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Molecular ophthalmology: an update on animal models for
retinal degenerations and dystrophies
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For several decades, basic research on acquired and inher-
ited retinal degeneration was substantially based on a vari-
ety of animal models, most of them originating from spon-
taneous mutations, others induced by damaging external
agents. In the past few years, however, progress in genetic
engineering has led to a rapidly growing number of trans-
genic animals, mostly mice, carrying constructs that lead to
disruption or overexpression of candidate genes for retinal
degenerations. On the one hand, these new models consti-
tute a powerful and adaptable tool to investigate the role of
specific gene mutations and the resulting cellular defects
that finally lead to photoreceptor cell death. On the other
hand, they extend the spectrum of animal models suitable
for the newly arisen field of retinal somatic gene therapy.

To assist researchers and clinicians interested in the
field, this article attempts to provide a structured overview
on recently developed transgenic animal models as well as
on models based on spontaneous mutations and induced
degenerations. In this review the authors focus on animal
models for photoreceptor degeneration since the rapidly
growing field of models for ganglion cell death merits its
own review and would be beyond the scope of this article.
Even with this restriction, the abundance of information
generated especially in the past few years makes the
attempt of a complete overview almost illusory. Therefore,
we apologise for omissions or shortfalls extant in this
review. Furthermore, we want to point out that some of the
model systems described have already been used exten-
sively. We will therefore occasionally not cite original pub-
lications but rather reviews dealing with the specific model
system.

Finally, we did not incorporate strategies using viral vec-
tors and/or pharmacological substances. The specific dele-

tion or overexpression of genes susceptible for the modula-
tion of photoreceptor apoptosis, however, was included.
The authors are aware that these two subjects may not be
clearly separated in all cases.

Hereditary animal models
In 1923 Clyde E Keeler discovered a mouse strain lacking
photoreceptors.1 He speculated that these animals suVered
from an inherited defect of retinal development and called
these mice r (rodless retina) mice. These mice showed an
early and rapid degeneration of the outer retina, which
resulted in a single row of remaining photoreceptor nuclei
in the central retina by postnatal day 21 (p21). After pub-
lishing several articles on his findings, the continuous lack
of interest from the research community made him
abandon the whole mouse strain in the early 1930s. In
1951, Brückner and colleagues reported severe retinal
degeneration in a wild mouse strain found in the
surroundings of the city of Basle that was soon named the
rd (retinal degeneration) mouse.2 This mouse model later
became the most extensively studied animal model for
human autosomal recessive retinitis pigmentosa (RP).
However, it took four more decades to elucidate the
genetic defect underlying photoreceptor degeneration in
the rd mouse: a nonsense mutation in the rod photorecep-
tor cGMP phosphodiesterase â subunit gene.3 4 In 1993,
70 years after Keeler’s original observations on the r
mouse, Pittler and co-workers demonstrated by polymer-
ase chain reaction (PCR) analysis of r DNA isolated from
old histological sections that the defects in the r mouse and
the rd mouse were identical.5

Apart from the rd mouse, a number of hereditary retinal
defects have been identified subsequently not only in

Table 1 Hereditary models for retinal degenerations

Strain Trivial name Gene Mutation type Cell layer Degeneration time course References

Mouse models:
C57BL/6J rd â phosphodiesterase null mutation ONL p8–p21 3, 4
C57BL/6 rds Peripherin null mutation ONL p21–1 year 19, 20
C57BL/6J tubby (rd5) tub — ONL p14–9–12 months 21, 107, 108
C57BL/6J vitiligo (mivit/mivit) microphthalmia (mi)

gene
— ONL, OPL 8 weeks–8 months 109, 110

RBF/DnJ rd3 rd3 — ONL p21–8 weeks 111
C57BL/6J pcd pcd (Chr 13) ONL initial degeneration p25,

never complete
112

DBA/2J × C57BL/6J rd4 rd4 inversion ONL, OPL p10–6 weeks 113
C57BL/6J × Krd/+ Krd on Chr 19, including

Pax2
deletion entire retina initial malformation at E

10.5
114

Others:
cat Abyssinian cat rdy — ONL p22–27 months 6, 7, 10
chicken Rhode Island Red

chicken
photoreceptor guanylate

cyclase (GC1)
null mutation ONL starts at p7 15, 16

dog labrador retriever rdy — ONL 1–2 months–18 months 13
dog Swedish briard Rpe65 deletion — Manifest at 10 months 11, 48, 49,

51
dog Irish setter â phosphodiesterase nonsense mutation ONL p25–1 year 11, 12, 14
rat Fischer 344 rhodopsin point mutatiuon ONL 4–8 months–2 years 17, 18
rat RCS rdy — ONL p21–7 weeks 115–117
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rodents but also in other animals such as cats,6–10 dogs,11–14

and chickens15 16 (Table 1). Some of these represent muta-
tions that are also found in human autosomal recessive
RP11 12 14 17 18 or X linked congenital stationary night blind-
ness (CSNB) while others carry mutations in rod
structural proteins19 20 or more complex syndromes such as
Usher type I.21 The rds (retinal degeneration slow) mouse,
for instance, carries an insertional mutation in the
rds/peripherin gene encoding for a photoreceptor struc-
tural protein expressed both in rods and cones.22

Consequently, rod and cone photoreceptor outer segments
in homozygous rds mice never develop and photoreceptor
nuclei start to die by apoptosis as early as by p21 and at the
age of 12 months, the entire outer nuclear layer (ONL) has
disappeared.19 Interestingly, the pattern of photoreceptor
cell loss is peripheral to central in the rds mouse which is in
marked contrast to the rd mouse where photoreceptor
degeneration starts in the central retina progressing
towards the periphery.19

Transgenic animal models
In the past two decades our understanding of the molecu-
lar events leading to human retinal dystrophy has improved
markedly. The history of the identification of genetic loci
for inherited retinal degeneration started in the early 1980s
when Bhattacharya et al mapped the gene responsible for X
linked retinitis pigmentosa to a subregion of the X
chromosome.23 In 1989, Humphries and his co-workers
identified the first autosomal dominant RP locus24 and
only a year later, Dryja and his group described the first
mutations within the rhodopsin gene in patients with auto-
somal dominant retinitis pigmentosa25 26 followed by
numerous other groups (for review see Gal et al27).
Consecutively, mutations in other photoreceptor specific
genes such as the â subunit of the cGMP phosphodieste-
rase,4 peripherin,22 and the rod outer segment protein 1
(ROM-1)28 were described.

The era of transgenic animals had begun just a few years
earlier when in 1981 Wagner et al performed the first suc-
cessful transgenesis by transplanting a rabbit â globin gene
into a mouse embryo.29 Therefore, the retinal research
community was among the first to profit from the new
possibility of designing specific transgenic animals mimick-

ing genetically caused human disease; disruption or
overexpression of the target gene allowed the investigation
of the role of a single specific gene product on retinal func-
tion in vivo.

Transgenic mice and rats30–32 are among the most
commonly used animals to date; nevertheless, other
species such as pig33 may also be very useful models since
they may show a cone distribution similar to the human
eye (Table 2). Furthermore, in the transgenic pig, being a
larger mammal, the time course of retinal degeneration
may resemble the human disease more closely. Finally, the
large size of the pig eye is very well suited to subretinal
injections and somatic gene therapy.

Transgenic models for retinal degenerations and dystro-
phies may be divided into two major subgroups.

TRANSGENIC MODELS MIMICKING HUMAN RP AND/OR

MODULATING PHOTORECEPTOR PHYSIOLOGY

Soon after the identification of the first gene mutations
leading to RP in human, attempts were made to create
transgenic animals carrying analogous mutations. To our
knowledge, the earliest transgenic mouse generated for
retinal research was the Pro23His rhodopsin mutant
mouse created in 1992 by Olsson et al.34 In the following
years, a number of diVerent animal models carrying
rhodopsin mutations mimicking autosomal dominant RP
were generated in various species.20 30–41

The rds mouse was used for the generation of double
mutant mice carrying a peripherin mutation on an rds null
background,42 leading to an acceleration of the time course
of retinal degeneration observed in the rds mouse.

Several groups investigated the role of gene products
playing key parts in photoreceptor physiology. For
example, the lack of interphotoreceptor retinoid binding
protein (IRBP), responsible for the buVering of retinoids in
the extracellular matrix, led to slow photoreceptor
degeneration in IRBP−/− mice.43

Among the proteins necessary for phototransduction,
the role of the ã subunit of the rod cGMP phosphodieste-
rase was investigated through the generation of mice lack-
ing a functional PDEã gene.44 These mice showed a rapid
retinal degeneration starting as early as p5.

Another very promising recent finding does not
primarily implicate photoreceptor cells but rather the

Table 2 Transgenic models for retinal degenerations

Strain Gene Mutation type Cell layer Degeneration time-course Ref

Mouse
B6D2F1 rhodopsin substitution (Pro23His) ONL, RPE starts at p20 34, 37
C57L/6J rhodopsin substitution (Pro347Ser) ONL p21–1 year 20, 35
C57BL/6 × SJL rhodopsin substitution (Val20Gly,

Pro23His, Pro27Leu)
ONL p20–sp250 36, 40

C57L/6J rhodopsin nonsense (Gln344ter =
Q344ter)

ONL starts at p14 41

FVBN × C57BL/6 peripherin substitution (Pro216Leu) ONL 1 month–7 months 42
C57BL/6J IRBP knockout (IRBP−/−) ONL starts at p11 43
C57BL/6 × MF1 ãPDE knockout (Pdeg−/−) ONL p 0–8 weeks 44
C57BL/6 Rpe65 knockout (Rpe65−/−) RPE, ONL starts at 7 weeks 52
C57BL/6 — insertion of diphtheria toxin A

gene
ONL p7–3 months 54

C57BL/6 × 129Sv cyclic nucleotidegated
channel (CNG3)

knockout (CNG3−/−) ONL (rods) 2 months–8 months 55

C57BL/6 ABCR knockout (RmP−/−) ONL — 56
C57BL6 rhodopsin knockout (Rho−/−) ONL p24–3 months 57
C57BL/6 rhodopsin kinase (RK) knockout (RK−/−) ONL (rods) depends on illumination state 59
C57BL/6 × 129Sv arrestin knockout (arrestin−/−) ONL (only rods) 3 months–12 months 60
Bax−/− Bax knockout (Bax−/−) INL, GCL reduced developmental cell death at p 7 71
C3H/Bax−/− Bax/â PDE Bax−/−, rd/rd ONL p 8–p 21 71
C3H × C57BL/6 Pax2 insertion (Pax2 1Neu) OPL, INL, IPL, GCL notable thinning in adult heterozygous mice 118
129SvJ GC-E knockout (GC-E−/−) ONL Starts at 3 weeks 119
mouse (FVB/N ×

C57BL/6)
SV40 large tumour

antigen
overexpression ONL, OPL p 5–p 100 120

Others
rat rhodopsin substitution (S344ter) ONL p 8–p20 30, 31
rat rhodopsin substitution (P23H) ONL p 15–1 year 30, 32
pig rhodopsin substitution (Pro347Leu) ONL p 14–20 months 33, 38, 39
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retinal pigment epithelium (RPE) where the RPE65
protein is an essential element for vitamin A metabolism.
In humans, mutated RPE65 protein not only leads to
autosomal recessive, childhood onset severe retinal
dystrophy45 but also to autosomal recessive RP46 and Leb-
er’s congenital amaurosis.46 47 In analogy to the human
mutation, a four nucleotide deletion in the RPE65 gene
was identified in Swedish briard dogs48 49 as the cause of
CSNB50 but also for autosomal recessive, early onset and
progressive retinal dystrophy.50 51 Transgenic Rpe65−/− mice,
because of a lack of rhodopsin in the outer segment discs,
show no rod function as demonstrated by electroretinogra-
phy and seem to be an excellent model for an all cone
retina.52 Furthermore, photoreceptors are completely pro-
tected from light induced degeneration indicating that
rhodopsin is the key trigger in the initiation of the
signalling pathway from light to photoreceptor death by
apoptosis.53

McCall and co-workers generated a transgenic animal
called the rdta mouse.54 This animal expresses the gene for
an attenuated diphtheria toxin—under control of a portion
of the rhodopsin promoter—which inhibits G protein
binding to rhodopsin. Expression of this transgene results
in the elimination of rod photoreceptor cell bodies in the
ONL and the elimination of any rod mediated ERG
responses by p17.54

Recently, Biel et al demonstrated that deletion of the
cyclic nucleotide gated channel 3 (CNG3) led to a
selective loss of cone function. This all rod retina may serve
as a model for human achromatopsia.55

The Rim protein (RmP) is an ABC transporter protein
in rod photoreceptor outer segment discs. Recently, Weng
and collaborators reported the generation of a mouse
carrying a null mutation in the rim protein gene (ABCR).56

abcr knockout mice show increased levels of all-trans-
retinaldehyde following light exposure and a dramatic
accumulation of the lipofuscin fluorophore A2-E. With
increasing age, the loss of RPE cells leads to secondary
photoreceptor degeneration. abcr knockout mice may rep-
resent a model for human recessive Stargardt’s disease and
may also provide insights into the pathogenesis of age
related macular degeneration (AMD).

Humphries and collaborators designed the rhodopsin
knockout mouse as a model serving two diVerent
purposes—firstly, to provide a genetic background on
which other mutant opsin transgenes may be expressed
and, secondly, to study the introduction of functional rho-
dopsin genes through somatic gene therapy. rho−/− mice do
not develop rod outer segments (ROS) and photoreceptor
degeneration starts as early as p24. At 8 weeks of age, no
scotopic electroretinogram (ERG) response can be
detected.57

Sieving and collaborators recently generated a mouse
model for autosomal dominant CSNB by crossing
rhodopsin G90D transgenic mice with rhodopsin knock-
out (rho−/−) mice.58 In addition, mice lacking rhodopsin
kinase (RK)59 as well as arrestin knockout mice60 may both
serve as models for Oguchi’s disease, a human condition
that causes autosomal recessive CSNB. RK−/− mice reared
in cyclic light show a 50% shortening of ROS by 6 weeks of
age whereas arrestin knockout mice show a progressive
thinning of the ONL starting at p100.

TRANSGENIC MODELS MODULATING REGULATORY GENES OF

APOPTOSIS

Apoptosis is a tightly regulated form of cell death that
occurs physiologically during organ development in the
retina61 and other tissues but also in a variety of pathologi-
cal conditions such as cancer and degenerative disorders.
In the retina, apoptosis is the final common pathway of

photoreceptor cell death not only in transgenic animal
models for RP20 41 and the model of light induced photore-
ceptor degeneration62 63 but also in human RP.64 Inhibition
of apoptosis by modulating potential regulatory genes may
therefore be a means to retard or even stop the time course
of retinal degeneration.

THE BCL-2 FAMILY

The mammalian cell death suppressor gene Bcl-265 is a
member of a group of proteins involved in the regulation of
apoptosis.66 Both death antagonists (for example, Bcl-2,
Bcl-XL, Bcl-w, Bfl-1, Bag-1, Mcl-1, A1) and agonists (for
example Bax, Bak, Bcl-XS, Bad, Bid, Bik, Hrk) belong to
the Bcl-2 family. Data on the role of Bcl-2 in regulating
photoreceptor apoptosis are ambiguous. Although overex-
pression of Bcl-2 delayed apoptotic photoreceptor death in
several RP animal models, introduction of the transgene
did not influence the final outcome of photoreceptor
degeneration67–69 and specific overexpression of human
Bcl-2 in Müller cells led to early postnatal Müller cell
apoptosis followed by photoreceptor degeneration in a
transgenic mouse line.70 Similarly, Bcl-XL, a potent inhibi-
tor of apoptosis in many cell types, was unable to eYciently
inhibit photoreceptor apoptosis when overexpressed in the
rd mouse.67 68

Little is known about the role of other Bcl-2 family
members in the retina: the role of the pro-apoptotic Bcl-2
family member Bax on photoreceptor apoptosis was stud-
ied in Bax deficient mice. These studies indicated that Bax
is involved in the control of developmental photoreceptor
apoptosis in wild type mice but not of photoreceptor
degeneration in the rd mouse.71

P53

The tumour suppressor gene p53, a sequence specific
DNA binding transcription factor, is an important regula-
tor of apoptosis in a variety of systems and tissues.
However, both p53 dependent and p53 independent apop-
tosis has been described. In the retina, the lack of p53 did
not protect from photoreceptor apoptosis in the model of
light induced retinal degeneration72 whereas it delayed
photoreceptor death by 3 days in the rd mouse.73

AP-1

The proto-oncoprotein c-Fos is a member of the AP-1
transcription factor complex involved in the regulation of
apoptosis in many systems. In contrast with p53, lack of
c-Fos completely protected photoreceptors from light
induced apoptosis.63 74 but had no eVect on the degenera-
tion process in the rd mouse.75

AP-1 may be constituted of members of the Fos and Jun
families of proteins. In the retina, AP-1 primarily consists
of c-Fos and junD.76 We therefore also investigated the role
of JunD in light induced photoreceptor degeneration.
However, no diVerence in the extent of light induced pho-
toreceptor apoptosis was found between junD−/− and
junD+/+ mice.77

Inducible animal models
In the early 1960s Werner Noëll started to investigate the
eVect of light on inherited retinal degeneration and in 1965
he showed that photoreceptor degeneration in the Royal
College of Surgeon (RCS) rat, a model for inherited retinal
dystrophy, was dramatically enhanced when animals were
exposed to light: “On the basis of this reasoning, I cannot
help but be impressed by the fact that excessive light
destroys the visual cells and the pigment epithelium of
albino as well as pigmented animals”.78 Since then, it has
been postulated that light exposure may enhance inherited
photoreceptor degeneration. In the past few years, a
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number of experimental studies performed in new
transgenic models has further supported this
hypothesis56 59 60 79–81 and it was also hypothesised that light
exposure may enhance the progression of RP in
humans.82 83

It was conceivably based on his earlier findings in the
RCS rat (D Organisciak, personal communication) that
Noëll developed the first inducible animal model for
retinal degeneration by damaging photoreceptors in wild
type rats using bright light.84 The advantages of an external
damaging stimulus are evident. Animals can mature and
develop a normal retina until the stimulus is provided; the
latter being very flexible and adjustable for timing and
intensity so that more or less severe photoreceptor damage
can be obtained. Such a tightly tunable model therefore is
an excellent tool to investigate the molecular stages of
apoptotic photoreceptor death. Light induced photorecep-
tor degeneration is nowadays used as a model in its own
right by a number of groups in a variety of diVerent light
conditions in wild type and transgenic animals62 63 85–95 and
it has been shown repetitively that photoreceptor death in
these models occurs by apoptosis (see Table 3).62 63 85–87 94

Another well known method of inducing selective
photoreceptor apoptosis is the intraperitoneal administra-
tion of N-methyl-N-nitrosourea (MNU). Depending on its
dose, MNU leads to a rapid degeneration of photorecep-
tors leaving other cell layers unaVected.96–100 However, the
molecular mechanisms underlying MNU induced pho-
toreceptor apoptosis are not known yet. Other systems of
induced photoreceptor damage include the implantation
of iron particles into the vitreous101 102 or the intravitreal
injection of L-ornithine hydrochloride.103

Conclusion
Currently, many of the animal models described in this
review play a more important part than ever, serving a
variety of diVerent purposes: firstly, they are used for the
study of the molecular mechanisms leading to photorecep-
tor degeneration. Secondly, they are the basis for therapeu-
tic attempts to retard or even stop photoreceptor apoptosis
using a multitude of diVerent approaches. Finally, they
serve as a platform for the establishment of experimental
somatic gene therapy, probably the most promising
approach to photoreceptor rescue (reviewed by Sharma
and Ehinger,104 Ali et al,105 and Chong and Bird106).

Although still restricted and fragmentary, our knowledge
about molecular mechanisms leading to photoreceptor
degeneration increased markedly in the past two decades.
It is therefore conceivable to speculate that ophthalmology
may be among the first clinical specialties to benefit from
“molecular medicine” once new therapeutic strategies
evolve.
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