Intravitreal chemotherapy for the treatment of recurrent intraocular lymphoma

Marc D de Smet, Virginia Stark Vancs, David Kohler, Diane Solomon, Chi Chao Chan

Abstract

Aim—To develop and assess a protocol for the treatment of intraocular lymphoma by intravitreal injection of methotrexate and thiotepa.

Methods—A patient with intraocular non-Hodgkin’s lymphoma which recurred after radiotherapy and repeated systemic chemotherapeutic regimens underwent repeated intravitreal injections of methotrexate and thiotepa. The patient was closely monitored by cytology, anterior chamber flare measurements, IL-10 and IL-6 levels. Methotrexate drug clearance studies were performed on vitreous samples taken before each injection.

Results—Complete tumour clearance was achieved by the third week of therapy. IL-10 and IL-6 levels quickly dropped to barely detectable levels as the tumour was cleared from the eye. Flare measurements decreased from 500 to 15 photons/s over the same time. A plot of the methotrexate levels over time revealed a first order kinetic rate of elimination with an effective tumoricidal intravitreal dose persisting for 5 days after injection.

Conclusion—Intravitreal chemotherapy for the treatment of recurrent intraocular lymphoma appears effective in prolonging local remission of ocular disease even in the presence of an aggressively growing tumour. A single intravitreal injection of methotrexate can lead to a prolonged tumoricidal concentration lasting for a longer period than that achieved by systemic administration.

To date, the treatment of ocular recurrences has received little attention. Additional radiotherapy is possible when the maximum allowed radiation dose has not been reached, but this form of therapy is often no longer available without considerable risk. Systemic multiagent chemotherapy can be considered. However, systemic toxicity can be quite significant, and is often insufficient to clear the ocular tumour. Another approach is direct intracocular injection of combined methotrexate and thiotepa into an eye with a recurrent NHL, which had persistent disease despite receiving 45 Gy of radiotherapy and systemic multiagent chemotherapy.

Case report

A 50 year old white woman was diagnosed with a large cell lymphoma involving the brain and both eyes. The diagnosis was confirmed by performing a vitrectomy on her left eye. She was treated with a combination of 45 Gy of radiotherapy to the eyes and brain, and intrathecal cytarabine (Ara-C). Over the next 2 years, she developed significant cataracts which required surgery with intraocular lens implantation. She also developed chronic open angle glaucoma in her left eye. Four years after the initial diagnosis, she complained of increased floaters and blurred vision in her left eye. She was noted to have significant vitreous haze precluding visualisation of her posterior pole. Her visual acuity was light perception in the involved eye. Four months later, lymphomatous cells were noted in her cerebrospinal fluid.

She was started on an investigational regimen of systemic and intrathecal chemotherapy approved by the institutional review board of the National Cancer Institute. The intravenous regimen included methotrexate (1.5 g/m² bolus over 1 hour followed by 300 mg/m² per hour over 23 hours for a total of 8.4 g over a 24 hour period), thiotepa (35 mg/m² on day 1), vincristine (1.4 mg/m²), and Decadron (dexamethasone, 6 mg every 6 hours x20 doses). Intrathecal chemotherapy included Ara-C (50 mg on days 6, 13, and 19 of each cycle), and methotrexate (12 mg on days 9 and 16 of each cycle) (Protocol NCI no T94–0054). No tumour cells were detected in the CSF after the second cycle of chemotherapy. As per protocol, she was given a further two cycles after achieving clinical remission in her CSF. In her involved eye the vitreous haze decreased with each cycle of systemic chemotherapy. How-
Intravitreal chemotherapy for the treatment of recurrent intraocular lymphoma

did not want to have her eye enucleated, maximum does of radiation to both eyes. She had been observed with each cycle of systemic chemotherapy.

Approval was obtained from the investigational review board of the National Cancer Institute. A regimen consisting of both thiopeta and methotrexate was chosen. At each injection, she was monitored for tumour response by cytology as well as by a number of surrogate markers including cell/flare photometry, IL-10 and IL-6 levels. Initially methotrexate was given twice weekly, while thiopeta was given once a week for 3 weeks. Once her cytology became negative, she was given biweekly injections ×3, monthly ×3, and followed prospectively with no further intervention. Her vitreous volume by ultrasound was 4.07 ml. To achieve a peak intravitreal methotrexate concentration of 100 µg/ml, each injection of 0.1 ml contained 4 mg/ml of methotrexate. Thiopeta was given at a concentration of 2 mg/0.1 ml.

Before each injection, an appropriate volume of vitreous fluid was removed to leave the eye slightly hypotonic at the end of the procedure. This sample was used for the analyses mentioned below. Methotrexate injections were well tolerated and did not cause any discomfort. Thiopeta was associated with a significant pressure rise about 2–4 hours after injection. This was observed with the first three injections. On one occasion, the pressure rose to 60 mm Hg, but normalisation was achieved with an anterior chamber paracentesis. Subsequent to this event, the visual acuity dropped to bare LP/NLP. A mild vitreous haemorrhage developed after the second injection which cleared slowly. On cytology, complete clearance of all tumour in the vitreous sample was achieved during the third week of therapy. A pars plana vitrectomy was performed at the end of the third week, confirmed that no viable tumour cells were present in the vitreous cavity or in the peripheral vitreous skirt. At surgery, a pale excavated optic nerve head with a cup/disc ratio of 1.0 was noted. The patient completed the course of intravitreal chemotherapy without difficulty. Eighteen months later (30 months after the initiation of combined therapy), she had no evidence of a recurrence.

Results

Our primary endpoint was cytological clearance of the tumour. As indicated in the case report, this was achieved by the third week of therapy. In addition, several surrogate markers were followed. Flare photometry was a sensitive indicator of the severity of blood ocular barrier breakdown. Initially, measurements were above 550 photons/ms. These levels rapidly dropped as the tumour was cleared from the eye and integrity of the barrier was rapidly re-established. By 21 days, the level had dropped to below 50 photons/ms, where it remained thereafter. Initially raised IL-10 levels quickly fell as the tumour was eradicated from the eye (Table 1). The increase noted on day 85 was associated with an even higher level of IL-6. This has previously been reported as indicative of intraocular inflammation, and not of a recurrence of lymphoma.14

Table 1 Intravitreal IL-6 and IL-10 levels at various times since onset of intravitreal therapy

<table>
<thead>
<tr>
<th>Day of sampling</th>
<th>IL-6 (pg/ml)</th>
<th>IL-10 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>186</td>
<td>5100</td>
</tr>
<tr>
<td>11</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>24</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>87</td>
<td>2586</td>
<td>1856</td>
</tr>
<tr>
<td>112</td>
<td>468</td>
<td>0</td>
</tr>
<tr>
<td>156</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Methods

Flare measurements were performed using a standard procedure established for the use of the Kowa laser cell flare meter FC1000.21 In essence, seven consecutive measurements with a difference in background (BG1 versus BG2) of less than 15% were taken. The highest and lowest values were eliminated before averaging the remaining values.

Vitreous sampling and intravitreal injections were given 3 mm posterior to the limbus following retrobulbar anaesthesia and complete ocular akinesia. After ocular disinfection with a 10% betadine solution, 0.3 ml of vitreous fluid was removed from the eye. The tuberculin syringe was separated from the 30 gauge needle inserted in the vitreous cavity. It was replaced by a syringe containing a single chemotherapeutic agent (methotrexate 4 mg/ml; thiopeta 20 mg/ml). A total of 0.1 ml was injected over a 5 minute period. If a second agent needed to be given, the following syringe was substituted, and the injection given over 5 minutes. At the end of the procedure the eye was left somewhat hypotonous, and gentamicin ointment was placed in the conjunctival sac. In order to determine the maximal intravitreal methotrexate dose, on two occasions a vitreous sample was taken 5 minutes after completing the injection.

The vitreous sample was carefully partitioned into three fractions. The first was sent to cytopathology, where the material was immediately placed on sialinated slides, air dried, and stained to identify tumour cells.23 The other two fractions were immediately frozen at −70°C to allow subsequent batch determinations of cytokerine and methotrexate levels. Interleukin 6 and 10 were determined using a standard enzyme linked immunoassay (ELISA kit, Endogen, Cambridge, MA, USA). Methotrexate levels were determined using a fluorescence polarisation immunoassay (TDx/TDxFLx, Abbott Laboratories, Abbott Park, IL, USA).

The vitreous sample was carefully partitioned into three fractions. The first was sent to cytopathology, where the material was immediately placed on sialinated slides, air dried, and stained to identify tumour cells.23 The other two fractions were immediately frozen at −70°C to allow subsequent batch determinations of cytomarkers including cell/flare photometry, IL-10 and IL-6 levels. Initially methotrexate was given twice weekly, while thiopeta was given once a week for 3 weeks. Once her cytology became negative, she was given biweekly injections ×3, monthly ×3, and followed prospectively with no further intervention. Her vitreous volume by ultrasound was 4.07 ml. To achieve a peak intravitreal methotrexate concentration of 100 µg/ml, each injection of 0.1 ml contained 4 mg/ml of methotrexate. Thiopeta was given at a concentration of 2 mg/0.1 ml.

Before each injection, an appropriate volume of vitreous fluid was removed to leave the eye slightly hypotonic at the end of the procedure. This sample was used for the analyses mentioned below. Methotrexate injections were well tolerated and did not cause any discomfort. Thiopeta was associated with a significant pressure rise about 2–4 hours after injection. This was observed with the first three injections. On one occasion, the pressure rose to 60 mm Hg, but normalisation was achieved with an anterior chamber paracentesis. Subsequent to this event, the visual acuity dropped to bare LP/NLP. A mild vitreous haemorrhage developed after the second injection which cleared slowly. On cytology, complete clearance of all tumour in the vitreous sample was achieved during the third week of therapy. A pars plana vitrectomy was performed at the end of the third week, confirmed that no viable tumour cells were present in the vitreous cavity or in the peripheral vitreous skirt. At surgery, a pale excavated optic nerve head with a cup/disc ratio of 1.0 was noted. The patient completed the course of intravitreal chemotherapy without difficulty. Eighteen months later (30 months after the initiation of combined therapy), she had no evidence of a recurrence.

Methods

Flare measurements were performed using a standard procedure established for the use of the Kowa laser cell flare meter FC1000.21 In essence, seven consecutive measurements with a difference in background (BG1 versus BG2) of less than 15% were taken. The highest and lowest values were eliminated before averaging the remaining values.

Vitreous sampling and intravitreal injections were given 3 mm posterior to the limbus following retrobulbar anaesthesia and complete ocular akinesia. After ocular disinfection with a 10% betadine solution, 0.3 ml of vitreous fluid was removed from the eye. The tuberculin syringe was separated from the 30 gauge needle inserted in the vitreous cavity. It was replaced by a syringe containing a single chemotherapeutic agent (methotrexate 4 mg/ml; thiopeta 20 mg/ml). A total of 0.1 ml was injected over a 5 minute period. If a second agent needed to be given, the following syringe was substituted, and the injection given over 5 minutes. At the end of the procedure the eye was left somewhat hypotonous, and gentamicin ointment was placed in the conjunctival sac. In order to determine the maximal intravitreal methotrexate dose, on two occasions a vitreous sample was taken 5 minutes after completing the injection.

The vitreous sample was carefully partitioned into three fractions. The first was sent to cytopathology, where the material was immediately placed on sialinated slides, air dried, and stained to identify tumour cells.23 The other two fractions were immediately frozen at −70°C to allow subsequent batch determinations of cytokerine and methotrexate levels. Interleukin 6 and 10 were determined using a standard enzyme linked immunoassay (ELISA kit, Endogen, Cambridge, MA, USA). Methotrexate levels were determined using a fluorescence polarisation immunoassay (TDx/TDxFLx, Abbott Laboratories, Abbott Park, IL, USA).

Results

Our primary endpoint was cytological clearance of the tumour. As indicated in the case report, this was achieved by the third week of therapy. In addition, several surrogate markers were followed. Flare photometry was a sensitive indicator of the severity of blood ocular barrier breakdown. Initially, measurements were above 550 photons/ms. These levels rapidly dropped as the tumour was cleared from the eye and integrity of the barrier was rapidly re-established. By 21 days, the level had dropped to below 50 photons/ms, where it remained thereafter. Initially raised IL-10 levels quickly fell as the tumour was eradicated from the eye (Table 1). The increase noted on day 85 was associated with an even higher level of IL-6. This has previously been reported as indicative of intraocular inflammation, and not of a recurrence of lymphoma.14

Table 1 Intravitreal IL-6 and IL-10 levels at various times since onset of intravitreal therapy

<table>
<thead>
<tr>
<th>Day of sampling</th>
<th>IL-6 (pg/ml)</th>
<th>IL-10 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>186</td>
<td>5100</td>
</tr>
<tr>
<td>11</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>24</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>87</td>
<td>2586</td>
<td>1856</td>
</tr>
<tr>
<td>112</td>
<td>468</td>
<td>0</td>
</tr>
<tr>
<td>156</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
de Smet, Vancs, Kohler, et al

Chemotherapy to the meninges.21 Using this barrier and delivers a high sustained dose of therapy to the CSF bypasses the blood-brain delivery. Direct administration of chemotherapy and intrathecal therapy in order to boost drug concentration is maintained within the CNS lymphoma protocols combine systemic and intrathecal chemotherapy are essential to prevent leptomeningeal recurrences. Methotrexate given intrathecally is very effective at preventing leptomeningeal recurrences. The bolus injected within the CSF equilibrates at about 100 μg/ml. Based on ultrasonographic measurements of the vitreous volume, the intravitreal methotrexate dose was selected to achieve a similar intraocular concentration.

The intravitreal dosing regimen was based on available data from intravenous and intracranial treatment.26 Intrathecally, methotrexate levels are maintained at tumoricidal levels for 48 hours. Thus, biweekly injections were considered appropriate, since ocular clearance is slower than from the CSF.11 For thiotepa, available evidence suggested that administration once a week would be sufficient. High frequency dosing was maintained until tumour clearance was achieved. The follow up regimen was chosen to ensure consolidation of remission.2 28 29 The decision to move on to the consolidation regimen was based on cytological confirmation of tumour clearance.

Surrogate markers supported the results obtained from cytology. Blood-ocular barrier integrity returned to virtually normal levels once the tumour was eradicated from the eye. Intravitreal IL-10 levels, a cytokine secreted by lymphoma cells, paralleled the intraocular tumour burden as previously suggested by Chan and coworkers.24 It was absent at the time the two last doses were administered.

The visual acuity drop noted in this patient was temporally related to an acute rise in intraocular pressure. This patient was known to have pre-existing open angle glaucoma. Increased pressure was only observed with thiotepa. Its cause is unknown. Whether thiotepa is necessary in the treatment of recurrent intraocular lymphoma can be debated. However, single agent treatment in the setting of recurrent tumour is not usually recommended. Another potential choice is direct intraocular treatment with dexamethasone or a long acting steroid preparation.

In this patient, intravitreal chemotherapy was successful in eradicating an aggressive lymphoma, and leading to prolonged remission. It should be noted that the treatment was given in conjunction with aggressive systemic therapy. This is in agreement with the approach used by Fishburne et al in a similar group of patients.25 Since this tumour has a propensity to disseminate to the other eye and the brain, it is important to consider local ocular management as one of the required components in the management of this tumour. In addition to local treatment, aggressive systemic and intrathecal chemotherapy are essential to ensure a prolonged remission. It is hoped that this approach may provide prolonged survival while maintaining good levels of visual function.

Figure 1 Intravitreal concentrations at various time points following intravitreal injection of methotrexate (400 μg). Each time point corresponds to a different baseline injection, as each sample was taken before the subsequent injection of methotrexate.

Discussion

This patient with persistent intraocular lymphoma following systemic and intrathecal high dose therapy refused to have her eye enucleated. In an attempt to allow her to keep her eye, and to eradicate the lymphoma, we opted for intravitreal therapy. Radiotherapy had been ruled out as an option, as she had previously received maximal therapy with 45 Gy. Although it is sometimes possible to deliver even more radiation, she had developed a dry eye syndrome following her previous radiation treatment and occasionally suffered from corneal erosions.

With each systemic methotrexate cycle, she had shown a significant decrease in vitreal haze, but this improvement was only transient. We speculated that the tumour recurred because the intraocular methotrexate levels could not be sustained for long enough above a minimal tumoricidal concentration. Current CNS lymphoma protocols combine systemic and intrathecal therapy in order to boost drug delivery. Direct administration of chemotherapy to the CSF bypasses the blood-brain barrier and delivers a high sustained dose of chemotherapy to the meninges.2 19 23 Using this approach, the minimal methotrexate tumoricidal concentration is maintained within the CSF for a minimum of 48 hours, compared with a few hours when given systemically. Methotrexate given intrathecally is very effective at preventing leptomeningeal recurrences. The bolus injected within the CSF equilibrates at about 100 μg/ml. Based on ultrasonographic

Examination at that time did not show the presence of any intraocular tumour.

Since vitreous sampling occurred before the administration of chemotherapy and was performed at different time points after the injection of the previous dose, it was possible to roughly plot drug levels at various time points after methotrexate injection (Fig 1). On a semilogarithmic plot, a linear relation is observed, suggesting a first order kinetic rate of elimination. Given that a dosage above 1 μmol/l is considered tumoricidal, it suggests that a single intravitreal dose remains effective for about 5 days.

The visual acuity drop noted in this patient was temporally related to an acute rise in intraocular pressure. This patient was known to have pre-existing open angle glaucoma. Increased pressure was only observed with thiotepa. Its cause is unknown. Whether thiotepa is necessary in the treatment of recurrent intraocular lymphoma can be debated. However, single agent treatment in the setting of recurrent tumour is not usually recommended. Another potential choice is direct intraocular treatment with dexamethasone or a long acting steroid preparation.

In this patient, intravitreal chemotherapy was successful in eradicating an aggressive lymphoma, and leading to prolonged remission. It should be noted that the treatment was given in conjunction with aggressive systemic therapy. This is in agreement with the approach used by Fishburne et al in a similar group of patients.25 Since this tumour has a propensity to disseminate to the other eye and the brain, it is important to consider local ocular management as one of the required components in the management of this tumour. In addition to local treatment, aggressive systemic and intrathecal chemotherapy are essential to ensure a prolonged remission. It is hoped that this approach may provide prolonged survival while maintaining good levels of visual function.

Intravitreal chemotherapy for the treatment of recurrent intraocular lymphoma


25 Bors JF, Moe PJ. A comparative study on the pharmacokinetics of methotrexate in a dose range of 0.5 g to 33.6 g/m² in children with acute lymphoblastic leukaemia. Cancer 1987; 60: 5–13.


