LETTERS TO THE EDITOR

Surgically removed submacular nematode

EDITOR,—Intraocular filariasis is an uncommon disease in civilised countries. In only a few cases has the worm been surgically removed from the posterior portion of the eye and identified. In this report we describe a patient who had a filaria-like worm in an epimacular and/or submacular lesion, which was successfully removed surgically.

CASE REPORT

A 38-year-old woman complained of decreased visual acuity in her left eye of 5 days' duration. Her medical history was unremarkable. The patient had two pet dogs, and she had not travelled to foreign countries in recent years. On examination, her corrected visual acuity was 20/20 in the right eye and 20/100 in the left. No inflammation was present in the anterior segment or vitreous cavity bilaterally. Ophthalmoscopic examination disclosed a white worm, approximately 3 disc diameters in length, equivalent to about 4.5 mm, moving slowly in the macula at the epi-retina. Epiretinal and intraretinal haemorrhages were observed in and around the macular region. The body of the worm was tapered at one end and slightly rounded at the other (Fig 1). A round, preretinal haemorrhage was observed on a branch of the superonasal retinal artery, which could have been the route of entry into the eye.

Numerous subretinal hypopigmented tracks with small haemorrhages were noted in the superior retina, and perivascular haemorrhages were observed around the inferior branch of the central retinal vein (Fig 2). Fluorescein angiography showed numerous hyperfluorescent tracks without dye leakage. The patient's blood test revealed a slightly elevated white blood cell count (10 200 × 103/l; normal <9000) and elevated IgE in the serum (680 U/mI; normal <250).

On the following day pars plana vitrectomy was performed and the worm was found partially migrated into the subretinal space of the macula. The worm was aspirated successfully through a 20 gauge silicone tipped needle and submitted for parasitological study; however, it was lost during transportation to a different laboratory. Parasitological study of the patient's serum detected an antibody to Dirofilaria. Six months after surgery, the patient's visual acuity was still 20/50. Ophthalmoscopically the hypopigmented tracks had faded, and mildly irregular pigment was observed at the deep retina in the macular lesion. Cone and rod electroretinograms to full field stimuli were normal bilaterally.

COMMENT

Our patient owned two dogs, and her ocular findings could be differentiated from toxocariasis, in which only larvae of Toxocara canis can infect humans. The length of the Toxocara larva is about 400 μm, and grows no longer. Although no direct microscopic evidence of Dirofilaria infection was obtained in our patient, a positive antibody to Dirofilaria in the serum indicated its infection. There have been many reports of intraocular filariasis; however, the filariae were removed and identified in only six of 56 cases reviewed by Beaver in 1989. Direct parasitological microscopic examination is necessary for accurate diagnosis, but serological study can be helpful, as shown in the present case.

Various types of management for intraocular parasites have been reported. Direct photocoagulation to the worm body has been successfully reported in cases with filaria-like worms and in one case with insect parasites. It has been suggested that photocoagulation denatures the parasite proteins and mitigates the immune reaction. If the parasite is located in the posterior pole of the retina, however, photocoagulation may cause permanent visual impairment, and surgical removal should be selected. Furthermore, photocoagulation would make parasitological identification impossible. Preretinal or subretinal parasites were retrieved successfully by pars plana vitrectomy in several reported cases. In the present case, the visual acuity was still 20/50 6 months postoperatively. The migrating worm may have caused considerable damage to macular function, therefore, we believe that intraocular parasites should be removed as soon as possible.

The authors are grateful to Dr Keizo Yamaguchi for parasitological examination and Mr Shingo Yamazaki for fundus photographs.

SHUICHI YAMAMOTO
MASANORI HAYASHI
SHINOBU TAKEUCHI
Department of Ophthalmology,
Toho University Sakura Hospital, Sakura, Japan

Correspondence to: Shuichi Yamamoto, MD, Department of Ophthalmology, Toho University Sakura Hospital, 564-1 Shimoshirizu, Sakura, Chiba 2838741, Japan.

Accepted for publication 19 July 1999


Acanthamoeba keratitis occurring with daily disposable contact lens wear

EDITOR,—Up to 92% of cases of acanthamoeba keratitis occur in contact lens users of all types.1 Failure to disinfect soft contact lenses and the use of chlorine disinfection systems are major factors accounting for the increase in cases of acanthamoeba keratitis. It is thought that “daily disposable” contact lenses, which require no disinfection, will have a much lower risk for the development of all forms of infectious keratitis. We report a case of acanthamoeba keratitis occurring in a daily disposable contact lens wearer. We believe this is the first such reported case.

CASE REPORT

A healthy 21-year-old woman, who had been wearing daily disposable contact lenses for 1 year, wore her lenses for 4 hours on 1 day and then stored the lenses in preserved saline solution overnight in a new contact lens case. She wore the lenses for a further 3 hours the following day. She reported that this was the first time that she had done this. She then developed a painful left eye. This was initially treated as conjunctivitis by her general practitioner and local accident and emergency department. After 2 weeks her local eye unit suspected acanthamoeba keratitis and performed an epithelial scrape that “revealed amoeba species”. She was then referred to our unit for our opinion.

On examination her visual acuity was reduced to 6/18 in the left eye. There was conjunctival injection and a mild scleritis. The
cornea had diffuse punctate staining with linear epithelial and perineural infiltrates (Figs 1 and 2). She had a mild anterior uveitis. Acanthamoeba was strongly suspected. Corneal epithelium was removed for microscopy, culture, and histology. Her contact lens case and solutions were also sent for culture; Acanthamoeba was cultured from both corneal epithelium and lens case, but not the lens solutions. She was treated with topical polyhexamethylene biguanide (PHMB) and prednisolone 0.3 % as well as oral flurbiprofen (Froben, Knoll Ltd, Nottingham). Six weeks after diagnosis she was asymptomatic with a visual acuity of 6/9. The eye was quiet, though some corneal infiltrates remained.

COMMENT

Acanthamoeba are free living protozoa commonly found in soil and water, including bathroom tap water. Acanthamoeba keratitis is an uncommon but potentially devastating corneal infection. The number of cases diagnosed in the United Kingdom has steadily risen over the past 20 years owing to increased awareness of the condition and the rise in contact lens wear. Radford et al found that daily wear disposable contact lenses were associated with greatly increased risk of acanthamoeba keratitis compared with other lens types and wear systems. Multivariable analysis showed that this was largely attributable to a lack of disinfection, the use of non-sterile saline, and the use of chlorine based disinfection rather than alternative chemical systems. It was concluded that 80% of cases of acanthamoeba keratitis could be largely attributable to a lack of disinfection, the use punctate staining with lin-

Clinical course of acute zonal occult outer retinopathy in a patient with AZOOR

Editor,—Patients with acute zonal occult outer retinopathy (AZOOR) may present with a normal fundus examination and almost normal visual acuity. However, we would recommend greater education of daily disposable lens wearers on the importance of strict adherence to wearing their lenses for 1 day only and of the risks of misuse of their lenses.

S A WOODRUFF
J K G DART
Moorefield’s Eye Hospital, City Road, London EC1V 2PD

Correspondence to: Mr J K G Dart.
Accepted for publication 22 March 1999

Figure 1 (Top) Ratio images of Humphrey 30-2 visual fields in the left eye. (Bottom) The correlation between clinical course and mean deviation (MD) of Humphrey 30-2 visual field and visual acuity in the left eye. Asterisks indicate the day on which multifocal ERG was analysed. The roman numerals correspond with raw images in the upper part of the figure.
The findings of AZOOR that we observed in our patient suggest that the retinal recovery assessed by m-ERG was different for the lesion (main focus was related to the inferotemporal retina) and was delayed compared with visual acuity and HVF. Perhaps this delayed retinal recovery reflects a subtle microcirculatory disturbance that cannot be detected by FA or ICG. Slight leakage in FA and slight hypofluorescences on the late phase in ICG would suggest such a microcirculatory disorder.

When better understanding of the aetiology and pathophysiology of AZOOR is available, the clinical response to appropriate therapy may perhaps be best followed by m-ERG.

KANAKO YASUDA
MASAHIKO SHIMURA
MICHERU NORO
MITSURU NAKAZAWA
MAKOTO TAMAI
Department of Ophthalmology, School of Medicine, Tohoku University, Sendai 980-8574, Japan
Correspondence to: Masaiko Shimura, MD, Department of Ophthalmology, School of Medicine, Tohoku University, Sendai, 980-8574, Japan.
Accepted for publication 26 March 1999

Hypotonic maculopathy following pneumatic retinopexy: a UBM study

Eorton R, El-Agamy G, Bridges NA. Pneumatic retinopexy is a promising surgical alternative in selected cases of retinal detachment.

We report a rare complication, to our knowledge the first reported complication of this kind after pneumatic retinopexy. We hypothesise that the original cataract wound did not heal properly and the additional cryoprobe manipulation caused the complication.

CASE REPORT

A 63 year old white man, complaining of a shadow in his right visual field, was referred to our department in April 1997 for further management. Ocular history was notable for bilateral extracapsular cataract extraction with posterior chamber lens implantation (PC/IOL), right eye in January 1997 and left eye in June 1996. Visual acuities were 20/25 in both eyes. IOPs were within normal limits. Anterior segment examination was unremarkable with well positioned IOLs. Fundal examination of his right eye revealed a superotemporal macula on rhegmatogenous retinal detachment, produced by a single horseshoe retinal break around 10 o’clock. After the risks and benefits of pneumatic retinopexy were explained to the patient he chose to have the procedure.

Cryopexy was applied to the tear and after an anterior chamber paracentesis was performed 0.7 ml of 100% SF6 gas was injected into the vitreous cavity 3.5 mm behind the limbus. IOP and macula were normalised (IOP 12 mm Hg), maculopathy was reversed, and visual acuity improved to 20/50.

Hypotonic maculopathy is an unusual and, to our knowledge, the first reported complication of this kind after pneumatic retinopexy. We hypothesise that the original cataract wound did not heal properly and the additional cryoprobe manipulation caused the complication.

Figure 1 UBM picture of right eye showing the external part of the dehiscent cataract wound, as a narrow slit, before repair (area between arrows). There is a full blown hypotonic maculopathy in this eye, with VA 20/200.

Figure 2 UBM picture of right eye showing the complete repair and the area of macular detachment after cryopexy (arrows). The maculopathy has resolved, with VA 20/50.

References

wound to leak. The UBM study provided us with an interesting insight into how the scleral suture repair may have worked to correct the wound leak as shown in Figure 2. The fact that hypotony resolved after suturing the wound, indicated that the external part of the wound was secure (no slit is apparent) despite the fact that the internal part of the wound was gaping even more postoperatively. This finding implies, therefore, that only minimal overall alteration of the wound architecture postoperatively, sufficient to rectify the leak.

We believe that UBM is a valuable adjunct in the management of similar cases by clearly identifying both the presence and exact location of leak. Finally, pneumatic retinopexy should be performed with caution, especially in cases of previously operated eyes with large incision wounds.

**CASE REPORT**

**Bilateral electrical cataract**

_Editor,—Electric trauma is not uncommon in India where majority of the population lives in the rural setting. Few cases of electric cataract have been reported in literature probably because few patients survive the high voltage of current that induces cataract formation. Most patients with electric cataract have no subjective complaints early on but become aware of the reducing visual function several months later._

_Correspondence to: Dr Ioannis M Aslanides, Vardi-noyannion Eye Institute of Crete, University of Crete Medical School, Voutes PO Box 1352, Iraklion-Crete 71110, Greece.

Accepted for publication 26 March 1999


**COMMENT**

Involvement of the lens exclusively, sparing other ocular structures is rare. This case documents such a possibility and also highlights the salient features involving electric trauma to the lens. The scar burn in this case represents the entrance wound for the electrical energy but the lack of an exit wound makes this case particularly peculiar. Both entry and exit sites for the electric current have been reported by all previous authors.

The excellent surgical results noted in both eyes of this patient are in keeping with the similar result reported by Portellos et al._

This observation should encourage the ophthalmologist to undertake surgery for electric cataract, where necessary, without any undue concern.

**Letters**

**Temporal artery biopsy specimens**

_Editor,—Temporal artery biopsies are performed routinely on patients suspected of having giant cell arteritis. Of 131 pathology specimens examined at University of Illinois at Chicago Eye Center from 1975 to 1998, the most common diagnosis was atherosclerosis with myointimal fibrosis (63%) followed by giant cell arteritis (13%). In about 6% of cases we encountered calcific sclerosis confined to the tunica media which was associated with mild tissue disorganisation surrounding the calcific plaque and disruption of the internal elastic lamina (Fig 1). Monckeberg's sclerosis as seen in these specimens was first described by Monckeberg in 1903. It commonly affects medium size muscular arteries and is described in femoral, tibial, radal, coronary, cerebral, and visceral arteries._


**Figure 1** The characteristic anterior subcapsular lens opacities. (A) Right eye, (B) left eye.

**Figure 1** Cross section through temporal artery showing disrupted internal elastic lamina (arrows) and large calcific plaques (C) in the tunica media (haematoxylin and eosin; original magnification x40).
nal elastic lamina should not be erroneously interpreted as sequelae of previous arterial inflammation. The pathophysiology of Monckeberg’s arteriosclerosis is still unclear, but it can be induced in animal models by injecting adrenalin, nicotine, parathyroid hormone, and vitamin D. In addition, lumbar sympathectomy has been shown to promote occurrence of Monckeberg’s arteriosclerosis of the lower extremities in humans.1 Automatic dysfunction from diabetic neuropathy is thought to be responsible for the occurrence of Monckeberg’s in diabetic patients. Unlike atheroarosclerosis, Monckeberg’s arteriosclerosis is a benign condition and does not cause vascular thrombosis. In conclusion, Monckeberg’s arteriosclerosis of the temporal artery may be seen occasionally in the temporal artery. It is an interesting histological diagnosis that has little clinical significance but could be recognized in temporal biopsies.

BIENVENID0 V CASTILLO JR
ELISÉ PORTELA
DEEPAK P EDWARD
Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA
Correspondence to: Dr Deepak P Edward, Department of Ophthalmology, University of Illinois at Chicago, 1855 W Taylor Street, Chicago, IL 60612, USA
Accepted for publication 9 April 1999


Retinal vascular abnormality in Poland’s syndrome

EDITOR,—Poland’s syndrome is a congenital anomaly first described in 18411 consisting of unilateral hypoplasia or aplasia of the pectoralis major muscle and ipsilateral upper extremity abnormalities which often include ipsilateral syndactyly. Since then a number of associated anomalies have been reported. These include absence of the pectoralis minor muscle, absence or atrophy of ipsilateral ribs two to five, aplasia of the ipsilateral breast or nipple, and simian crease of the affected extremity. Although vascular alterations associated with this syndrome have been described, no involvement of eye vasculature has been reported so far.

CASE REPORT
We examined a 39 year old man previously diagnosed with Poland’s syndrome who came to our clinic because he had experienced blurred vision in the right eye for 2 months. Computed axial tomography, arteriography, and abdominal echography revealed absence of the left kidney. There was no history of diabetes or hypertension. The ophthalmological examination of the right eye revealed a visual acuity of 20/50 and a paracentral relative scotoma. The right eye fundus showed perimacular capillary telangiectasis, retinal vascular distortion, moderate perimacular hard exudates, and retinal swelling, all of them more prominent in the temporal perimacular area. Fluorescein angiography clearly showed the vascular abnormalities (Fig 1). The left eye fundus was normal. A diagnosis of juxtapfoveal retinal telangiectasis was made.

COMMENT
Juxtapfoveal telangiectasis is difficult to detect ophthalmoscopically1 and therefore can be neglected by routine eye fundus examinations made before the first visual symptoms appear. Unilateral renal agenesis occurs in approximately 1 per 1000 births and can be associated with vascular anomalies.2 The aetiology of juxtapfoveal telangiectasis is unknown. The patient we examined had retinal vascular malformations that may have originated in the early stages of life. Indeed, the deformed capillaries may function for many years before endothelial degeneration causes retinal swelling.3 While the exact pathogenesis of Poland’s syndrome is not well known, it has been postulated that the original cause may be a vascular abnormality at the embryonic stages.4 The vascular abnormalities, mostly of the diseased hemithorax, have been reported in this syndrome5 and our finding of retinal vascular abnormalities in this patient support this hypothesis.

To our knowledge, this is the first reported case of coexistent juxtapfoveal telangiectasis, renal agenesis, and Poland’s syndrome. Although we are not aware of direct evidence reported in the literature indicating any retinal involvement linked to this syndrome, it is plausible that the three abnormalities found in this patient may have had common original vascular causative factors. Therefore, we recommend a careful eye fundus examination of patients presenting with this syndrome.

This work was partially supported by grants XUGA-20082897 and DGESIC PB97–0521.

FRANCISCO GOMEZ-ULLA
Servicio de Oftalmologia, Facultad de Medicina, Complejo Hospitalario Universitario de Santiago, E-15705 Santiago de Compostela, Spain

FRANCISCO GONZALEZ
Servicio de Oftalmologia and Departamento de Fisiologia, Facultad de Medicina, Complejo Hospitalario Universitario de Santiago, E-15705 Santiago de Compostela, Spain
Correspondence to: Dr Francisco Gomez-Ulla or Dr Francisco Gonzalez, Servicio de Oftalmologia, Complejo Hospitalario Universitario de Santiago, c/ Callejas s/n E-15705 Santiago de Compostela, Spain.

Accepted for publication 9 April 1999


Bilateral optic disc oedema associated with latanoprost

EDITOR,—Latanoprost is a recent addition to the medical management of raised intraocular pressure in chronic open angle glaucoma and ocular hypertension. It is a potent ocular hypotensive agent with few ocular or systemic side effects.

We report a case of bilateral optic disc oedema developing soon after commencing treatment with latanoprost which resolved once therapy was stopped.

CASE REPORT
An asymptomatic 64 year old woman presented with raised intraocular pressure. She maintained good general health, had no significant past medical or family history, and was not on any medication. Snellen visual acuities were 6/5 both eyes. The intraocular pressures were 28 mm Hg right eye and 26 mm Hg left eye. Ocular examination was otherwise unremarkable with open angles, normal optic nerves, and full Humphrey 24–2 visual fields. She was thus diagnosed as having ocular hypertension and consented to enter a prospective double masked trial comparing some of the intraocular pressure lowering drops. Therapy was commenced with one of the drugs involved in the study and at a 1 month review she reported no problems with the drops. The intraocular pressures had lowered to 16 mm Hg in both eyes and the examination was otherwise unchanged. At her third visit 2 months later, she was again asymptomatic with visual acuities of 6/5 in both eyes and intraocular pressures of 15 mm Hg. However, examination of the optic nerves revealed bilateral oedema which was more prominent in the left eye. There were no signs of uveitis in either eye, pupillary reflexes were normal, colour vision and Amsler testing were not affected, and the visual fields were full. At this point the code for the trial drug was broken and it was seen that she had been using latanoprost 0.005% eye drops at night to both eyes over the 3 month period. A neurological consultation failed to find any neurological abnormality and all haematological and biochemical analyses were normal. A computed tomographic scan with contrast was normal.

The patient was initially discharged from neurological review. Follow up in the eye clinic revealed no change after 72 hours. The latanoprost was stopped and the disc swelling had largely resolved at 1 week. By 10 weeks

Figure 1 Early venous phase fluorescein angiogram of the right eye, macular area. Note the easily visible telangiectatic retinal capillaries (arrows). These abnormal vessels showed significant leakage of fluorescein in the late phase of the angiogram.
Somatostatin scan positive gastrinoma ocular metastasis

COMMENT

Gastrinoma may occur sporadically or as part of multiple endocrine neoplasia. MEN type 1 is a rare disorder, usually inherited in an autosomal dominant fashion with high penetrance which affects multiple endocrine glands (hyperparathyroid hyperplasia in 80–90%, pancreatic islet tumours in 50%, and pituitary adenomas in 40–50%).

Ocular metastasis from gastrinoma has not previously been reported, although it has been reported in other neuroendocrine tumours—for example, carcinoid. Multiple or metastatic gastrinomas (especially if actively secreting) are best localised by a new radioisotope scan using radioactively labelled somatostatin analogues. Somatostatin is a peptide elaborated by the delta cells of the islets of Langerhans and the hypothalamus. It inhibits the secretion of gastrin by gastric mucosa and many other hormones such as insulin, thyrotropin, and corticotropin. Somatostatin receptors are found on neuroendocrine tumours (80% of gastrinomas) and inducible octreotide visualises all somatostatin receptor positive gastrinomas.

Our scans revealed somatostatin avid liver metastases. Interestingly, the scan also very clearly confirmed the ocular/orbital disease. Orbital radiotherapy and chemotherapy were recommended.
Retinal neovascularisation in Goltz syndrome (focal dermal hypoplasia)

**EDITOR,—**This is the first reported case of Goltz syndrome with documented peripheral retinal non-perfusion with subsequent neovascularisation and vitreous haemorrhage. In the eye this represents solely a mesodermal disturbance compared with the more common cases which present with both mesodermal and neuroectodermal disturbances, such as coloboma or microphthalmia.

**CASE REPORT**

Goltz syndrome was diagnosed shortly after birth in a girl with linear lesions of atrophic skin following Blaschko’s lines on the trunk and symmetrical syndactyly of the third to fourth fingers and second to third toes. Initial ophthalmic screening revealed no ocular anomalies. Dental screening revealed the congenital absence of one deciduous incisor. Screening of the parents, brother, and sister was negative for skin, skeletal, and ocular anomalies. When she was aged 5 years, routine ophthalmic review showed a vision of right eye 6/9 and left eye 6/5, with a minor right myopia.

Age 7 years, she complained of a brief episode of photopsia and floaters in the right eye. Vision was right eye 6/20 and left eye 6/6. Examination revealed a right vitreous haemorrhage, telangiectatic vessels temporal to the macula, and temporal equatorial fibrotic vessels and haemorrhage. Fluorescein angiography showed bilateral peripheral retinal non-perfusion and right temporal neovascularisation (see Figs 1 and 2). This was treated conservatively for 2 years; however, after six bleeds within 3 months indirect retinal photoacoagulation to the areas of non-perfusion was performed with subsequent new vessel regression within weeks.

**COMMENT**

Focal dermal hypoplasia is a rare disorder of ectodermal and mesodermal dysplasia originally described by Goltz et al. It is characterised by congenital atrophic skin changes often associated with herniation of the subcutaneous fat; skeletal anomalies, in particular syndactyly, polydactyly, or adactyly as well as scoiosis, kyphosis, spina bifida occulta, rib and scapula anomalies; and dental anomalies, especially hypodontia.

Ocular anomalies occur in 40% of cases. Colobomata have been reported in one third of cases, then less frequently microphthalmia, strabismus, nystagmus, and ectopia lentis. Other reported ocular anomalies include anophthalmia, corneal clouding, aniridia, heterochromia, and optic atrophy. Rarely ectropion and ptosis may occur as well as lid margin or eyelid retraction. Neovascularisation is thought to be due to mosaicism.

![Figure 1](Image 72x101 to 222x254)  
**Figure 1** Colour fundus photograph of right temporal retina showing perfused retina (photo right) to peripheral non-perfusion (photo left) with fibrotic vessels and neovascular complex in the transition zone. (Inferior dislocation is artefact.)

![Figure 2](Image 233x608 to 380x743)  
**Figure 2** Fluorescein angiogram of same area showing peripheral non-perfusion and haemorrhage arising from the neovascular complex. The arteriath of the retinal vessels appears normal till the transitional zone.


pressure was recorded at less than 4 mm Hg. Fundal examination revealed evidence of a retinal tear although details were obscured by a diffuse vitreous haemorrhage. An ultrasound examination showed a vitreous haemorrhage and large retinal tear but no evidence of a scleral perforation.

An examination under anaesthesia performed the following day confirmed that there was no scleral rupture and indirect ophthalmoscopy confirmed the findings of diffuse vitreous haemorrhage and a retinal tear.

At the 2 week postoperative clinic visit, visual acuity had improved to 6/18. There was 2+ cells in the anterior chamber and the intraocular pressure was 10 mm Hg, and fundal examination was unchanged; the intraocular pressure was recorded at less than 4 mm Hg. Fundal examination revealed evidence of a retinal tear although details were obscured by a diffuse vitreous haemorrhage. An ultrasound examination showed a vitreous haemorrhage and a retinal tear.

Four months later, the best corrected visual acuity was 6/36. The anterior chamber activity had settled; the intraocular pressure was 10 mm Hg, and fundal examination was unchanged. In view of the persistent vitreous haemorrhage the patient was listed for routine dialyses, and choroidal ruptures have been reported.

COMMENT
Airbags are designed to protect the driver from direct impact from the steering wheel, dashboard, and windshield. They are designed to inflate in 10 ms in response to sudden deceleration and during deployment, the airbag is propelled out of its storage compartment at speeds of more than 100 mph. Following inflation the airbag deflates slowly within seconds.

Facial and ocular injuries associated with airbags have been reported in the literature. Skin abrasions, burns, and eyelid ecchymoses are the most common facial injuries. Reported ocular injuries include orbital fractures, keratitis, corneal abrasions, hyphaemas, angle recession, and lens subluxation. In the posterior segment, vitreous and retinal haemorrhages, commotio retinae, retinal tears and dialyses, and choroidal ruptures have been reported. To our knowledge, this is the first reported case of retinitis sclopeteria secondary to airbag inflation.

Although airbags have clearly been shown to reduce serious morbidity and mortality associated with road traffic accidents, they are associated with a number of injuries directly attributable to their inflation. Some of these are serious ocular injuries and it is important for ophthalmologists and others involved with trauma cases to be aware of these complications. A full ophthalmic assessment is mandatory in all cases and this should include indentation ophthalmoscopy. A variety of posterior segment injuries have been reported in the literature but this is the first report of retinitis sclopeteria resulting from airbag deployment.

R H Y ASARIA
A ZAMAN
P M SULLIVAN
Moorfields Eye Hospital, City Road, London EC1V 2PD

Correspondence to: Mr Asaria.
Accepted for publication 19 April 1999

Specular microscopic findings of corneal deposits in patients with Bietti’s crystalline corneal retinal dystrophy

EDITOR,—In 1937, Bietti1 first described three cases of tapetoretinal degeneration characterised by yellowish glistening retinal crystals, tapetoretinal degeneration with choroidal sclerosis, and marginal crystalline deposits of the cornea. Although more than 100 cases of crystalline retinopathy have been reported, crystalline deposits of the corneal limbs have been observed in only four out of 52 Japanese patients with crystalline retinopathy. Recently, observation using specular microscopy2 has been reported to be useful in detecting crystalline deposits at the limbus of patients with crystalline corneal retinal dystrophy. Therefore, in this study, we examined four patients with crystalline retinopathy using specular microscopy under a “con-surface” mode, which is used for the observation of the corneal surface, and we detected the deposits at the limbus.

Twelve months after the initial specular microscopic examination, we re-inspected the crystalline deposits of two cases. Interestingly, the changes in the locations and forms of the crystalline deposits in the corneal limbus were exposed over time (Fig 1). More crystalline deposits were found in the patients with more advanced retinopathy. It is supposed that corneal deposits and fundus deposits are essentially the same and it is suggested that crystalline retinopathy is caused by systemic abnormality. Although the exact pathogenesis of crystalline deposits is still uncertain, it is possible that destroyed fibroblasts appear to glitter or fibroblasts with crystalline-like deposits look glittering during breakdown. Further biochemical or cellular biological studies are needed to clarify these possibilities.

YUKO WADA
Department of Ophthalmology, Tohoku University School of Medicine, Sendai Japan

MITSURU NAKAZAWA
Department of Ophthalmology, Hirosaki University School of Medicine, Hirosaki, Aomori, Japan

TOSHIAKI ABE
TAKASHI SHIONO
MAKOTO TAMAI
Department of Ophthalmology, Tohoku University School of Medicine, Sendai, Japan

Correspondence to: Yuko Wada, MD, Department of Ophthalmology, Tohoku University School of Medicine, 1-1 Seiryu-machi, Aoba-ku, Sendai, 980-8774, Japan.
Accepted for publication 19 April 1999


Figure 1 Airbag injury with retinitis sclopeteria, an intragel haemorrhage, and attached retina.

Figure 1 Specular microscopic findings. (A) Many crystalline deposits are observed at the limbus. (B) Specular microscopic findings re-examined after 1 year. The change of the locations and forms of crystalline deposit from the same vessels can be seen.