LETTERS TO THE EDITOR

Thyroid eye disease associated with athyria

EDITOR,—The pathogenesis of thyroid eye disease is believed to derive from fibroblast stimulation by cytokines released by activated T lymphocytes. There is evidence of abnormal cell mediated autoimmune and humoral autoimmune resulting in infiltration of lymphocytes and adipocytes into the extraocular muscles.2 The success of therapeutic immunosuppressants (steroids/azathioprine/radiotherapy) strengthens this hypothesis. A single definitive cross reacting (thyroid/retro-orbital) autoantibody has not been identified. Zhang et al found that sera from 50% of patients with thyroid eye disease reacted with an eye muscle specific protein of 55 kDa relative molecular weight.7 Pittsburgh data showed 67% patients with active Graves’ ophthalmopathy have antibodies against a 67 kDa mitochondrial flavoprotein subunit although it has been subsequently found in 20% of controls.8 They also identified a 220 kDa cell membrane specific protein known as G2S specific to eye muscle and thyroid tissue, but antibodies to this have been demonstrated in both thyroid eye disease patients and normal people.9 No autoantibody has been demonstrated in every case and all lack specificity. Our case demonstrates that whatever the autoimmune process may be, the presence of normal thyroid tissue or autoimmune disease afflicted thyroid is not essential at the time of onset and development of clinical disease.

CASE REPORT

At age 30, this woman underwent partial thyroidecmy for papillary thyroid cancer. At 36 years she underwent radioactive ablution (2.2 GBq iodine-131) of the residue for suspected recurrence. At this time there was no evidence of orbital disease.

At 70 years, she presented with 6 months’ diplopia and “puffy, gritty” eyes.

She was clinically euthyroid on thyroxine, with bilateral proptosis (worse on the left) with conjunctival congestion, periorbital oedema, a divergent strabismus (Fig 1) and limitation of upward gaze. A clinical diagnosis of thyroid eye disease was made, which was confirmed by orbital computed tomography (Fig 2).

Both her sister and paternal grandmother had goitres without thyroid eye disease. Her sister had thyroid microsomal antibodies.

INVESTIGATIONS

Normal triiodothyronine 1.44 nmol/l (range 1.2–2.2), mildly elevated thyroxine (174 nmol/l, normal range 58–140) in an attempt to suppress the thyroid stimulating hormone (0.9 mU/l, normal range 0.3–4.0). A technetium-99 uptake scan showed no thyroid remnant. An iodine-123 tracer scan showed borderline evidence of uptake in the thyroid bed but avid uptake in the lower thoracic spine suggesting residual thyroid cancer with vertebral metastasis. Her serum thyroglobulin was elevated at 28 ng/ml (normal range <1 in athyria) but there were no antithyroglobulin antibodies. Thyroid stimulating hormone antibodies were negative, as were her thyroglobulin antibodies and thyroid microsomal antibodies. All human and porcine retrobulbar autoantigens were negative including the aforementioned 55, 67, and 220 kDa protein antibodies despite the presence of metastatic thyroid tissue. Her general autoantibody profile was negative for antinuclear antibodies, gastric parietal cell, smooth muscle, liver/kidney microsomal, mitochondrial and reticulin. The RA index was weakly positive and the Rose-Waaler was <1:32.

Her thyroid eye disease was treated with radiotherapy to good effect. Her asymptomatic metastatic thyroid cancer is being treated with radiiodine.

COMMENT

This woman, with a family history of thyroid disease and whose sister has thyroid autoantibodies, has developed thyroid eye disease while possessing no significant normal thyroid tissue for 36 years. She was negative for the full array of routine and experimental thyroid autoantibodies and no other autoimmune disease were demonstrable.

If a humoral mechanism is relevant, then there are several possible explanations; firstly the autoantibody could be related to the sodium-iodine symporter in the thyroid cancer cells. That the recurrent thyroid cancer took up iodine may suggest the sodium-iodine symporter protein was present. An antibody to this protein may be a candidate for the cross reacting autoantibody but is not measured. Against this hypothesis is the fact that her sera did not cross react with porcine and human thyroid tissue screening test. Secondly, this observation could be explained by a separate or non-specific, non-thyroid specific immune response cross reacting with the orbital muscles to instigate the pathogenic process. More than one autoantibody may be able to produce thyroid eye disease or this may be part of a multifactorial immune process. Further, it is known that the severity of thyroid eye disease is not related to autoantibody titres but rather to environmental factors such as smoking and iatrogenic factors such as radiiodine treatment of thyrotoxicosis.10

While we accept that much current interest in the pathogenesis of this disease is not with humoral mechanisms, but with a T cell mediated cellular immune response, it is equally pertinent that any such event was initiated and progressed in a patient with athyria.

Correspondence in this case are relevant to the understanding of the aetiology of thyroid eye disease in so far as the disease occurred in the presence of differentiated thyroid cancer but in the absence of any normal thyroid tissue or thyroid currently a metastatic disease (and absence of any detectable amounts of the panoply of currently measurable serum autoantibodies)—this dissociation has not hitherto been recognised.

P B ROGERS
Department of Radiotherapy, St Bartholomew’s Hospital, London EC1A 7BE

G E ROSE
Moordif’s Eye Hospital, City Road, London EC1V 2PD

P N PLOWMAN
Department of Radiotherapy, St Bartholomew’s Hospital, London EC1A 7BE

Correspondence to: Dr P N Plowman
Accepted for publication 8 November 1999

Leber’s hereditary optic neuropathy and maturity onset diabetes mellitus: is there a metabolic association?

EDITOR,—Leber’s hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease that results in bilateral visual loss. It primarily affects young men. The typical optic nerve head appearance is one of circum-papillary telangiectatic microangiopathy, swelling of the nerve fibre layer around the optic disc, and the absence of capillary leakage on fluorescein angiography.1

The mitochondrial inheritance of the disease was confirmed in 1988 by Wallace et al who identified a mitochondrial DNA replace-
ment mutation at nucleotide position 11778. Further mutations have been identified at positions 3460, 14484, and 15257. The 11778 mutation is responsible for 31–89% of LHON pedigrees in Europe, North America, and Australia, while the 3460 and 14484 mutations each account for approximately 10–15% of cases. The discovery of the molecular basis of LHON has provided insights into the heterogeneous clinical spectrum of disease that may result. Although the causal mutations are established, the pathophysiology of the optic nerve damage is not known. The relation between metabolic dysfunction, such as diabetes mellitus, and the development of Leber’s hereditary optic neuropathy has been described only rarely.

Du Bois and Feldon described a case of a 9 year old girl with juvenile onset diabetes mellitus and LHON whose vision recovered once the diabetes was well controlled. In their series of 49 Leber’s pedigrees, Newman et al described the case of another 9 year old girl with visual loss due to LHON in the setting of 6 months of unrecognised diabetes mellitus. They later suggested that diabetes mellitus may have placed undue stress on mitochondrial function.

The following case report suggests a relation between the development of non-insulin diabetes mellitus and LHON in an adult patient and the expression of Leber’s hereditary optic neuropathy.

CASE REPORT

In February 1998, a previously healthy 50 year old man presented with a 5 week history of progressive deterioration of vision in both eyes and left lower limb weakness. He had recently been diagnosed with non-insulin dependent diabetes mellitus. No family history of visual disturbance was elicited. At the time of presentation, his best corrected visual acuities were 6/30 right and 1/60 left. Anterior segment examination was normal and fundal examination revealed sub-foveal macular atrophy. Visual field analysis revealed bilateral small central scotomas.

A provisional diagnosis of diabetic optic neuropathy was made. The patient’s vision continued to deteriorate and by May 1998, the visual acuities were counting fingers (CF) right and left and he was unable to identify the food on his plate. Anterior segment examination was again normal and fundal examination revealed slight superior disc swelling in both eyes associated with superficial capillary dilation. The visual fields now showed superior defects on both sides in addition to the central scotomata. Magnetic resonance imaging of the brain did not reveal any abnormalities and lumbar puncture was also normal. ERG showed normal photoreceptor function and the VEP results were consistent with his reduced visual acuity.

Diabetes and carried out and the patient was found to be a carrier of the Leber’s hereditary optic neuropathy 11778 mutation. The case series are described in Table 1.

Table 1 Clinical characteristics of the case series

<table>
<thead>
<tr>
<th>No</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Eye</th>
<th>Indication for LEC</th>
<th>LEC to repaving</th>
<th>Site for LEC</th>
<th>Harvested site</th>
<th>Graft size (D0/D1 mm)</th>
<th>Follow up (months)</th>
<th>Last IOP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>55</td>
<td>R</td>
<td>POAG</td>
<td>10 days</td>
<td>upper</td>
<td>upper</td>
<td>6×5</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>64</td>
<td>L</td>
<td>POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>6×5</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>65</td>
<td>R</td>
<td>POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>6×5</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>65</td>
<td>L</td>
<td>POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>9×5</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>65</td>
<td>R</td>
<td>POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>10×6</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>60</td>
<td>L</td>
<td>POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>6×5</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>

LEC = trabeculectomy, POAG = primary open angle glaucoma, DP = diameter parallel to the limbus, DV = diameter vertical to the limbus, IOP = intraocular pressure.

COMMENT

Leber’s hereditary optic neuropathy is known to segregate in a non-mendelian, maternal pattern. It is also evident that other determinants, whether genetic or epigenetic, play a part in disease expression. All the mDNA mutations associated with LHON alter polypeptides of the mitochondrial oxidative phosphorylation chain which may lead to inhibition of cellular energy production. The epigenetic factors that may play a part in the expression of LHON include tobacco use, alcohol abuse, metabolic disease (especially diabetes mellitus), trauma, and a systemic illness including hypertriglyceridaemia and Crohn’s disease have also been associated with the disease. It has been hypothesised that these conditions serve to reduce the energy for the cellular requirements of the optic nerve leading to inhibition of the functions of the cell, such as DNA and RNA synthesis and protein turnover. Diabetic optic neuropathy is a recognised, though rare, condition, which does not leak on fluorescein angiography, a diagnosis of LHON warrants consideration.

This case highlights the possibility that patients labelled in the past as having diabetic optic neuropathy may have had an additional unrecognised Leber’s genetic predisposition.

ABOSEDE COLE

GORDON N DUTTON

Department of Ophthalmology, Southern General Hospital NHS Trust, 1345 Gowan Road, Glasgow G51 4TF

Correspondence to: Dr Cole
Accepted for publication 8 November 1999

Free conjunctival autograft harvested from the fornix for repair of leaking blebs

EDITOR,—In a previously reported technique of free conjunctival autograft for the repair of leaking blebs, the distance from the limbus to the herniation site was not specified. In these reports, the paralimbal conjunctiva could have been excised, which makes future filtration surgery difficult at that site. We believe that even in the contralateral eye or the inferior quadrant of the same eye, paralimbal conjunctiva are sites for potential future filtration surgery in most cases. Buxton et al stated that grafts should not be taken from the fornix because this can induce a preceding shortening and lid malposition if both palpebral and bulb conjunctiva are excised. We found that grafts can be harvested from the fornix with no complications, thus preserving the potential filtration sites.

CASE REPORTS

In six eyes of four patients, we repaired persistent leaking blebs after trabeculectomy by transplanting free conjunctival autografts harvested from the fornix. Grafts were harvested from the fornix side of the leaking blebs when possible. When the intact conjunctiva of the fornix side of a leaking bleb was very narrow, the graft was harvested from the other quadrant, 5–6 mm away from the limbus. The procedure followed the previously reported technique, except for the site from which the graft was harvested. The aqueous leaks were repaired successfully, and filtering function was maintained in all cases. Two eyes of two patients required β blocker treatment to maintain satisfactory intraocular pressure after the repair surgery. Over an average follow up of 9 months (range 6–12 months), none of the grafts was harvested from the other quadrant, and both palpebral and bulbar conjunctiva or lid malposition. The case series are described in Table 1.

Letters

Br J Ophthalmol: first published as 10.1136/bjo.84.4.439 on 1 April 2000. Downloaded from http://bjo.bmj.com/ on October 20, 2023 by guest. Protected by copyright.
COMMENT

We believe that the optimal site for harvesting conjunctival autografts is the fornix side of the leaking bleb, because it has almost no potential as a future filtration site. The paralimb conjunctiva of the contralateral eye is often a potential future filtration site, since glaucoma is often bilateral. Even with a diagnosis of unilateral glaucoma at the time of bleb reconstruction, the potential for development of glaucoma in the contralateral eye cannot be completely excluded. A persistent bleb leak that requires total reconstruction is frequently encountered in eyes that have undergone multiple procedures and treatment with adjunctive antimetabolites.1,2 These situations are mostly encountered in eyes with refractory glaucoma, which often have little intact paralimbal conjunctiva remaining but have a high potential for multiple filtration surgeries. We believe that intact conjunctiva within 3 mm from the limbus is needed to perform a successful filtration surgery. The reported distances of the conjunctival fornix from the limbus are as follows: upper, 8–10 mm; temporal, 14 mm; lower, 8–10 mm; nasal, 7 mm. These data indicate that conjunctiva may be taken from the upper or lower quadrant, and is most easily taken from the temporal quadrant when harvesting a graft 5 mm away from the limbus. No special attention was required to avoid excising the palpebral conjunctiva during this procedure. Excising the palpebral conjunctiva may be technically difficult during this procedure. We conclude that harvesting a graft from the fornix should be considered when reconstruction surgery is performed with free conjunctival autografts for leaking blebs.

DAISUKE MIYAZAWA
TAKEHISA KONDO
Department of Ophthalmology, Kobe City General Hospital, 4-6 Minatojima-nakamachi, Kobe 650-0046, Japan

Correspondence to:
Daisuke Miyazawa, MD, Department of Ophthalmology, Kobe City General Hospital, 4-6 Minatojima-nakamachi, Kobe 650-0046, Japan
Accepted for publication 8 December 1999

Five cases of thelaziasis

EDITOR—We report five cases of thelaziasis, including a rare case of infection of a hospital inpatient. Thelaziasis is a nematode infection of ocular tissue that is caused by Thelazia caliopa, which is found in China, India, Thailand, Korea, and Japan. This parasite has been identified in the conjunctival sac, and lacrimal gland and canal of dogs, cats, cows, badgers, rabbits, foxes, and monkeys in Asia. Thelaziasis results when flies ingest embryonated eggs in the ocular tissue of an infected host; the eggs develop into larvae and are deposited onto the conjunctiva of a new host. Drosophilae—namely, Amoto okada, A magna, and A nagatai—are the intermediate hosts.1

To our knowledge, with the exception of Japan 157 cases have been reported worldwide (China, 124; Korea, 24; Thailand, 5; India, 2; Russia and Indonesia, 1 each). In Japan, approximately 100 cases have been reported, mostly in the western regions, especially in Kyushu (66 cases).2 To date, there have been no reported cases of inpatient infections.

CASE REPORTS

The clinical features of the five patients are summarised in Table 1. Patients (three men, two women; ages, 40–82 years) were examined at Muikaiti Hospital and Tuwanokuzou Hospital from 1989 to 1999. Patients 1, 2, 3, 4 were outpatients, but patient 5 was an inpatient who had been hospitalised for more than a year. There were no other cases in the same hospital ward or infection of medical personnel. All patients were infected unilaterally (three right eyes, two left eyes). The patients’ subjective symptoms were foreign body sensation, visual disorder, and ocular pain. Patient 5 had senile dementia and her symptoms are unknown. Clinical findings were conjunctival congestion, follicles, and whitish worms in the conjunctiva. Patients did notreport having had flies in their eyes, but do keep animals such as dogs, cats, and cows. They had never visited the Kyushu region of Japan. The worms were removed (two to five worms per patient) with forceps using topical anaesthesia and antibiotic eye drops (Fig 1). The patients’ symptoms resolved and there were no recurrences. The presence of the Thelazia caliopa worms was confirmed by parasitologists.

COMMENT

Kirschner et al reported a case of conjunctivitis caused by Thelazia callipaeda in a fly and a fly was believed to have been the possible mode of transmission in the Sierra Mountain foothills of California.3 Mimori et al reported Thelazia callipaeda infection in a man in Kumamoto Prefecture, Japan, who lived in the mountains.4 The hospitals in which our patients were examined were located in remote mountainous region of Shimane Prefecture in western Honshu. Patients lived in the suburbs in which the hospitals were located; the infections might have occurred in their places of residence.

In the case of the infection of the inpatient, the infection route is unclear. Some farms that raise beef cattle are located near the hospital, and it is possible that flies from these farms transported the parasite to the hospital.

The authors have no proprietary interest in any aspect of this report.

YASUROU KOYAMA
Division of Ophthalmology, Muskaish Hospital, Muskaish, Shimane, Japan

AKIHIRO OHIRA
Department of Ophthalmology, Shimane Medical University, Izumo, Shimane, Japan

TATSURO KONO
Department of 2nd Enviroment Medicine, Shimane Medical University, Izumo, Shimane, Japan

TOSHIHIKO ONOYAMA
KUNINORI SHIWAKU
Department of Ophthalmology, Shimane Medical University, Shimane Medical University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
Accepted for publication 8 December 1999

Fish hook injury of the eyelid: an unusual case

EDITOR.—Reports of ocular fish hook injuries are uncommon in the literature. In the context of a recent case report by Krott and co-authors,1 I would like to add my experience with a rather unusual case of fish hook injury to the eyelid.

A 44 year old man presented to the casualty department with a fish hook embedded in his eye. The hook was partially removed, and at the patient’s request, the fish hook was left in place. The patient was seen again 3 days later, and the fish hook was removed. The patient had no discomfort or discharge. The fish hook injury was unusual because of the location of the injury and the size of the hook. The patient was able to continue with his daily activities without any problems.

Table 1

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Year examined</th>
<th>Infected eye</th>
<th>No of worms</th>
<th>Symptoms of conjunctivitis</th>
<th>Clinical findings and follicles</th>
<th>Visual disorder</th>
<th>Foreign body sensation</th>
<th>Conjunctival congestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>65</td>
<td>1995</td>
<td>Left</td>
<td>3</td>
<td>Conjunctival congestion</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>83</td>
<td>1996</td>
<td>Right</td>
<td>3</td>
<td>Conjunctival congestion</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>83</td>
<td>1997</td>
<td>Left</td>
<td>3</td>
<td>Conjunctival congestion</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>57</td>
<td>1998</td>
<td>Right</td>
<td>3</td>
<td>Conjunctival congestion</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>80</td>
<td>1999</td>
<td>Left</td>
<td>3</td>
<td>Conjunctival congestion</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Methaemoglobinaemia after peribulbar blockade: an unusual complication in ophthalmic surgery

EDITOR,—Peribulbar blockade is frequently used for anaesthesia in ophthalmic surgery. Owing to its short onset time and low incidence of cardiac and central nervous system toxicity, the local anaesthetic prilocaine is a popular choice for peribulbar blockade. Prilocaine is, however, the most potent methaemoglobin forming local anaesthetic. We report a case of prilocaine induced methaemoglobinaemia after peribulbar blockade for ophthalmic surgery.

CASE REPORT
A 27 year old Romanian woman presented with a detached retina requiring surgical repair. Her medical history was significant for insulin dependent diabetes mellitus complicating by chronic renal failure, anaemia, and diabetic retinopathy. Her daily medication included captopril 25 mg, verapamil 240 mg, isosorbide dinitrate 40 mg, and frusemide 40 mg. A mixture of prilocaine 80 mg, bupivacaine 30 mg, hyaluronidase, and naphazoline was used to perform a peribulbar anaesthesia. Vital signs at the beginning of the operation were normal, oxygen saturation (SpO$_2$) was 96% on room air. Sixty minutes after the peribulbar block was performed, the patient became tachypnoeic, somnolent, and the SpO$_2$ decreased to 87% despite receiving 10 l/min of oxygen via facemask. There were no indications of myocardial ischaemia on the ECG and the breath sounds were clear. Arterial blood gas analysis demonstrated a PaO$_2$ 236 mm Hg, PaCO$_2$ 32 mm Hg, pH 7.31, base excess of −5.1, SaO$_2$ 98.4%, haemoglobin 5.3 g/dl, and methaemoglobin level of 11.2%. Surgery was interrupted, methylene blue (1.5 mg/kg) was administered, and the patient improved rapidly. She was discharged home without further incident a week later.

COMMENT
Oxygen normally binds reversibly to the sixth coordination position of haem iron in haemoglobin. Partial transfer of an electron from ferrous iron to oxygen leads to the formation of superoxo-ferrihaem (Fe$^{3+}$O2). Failure of the electron to transfer back to oxygen results in methaemoglobin (HbFe$^{3+}$) formation. Methaemoglobin formation in vivo is normally limited by NADH dependent methaemoglobin reductase, which serves as an electron donor for methaemoglobin. NADPH dependent methaemoglobin reductase plays a minor part (approx 5% of methaemoglobin reduction) but transfers the electron taken from methylene blue to the methaemoglobin. When methaemoglobin formation exceeds >1% of total haemoglobin, tissue oxygen transport is compromised. Furthermore, the severity of tissue hypoaxemia may be underestimated by pulse oximetry which may constantly read 85% despite increasing methaemoglobin levels. Thus, arterial blood-gas determinations are necessary in order to confirm the diagnosis of methaemoglobinaemia and to fully appreciate the degree of hypoaxemia. Methaemoglobinaemia may be the result of primary or secondary (acquired) causes. Genetic conditions resulting in methaemoglobinaemia include mutagenic defects of haemoglobin and congenital reductase enzyme deficiency. Acquired methaemoglobinaemia may be caused by oxidant drugs that overwhelm the body’s ability to limit methaemoglobin formation via enzymatic reduction. Local anaesthetics are the most common cause of perioperative methaemoglobinaemia. Prilocaine is the most potent methaemoglobin forming local anaesthetic. Methaemoglobin formation is dose dependent and correlates with the rate of systemic absorption. In general, doses less than 600 mg in adults are thought not to increase the patient’s risk of methaemoglobinaemia. De-