Effect of spectacles on changes of spherical hypermetropia in infants who did, and did not, have strabismus

R M Ingram, L E Gill, T W Lambert

Abstract

Aim—To explore why emmetropisation fails in children who have strabismus.

Methods—289 hypermetropic infants were randomly allocated spectacles and followed. Changes in spherical hypermetropia were compared in those who had strabismus and those who did not. The effect of wearing glasses on these changes was assessed using t tests and regression analysis.

Results—Mean spherical hypermetropia decreased in both eyes of “normal” children (p<0.001). The consistent wearing of glasses impeded this process in both eyes (p<0.007). In the children with strabismus, there were no significant changes in either eye, irrespective of treatment (p>0.05).

Conclusions—In contrast with normal infants, neither eye of those who had strabismus emmetropised, irrespective of whether the incoming vision was clear or blurred. It is suggested that these eyes did not “recognise” the signal of blurred vision, and that they remained long sighted because they were destined to squint. Hence, the children did not squint because they were long sighted, and glasses did not prevent them squinting.

(Kettering General Hospital R M Ingram Institute of Health Sciences, Oxford L E Gill T W Lambert Correspondence to: Dr R M Ingram, 118 Northampton Road, Kettering, Northants, NN15 7LA Accepted for publication 25 October 1999)

Table 1 Effect of spectacles on changes in spherical hypermetropia in normal children and those with strabismus

<table>
<thead>
<tr>
<th>Group</th>
<th>No</th>
<th>Start Mean SE</th>
<th>End Mean SE</th>
<th>Change Mean SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>189</td>
<td>+4.57 0.07</td>
<td>+3.33 0.08</td>
<td>−1.24 0.09</td>
</tr>
<tr>
<td>T0</td>
<td>89</td>
<td>+4.47 0.11</td>
<td>+3.13 0.08</td>
<td>−1.34 0.13</td>
</tr>
<tr>
<td>T+/-</td>
<td>55</td>
<td>+4.60 0.10</td>
<td>+3.25 0.13</td>
<td>−1.35 0.15</td>
</tr>
<tr>
<td>T+</td>
<td>45</td>
<td>+4.74 0.15</td>
<td>+3.85 0.20</td>
<td>−0.89 0.18</td>
</tr>
<tr>
<td>Strabismus</td>
<td>100</td>
<td>+5.15 0.13</td>
<td>+4.87 0.16</td>
<td>−0.27 0.14</td>
</tr>
<tr>
<td>T0</td>
<td>53</td>
<td>+4.85 0.15</td>
<td>+4.69 0.21</td>
<td>−0.16 0.19</td>
</tr>
<tr>
<td>T+/-</td>
<td>25</td>
<td>+5.14 0.22</td>
<td>+4.76 0.29</td>
<td>−0.38 0.27</td>
</tr>
<tr>
<td>T+</td>
<td>22</td>
<td>+5.85 0.31</td>
<td>+5.43 0.42</td>
<td>−0.42 0.35</td>
</tr>
<tr>
<td>Total</td>
<td>289</td>
<td>+4.77 0.06</td>
<td>+3.87 0.09</td>
<td>−0.90 0.08</td>
</tr>
</tbody>
</table>

Sample and methods

In all, 615 (9.18%) of 6700 unselected 6 month old infants who attended for “screening” after instillation of cyclopentolate 1% had more than +5.25 D hypermetropia in at least one meridian. Approval was obtained for 372 (60.5%) of these to be randomly prescribed glasses (2.00 D less than the retinoscopy figure for each meridian) for constant wear. Those wearing glasses had non-cycloplegic retinoscopy, through their glasses, at all follow up attendances, and the prescription was amended until the cycloplegic retinoscopy of both eyes indicated less than +1.50 D astigmatism, when glasses were discontinued. They were subdivided according to whether they were deemed (by observations at each attendance)
to be wearing glasses consistently (T+, n=67) or not (T+/−, n=80). A total of 77 had a squint (five exotropia) diagnosed by the cover test and 23 a microtropia diagnosed by the 4 dioptre prism test. The mean initial astigmatism of the fixing eyes of those who had strabismus was significantly (p<0.001) less (0.31 D) than in those who did not, but there was no difference (p>0.50) in the non-fixing eyes.

All the refractions were done by RMI, and unaltered cycloplegic retinoscopy figures are quoted. The last retinoscopy was done when a squint was diagnosed (mean 37.99 (SD 11.67) months) or at 42+ months (mean 44.18 (7.21) months). Eyes of “normal” children were designated as “fixing” or “non-fixing” according to their vision or last refraction. If these were equal, they were randomly designated.

The clinical data were analysed using EPI-INFO and SPSS software, t tests, and multiple linear regression.

Results

Because of low numbers, the 23 children with microtropia were combined for analysis with the 73 who had squint, and are referred to as the “strabismus” group. Mean hypermetropia decreased significantly (p<0.001 using paired sample t tests) in both eyes of the normal group (see Table 1), but not in the strabismus group (p = 0.06 for fixing eyes, p = 0.24 for non-fixing eyes).

Each of the three treatment subgroups of the normal children showed a significant reduction (p<0.001) of the mean hypermetropia in both eyes, though the reduction was smaller in the T+ group (that is, those who consistently wore glasses). To explore this further, linear regression (see Fig 1) was used to relate the final value of hypermetropia (y) to its starting value (x), with differences in slope of the regression lines being used to compare responses to the three treatments—T0, no

Figure 1 Effect of spectacles on changes in spherical hypermetropia of normal children (linear regression with 95% confidence interval).
In Ingram, Gill, Lambert

with congenital retinal abnormalities.23 24 Fis- 

terna of both eyes, because failure to em-

of blurred vision, and that both these defects

inability to recognise (or respond to) a stimulus

before children squint, could be the result of an

There was a linear decrease of spherical hyper-

metropia of either eye, both overall and in each

mal children was therefore associated with the

consistent wearing of glasses (T+) by the nor-

0.75 (p=0.006) for the non-fixing eyes. The

slope of 0.68 (p=0.001) for the fixing eyes and

only marginally significant dependence on the

0.24) and for the non-fixing eyes there was

for the fixing eyes (p=0.14, estimated slope

0.03 and 0.09 respectively); in other words, the

significantly from zero (p=0.72 for fixing eyes,

the slope of the regression lines did not di

acceptation and deficient accommodation, found4

were destined to have strabismus, and (ii)

which should have nullified any need for extra

accommodation, not prevent them19 squinting?

We suggest that the sequence of events is that

(i) they remained long sighted because they

were home to have strabismus, and (ii) disparity/diplopia initially triggered conver-

gomination, which may then interact with accommodative vergence,17 permitting glasses to have some effect, but nei-

ther a curative nor a preventive one.

We thank Dr S J Judge for his observations and suggestions on

the preparation of this manuscript.

1 Aurell E, Norrell K K A longitudinal study of children with a

family history of strabismus: factors determining the


2 Ingram RM, Arnold PE, Dally S, et al. Emmetropisation, squint and reduced visual acuity after treatment. Br J Oph-


3 Abrahamsson M, Fabin G, Stjordand J Refraction changes in

children developing convergent or divergent strabismus. Br J Ophthal-


4 Ingram RM, Gill LE, Goldacre MJ. Emmetropisation and accom-

modation in hypermetropic children before they show signs of squint a preliminary analysis. Bull Soc Belge Ophthal-


5 Owens DA, Mohindra I, Hold R The effectiveness of a

retinoscope beam as an accommodative stimulus. Invest Ophthal-


8 Abraham SW Accommodation in the amblyopic eye. Am J Ophthal-


9 Sherman A. Some recent clinical observations and training procedures in functionally amblyopic patients. J Am Oph-

tom Ais 1970;41:624–6.

10 Wood ICJ, Tomlinson A. The accommodative response in


11 Otto J, Safra D. Accommodation in amblyopic eyes. Metab Ophthal-

l 1978;2:139–42.

12 Hokoda SC, Caiuffreda KJ. Measurement of accommodative amplitude in amblyopia. Ophthal Physiol Optics 1982;2:

205–13.

13 Kiorpes L, Boone RG. Accommodative range in amblyopic


screening programmes: prediction and prevention of strabusus and amblyopia from photo and videorefractive


15 Von Noorden GK, Avilla CW. Accommodative convergence in


16 Dobson V, Sebris SL, Carlson MR. Do glasses prevent emmetropisation in strabismic infants? Invest Ophthal-

mol Vis Sci 1986;27[ARVO suppl]:2.

17 Troilo D. Neonatal eye growth and emmetropisation a


18 Brown NP, Koretz JF, Bron AJ. The development and main-


19 Ingram RM, Arnold PE, Dally S, et al. Results of a

randomised trial of treating abnormal hypermetropia from


emmetropisation: longitudinal changes in refraction com-

ponents from 9 to 20 months of age. Optom Vis Sc


21 Von Noorden GK. Binocular vision and ocular motility. 2nd ed.


22 LiFang Hung, Crawford MLJ, Smith EL. Spectacle lenses

alter eye growth and the refractive status of young


23 Evans NM, Fielder AR, Mayer DL. Ametropia in congeni-

tal cone deficiency achromatopsia: a defect of emmetropi-


visual image degradation and spherical refractive errors in


25 Fincham EF, Walton J. The reciprocal actions of accommo-


26 Cumming BG, Judge SJ. Disparityinduced and blurred

tion eye movement and accommodation in the


27 Semmlow JL, Berard PV, Vercher JL, et al. The interactive