abnormal elastic fibres. Acquired forms of cutis laxa may follow inflammatory skin disease or may be associated with hypersensitivity reactions, multiple myeloma, systemic lupus erythematosiis, amyloidosis, or maternal penicillamine therapy.

Tenon’s capsule normally separates intracranial and extracranial orbital fat from sclera. Surgical or traumatic dehiscence of the capsule more than 10 mm from the limbus may allow forward prolapse of intracranial fat beneath Tenon’s capsule. In the elderly, fat prolapse may occur without such an antecedent event and is more frequently located superotemporally. Orbital fat prolapse is usually diagnosed clinically, but may be mistaken for a dermolipoma, dermoid cyst, lacrimal gland tumour, infiltration or granuloma, extraocular muscle enlargement, or an orbital lymphoid proliferation.

The largest case series of orbital fat prolapse reports 15 patients aged between 49 and 94 years (average 65 years) of whom 33% were affected bilaterally. The case we report is significantly younger. Although the occurrence bilaterally of this finding at a young age may be coincidental, it suggests that abnormal elastin in Tenon’s capsule allowed it to dehisce, creating a route between intracranial fat and the sub-Tenon’s space. This report suggests an association between cutis laxa and orbital fat prolapse.

MICHAEL J GREANEY
ANDREW B RICHARDS
Department of Ophthalmology, Royal Berkshire Hospital, London Road, Reading RG1 5AN

Correspondence to: Mr Greaney, Department of Ophthalmology, Queen Alexandra Hospital, Cosham, Portsmouth PO6 3LY.
Accepted for publication 21 January 1998