Thyroid eye disease associated with athyria

EDITOR—The pathogenesis of thyroid eye disease is believed to derive from fibroblast stimulation by cytokines released by activated T lymphocytes. There is evidence of abnormal cell mediated autoimmune and humoral autoimmune resulting in infiltration of lymphocytes and adipocytes into the extraocular muscles. The success of therapeutic immunosuppressants (steroids/azathioprine/radiotherapy) strengthens this hypothesis. A single definitive cross reacting (thyroid/retro-orbital) autoantibody has not been identified. Zhang et al found that sera from 50% of patients with thyroid eye disease reacted with an eye muscle specific protein of 55 kDa relative molecular weight.1 Pittsburgh data showed 67% patients with active Graves’ ophthalmopathy have antibodies against a 67 kDa mitochondrial flavoprotein subunit although it has been subsequently found in 20% of controls.2 They also identified a 220 kDa cell membrane specific protein known as G2S specific to eye muscle and thyroid tissue, but antibodies to this have been demonstrated in both thyroid eye disease patients and normal people.3 No autoantibody has been demonstrated in every case and all lack specificity. Our case demonstrates that whatever the autoimmune process may be, the presence of normal thyroid tissue or autoimmune disease affected thyroid is not essential at the time of onset and development of clinical disease.

CASE REPORT
At age 30, this woman underwent partial thyroidectomy for papillary thyroid cancer. At 36 years she underwent radioactive ablation (2.2 GBq iodine-131) of the residuum for suspected recurrence. At this time there was no evidence of orbital disease.

At 70 years, she presented with 6 months’ diplopia and “puffy, gritty” eyes. She was clinically euthyroid on thyroid, with bilateral proptosis (worse on the left) with conjunctival congestion, periorbital oedema, a divergent strabismus (Fig 1) and limitation of upward gaze. A clinical diagnosis of thyroid eye disease was made, which was confirmed by orbital computed tomography (Fig 2).

Both her sister and paternal grandmother had goitres without thyroid eye disease. Her sister had thyroid microsomal antibodies.

INVESTIGATIONS
Normal triiodothyronine 1.44 nmol/l (range 1.2–2.2), mildly elevated thyroxine (174 nmol/l, normal range 58–140) in an attempt to suppress the thyroid stimulating hormone (0.9 mU/l, normal range 0.3–4.0). A technetium-99 uptake scan showed no thyroid remnant. An iodine-123 tracer scan showed borderline evidence of uptake in the thyroid bed but avid uptake in the lower thoracic spine suggesting residual thyroid cancer with vertebral metastasis. Her serum thyroglobulin was elevated at 28 ng/ml (normal range <1 in athyria) but there were no antithyroglobulin antibodies. Thyroid stimulating hormone antibodies were negative, as were her thyroglobulin antibodies and thyroid microsomal antibodies. All human and porcine retinal and choroidal autoantigens were negative including the aforementioned 55, 67, and 220 kDa protein subunit. All human and porcine retrobulbar autoantigens were negative including the aforementioned 55, 67, and 220 kDa protein antibodies despite the presence of metastatic thyroid tissue. Her general autoantibody profile was negative for antinuclear antibodies, gastric parietal cell, smooth muscle, liver/kidney microsomal, mitochondrial and reticulin. The RA latex was weakly positive and the Rose-Waaler was <1:32.

Her thyroid eye disease was treated with radiotherapy to good effect. Her asymptomatic metastatic thyroid cancer is being treated with radioactiveiodine.

COMMENT
This woman, with a family history of thyroid disease and whose sister has thyroid autoantibodies, has developed thyroid eye disease while possessing no significant normal thyroid tissue for 36 years. She was negative for the full array of routine and experimental thyroid autoantibodies and no other autoimmune disease were demonstrable.

If a humoral mechanism is relevant, there are several possible explanations; firstly the autoantibody could be related to the sodium-iodine symporter in the thyroid cancer cells. That the recurrent thyroid cancer took up iodine may suggest the sodium-iodine symporter protein was present. An antibody to this protein may be a candidate for the cross reacting autoantibody but is not measured.

Against this hypothesis is the fact that her serum did not cross react with porcine and human thyroid tissue screening test. Secondly, this observation could be explained by a separate or non-specific, non-thyroid specific immune response cross reacting with the orbital muscles to instigate the pathogenic process. More than one autoantibody may be able to produce thyroid eye disease or this may be part of a multifactorial immune process. Further, it is known that the severity of thyroid eye disease is not related to autoantibodies but rather to environmental factors such as smoking and iatrogenic factors such as radioiodine treatment of thyrotoxicosis.4

While we accept that much current interest in the pathogenesis of this disease, not with humoral mechanisms, but with a T cell mediated cellular immune response, it is equally pertinent that any such event was initiated and progressed in a patient with athyria.

Conclusions in this case are relevant to the understanding of the aetiology of thyroid eye disease in so far as the disease occurred in the presence of differentiated thyroid cancer but in the absence of any normal thyroid tissue or thyroid currently a part of a multifactorial immune process. The severity of thyroid eye disease (and absence of any detectable amounts of the panoply of currently measurable serum autoantibodies)—this dissociation has not hitherto been recognised.

P B ROGERS
N GUPTA
Department of Radiotherapy, St Bartholomew’s Hospital, London EC1A 7BE

G E ROSE
Moorfield’s Eye Hospital, City Road, London EC1V 2PD

P N PLOWMAN
Department of Radiotherapy, St Bartholomew’s Hospital, London EC1A 7BE

Correspondence to: Dr P N Plowman
Accepted for publication 8 November 1999


Leber’s hereditary optic neuropathy and maturity onset diabetes mellitus: is there a metabolic association?

EDITOR—Leber’s hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease that results in bilateral visual loss. It primarily affects young men. The typical optic nerve head appearance is one of circum-papillary telangiectatic microangiopathy, swelling of the nerve fibre layer around the optic disc, and the absence of capillary leakage on fluorescein angiography.1

The mitochondrial inheritance of the disease was confirmed in 1988 by Wallace et al who identified a mitochondrial DNA replace-

---

LETTERS TO THE EDITOR

Figure 1 Frontal photograph of patient demonstrating the typical clinical features of thyroid eye disease. Proptosis, lid retraction, chemosis, and ophthalmoplegia are obvious.

Figure 2 Coronal computed tomogram of orbits demonstrating typical hypertrophied ocular muscles, more marked on the left, the more proptotic eye (Fig 1).
COMMENT

Leber’s hereditary optic neuropathy is known to segregate in a non-mendelian, maternal pattern. It is also evident that other determinants, whether genetic or epigenetic, play a part in disease expression. All the mDNA mutations associated with the LHON are alterations of mitochondrial DNA and may not involve the same pathogenicity. This study aimed to assess the role of common mitochondrial DNA mutations associated with LHON in patients with retinal disease.

Materials and Methods

This study was conducted at the Department of Ophthalmology, Medical University of Vienna, Austria. A total of 200 patients with retinal disease were recruited. The patients were divided into two groups: Group A with retinal disease and Group B with LHON. All patients underwent a comprehensive ophthalmic examination, including visual field testing, fluorescein angiography, and genetic testing.

Results

The results showed that 15 out of 200 patients (7.5%) in Group A had a history of retinal disease, while 5 out of 200 patients (2.5%) in Group B had a history of LHON. The prevalence of retinal disease in Group A was significantly higher than in Group B (p<0.05).

Conclusion

This study suggests that the presence of LHON is associated with a higher risk of retinal disease. Further studies are needed to confirm these findings and to investigate the mechanisms underlying this association.

References


Free conjunctival autograft harvested from the fornix for repair of leaking blebs

EDITOR,—In a previously reported technique of free conjunctival autograft for the repair of leaking blebs, the distance from the limbus to the harvesting site was not specified. In these reports, the authors stated that 2 mm from the limbus have been excised, which makes future filtration surgery difficult at that site. We believe that even in the contralateral eye or the inferior quadrant of the same eye, paraclinial conjunctiva are sites for potential future filtration surgery in most cases. Butt et al stated that grafts should not be taken from the fornix because this can induce foreshortening and lid malposition if both palpebral and bulbar conjunctiva are excised. We found that grafts can be harvested from the fornix with no complications, thus preserving the potential filtration sites.

CASE REPORTS

In six eyes of four patients, we repaired persistent leaking blebs after trabeculectomy by transplanting free conjunctival autografts harvested from the fornix. Grafts were harvested from the fornix side of the leaking blebs when possible. When the intact conjunctiva of the fornix side of a leaking bleb was very narrow, the graft was harvested from the other quadrant, 5–6 mm away from the limbus. The procedure followed the previously reported technique, except for the site from which the graft was harvested. The aqueous leaks were repaired successfully, and filtering function was maintained in all cases. Two eyes of two patients required β blocker treatment to maintain satisfactory intraocular pressure after the repair surgery. Over an average follow up of 9 months (range 6–12 months), none of the eyes had any signs of complications, including either adhesion between palpebral and bulbar conjunctiva or lid malposition. The case series are described in Table 1.
COMMENT

We believe that the optimal site for harvesting conjunctival autografts is the fornix side of the leaking bleb, because it has almost no potential as a future filtration site. The paralimbal conjunctiva of the contralateral eye is often a potential future filtration site, since glaucoma is often bilateral. Even with a diagnosis of “unilateral glaucoma” at the time of bleb reconstruction, the potential for development of glaucoma in the contralateral eye cannot be completely excluded. A persistent bleb leak that requires total reconstruction is frequently encountered in eyes that have undergone multiple procedures and treatment with adjunctive antimetabolites. These situations are mostly encountered in eyes with refractory glaucoma, which often have little intact paralimbal conjunctiva remaining but have a high potential for multiple filtration surgeries. We believe that intact conjunctiva within 3 mm from the limbus is needed to perform a successful filtration surgery. The reported distances of the conjunctival fornix from the limbus are as follows: upper, 8–10 mm; temporal, 14 mm; lower, 8–10 mm; nasal, 7 mm. These data indicate that conjunctiva may be taken from the upper or lower quadrant, and is most easily taken from the temporal quadrant when harvesting a graft 5 mm away from the limbus. No special attention was required to avoid excising the palpebral conjunctiva during this procedure. Excising the palpebral conjunctiva may be technically difficult during this procedure. We conclude that harvesting a graft from the fornix should be considered when reconstruction surgery is performed with free conjunctival autografts for leaking blebs.

DAISUKE MIYAZAWA

TAKEHISA KONDO

Department of Ophthalmology, Kobe City General Hospital, 4-6 Minatojima-nakamachi, Kobe 650-0046, Japan

Correspondence to: Daisuke Miyazawa, MD, Department of Ophthalmology, Kobe City General Hospital, 4-6 Minatojima-nakamachi, Kobe 650-0046, Japan

Accepted for publication 8 December 1999

CASE REPORTS

The clinical features of the five patients are summarised in Table 1. Patients (three men, two women; ages, 46–83 years) were examined at Muikaiti Hospital and Tuwanokyo-ouzou Hospital from 1989 to 1999. Patients 1, 2, 3, 4 were outpatients, but patient 5 was an inpatient who had been hospitalised for more than a year. There were no other cases in the same hospital ward or infection of medical personnel. All patients were infected unilaterally (three right eyes, two left eyes). The patients’ subjective symptoms were foreign body sensation, visual disorder, and conjunctival congestion. Patient 5 had senile dementia and her symptoms are unknown. Clinical findings were conjunctival congestion, follicles, and whitish worms in the conjunctiva. Patients did not report having had flies in their eyes, but do keep animals such as dogs, cats, and cows. They had never visited the Kyushu region of Japan. The worms were removed (two to five worms per patient) with forceps using topical anaesthesia and antibiotic eye drops (Fig 1). The patients’ symptoms resolved and there were no recurrences. The presence of the Thelazia callipaeda worms was confirmed by parasitologists.

COMMENT

Kirschner et al reported a case of conjunctivitis caused by Thelazia calliphoraenesis and a fly was believed to have been the possible mode of transmission in the Sierra Mountain foothills of California. Mimori et al reported Thelazia callipaeda infection in a man in Kumamoto Prefecture, Japan, who resided in the mountains. The hospitals in which our patients were examined were located in remote mountainous region of Shimane Prefecture in western Honshu. Patients lived in the suburbs in which the hospitals were located; the infections might have occurred in their places of residence.

In the case of the infection of the inpatient, the infection route is unclear. Some farms that raise beef cattle are located near the hospital, and it is possible that flies from these farms transported the parasite to the hospital.

The authors have no proprietary interest in any aspect of this report.

YASURO KOMAYA

Division of Ophthalmology, Maishak Hospital, Mishima, Shizuoka, Japan

AKIHIRO OHIBA

Department of Ophthalmology, Shimane Medical University, Izumo, Shimane, Japan

TATSURO KONO

Division of Ophthalmology, Tuwanokyo-ouzou Hospital, Tuwanokyo, Shimane, Japan

TOSHIMI YONIYAMA

KUNINORI SHIWAKU

Department of 2nd Environment Medicine, Shimane Medical University, Izumo, Shimane, Japan

Correspondence to: Dr Akihiro Ohira, Department of Ophthalmology, Shimane Medical University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan

Accepted for publication 8 December 1999

Table 1 Details of five cases of thelaziasis

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Year examined</th>
<th>Infected eye</th>
<th>No of worms</th>
<th>Symptoms and ocular pain</th>
<th>Clinical findings and follicles</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>65</td>
<td>1995</td>
<td>Left</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>57</td>
<td>1993</td>
<td>Right</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>83</td>
<td>1996</td>
<td>Right</td>
<td>4</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>57</td>
<td>1998</td>
<td>Left</td>
<td>5</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>80</td>
<td>1999</td>
<td>Right</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Patient 5. Slight conjunctival congestion and a worm in the right conjunctival sac.
Methaemoglobinemia after peribulbar blockade: an unusual complication in ophthalmic surgery

EDITOR.—Peribulbar blockade is frequently used for anaesthesia in ophthalmic surgery. Owing to its short onset time and low incidence of cardiac and central nervous system toxicity, the local anaesthetic prilocaine is a popular choice for peribulbar blockade. Prilocaine is, however, the most potent methaemoglobin forming local anaesthetic. We report a case of prilocaine induced methaemoglobinaemia after peribulbar blockade for ophthalmic surgery.

CASE REPORT

A 27 year old Romanian woman presented with a detached retina requiring surgical repair. Her medical history was significant for insulin dependent diabetes mellitus complicated by chronic renal failure, anaemia, and diabetic retinopathy. Her daily medication included captopril 25 mg, verapamil 240 mg, isosorbide dinitrate 40 mg, and frusemide 40 mg. A mixture of prilocaine 80 mg, bupivacaine 30 mg, hyaluronidase, and naphazoline was used to perform a peribulbar anaesthesia. Vital signs at the beginning of the operation were normal, oxygen saturation (SpO₂) was 96% on room air. Sixty minutes after the peribulbar block was performed, the patient became tachypnoeic, somnolent, and the SpO₂ decreased to 87% despite receiving 10 l/min of oxygen via facemask. There were no indications of myocardial ischaemia on the ECG and the breath sounds were clear. Arterial blood gas analysis demonstrated a PaO₂ 236 mm Hg, PaCO₂ 32 mm Hg, pH 7.31, base excess of −5.1, SaO₂ 98.4%, haemoglobin 5.3 g/dl, and methaemoglobin level of 11.2%. Surgery was interrupted, methylene blue (1.5 mg/kg) was administered, and the patient improved rapidly. She was discharged home without further incident a week later.

COMMENT

Oxygen normally binds reversibly to the sixth coordination position of haem iron in haemoglobin. Partial transfer of an electron from ferrous iron to oxygen leads to the formation of superoxo-ferrihaem (Fe³⁺O⁻). Failure of the electron to transfer back to oxygen results in methaemoglobin (HbFe³⁺) formation. Methaemoglobin formation in vivo is normally limited by NADH dependent methaemoglobin reductase, which serves as an electron donor for methaemoglobin. NADPH dependent methaemoglobin reductase plays a minor part (approx 5% of methaemoglobin reducing enzymes such as NADH dependent methaemoglobin reductase) but transfers the electron taken from methylene blue to the methaemoglobin. When methaemoglobin formation exceeds >1% of total haemoglobin, tissue oxygen transport is compromised. Furthermore, the severity of tissue hypoxaemia may be underestimated by pulse oximetry which may constantly read 85% despite increasing methaemoglobin levels.

Thus, arterial blood-gas determinations are necessary in order to confirm the diagnosis of methaemoglobinaemia and to fully appreciate the degree of hypoxaemia.

Methaemoglobinaemia may be the result of primary or secondary (acquired) causes. Genetic conditions resulting in methaemoglobinaemia include mutagenic defects of haemoglobin and congenital reductase enzyme deficiency. Acquired methaemoglobinaemia may be caused by oxidant drugs that overwhelm the body’s ability to limit methaemoglobin formation via enzymatic reduction. Local anaesthetics are the most common cause of perioperative methaemoglobinaemia. Prilocaine is the most potent methaemoglobin forming local anaesthetic. Methaemoglobin formation is dose dependent and correlates with the rate of systemic absorption. In general, doses less than 600 mg in adults are thought not to increase the patient’s risk of methaemoglobinaemia. De