Advancing microsurgical instrumentation into the 21st century

EDITOR,—It seems a surprising omission from the Waldocks’ recent commentary1 on the future of microsurgical instrumentation not to have mentioned contamination with specific reference to transmissible spongiform encephalopathies (TSE). It is known that prion protein is not reliably destroyed by most disinfection or sterilisation procedures, including autoclaving at a temperature as high as 138°C for an hour. Although more effective methods, such as exposure to combinations of alkali and heat, are being developed2 they may require instruments to be particularly durable. Also, and, particularly, toothed instruments require thorough cleaning before sterilisation by current procedures, to avoid retention of tissue.

Although there is no clear evidence of the transmission of TSE from one patient to another by ophthalmic surgery other than through corneal transplantation3 the only extant Department of Health guidelines state that any instruments used on patients with Creutzfeld-Jakob (CJD) or suspected of this condition must be destroyed. Patients with classic CJD are predominantly in their 60s and may come into contact with ophthalmologists because of cataract, glaucoma, and macular degeneration or because of visual symptoms caused by their condition.4 The number of individuals in the UK who are incubating variant CJD (vCJD), believed to be the human form of bovine spongiform encephalopathy (BSE), is unknown. Prion protein has been shown to be present in the tonsils and appendixes of its victims; the possibility of it being present in the eye, and particularly in the retina and optic nerve of apparently healthy individuals, must unfortunately be entertained. The Department of Health has identified neurosurgery and ophthalmology as areas of particular risk, though arguably many forms of routine surgery could be so risky, pass on prions from one patient to another via contamination of instruments.

The only certain way to avoid the as yet unquantifiable risks of ophthalmic (or any set) surgical instruments as vectors of transmissible disease is for them to be disposable. Even then, the temptation to reuse disposable instruments for cost containment will be present. The Medical Devices Agency has already issued guidelines on devices that touch the eye, in particular contact lenses, though the full implementation of these recommendations is not possible without the eye services grinding to a halt. Nevertheless, these are recommendations when disposable instrumentation could be implemented—for example, eye banking, without compromising standards or indeed increasing costs, by saving on tracing and autoclaving.

We agree that surgeons, engineers, and manufacturers should engage in an active and productive debate on instrumentation for the 21st century, but this should include further initiatives to utilise new materials to facilitate disposable instruments. This dialogue may also bring about a rethink of the number of instruments on trays, the majority of which may be autoclaved time and again without being used.

A B TULLO
Manchester Royal Eye Hospital, Oxford Road
Manchester M13 9P1

D M TAYLOR
Neuropathogenesis Unit, Ostitum Building,
West Mains Road, Edinburgh EH9 3FJ

Reply

EDITOR,—I thank Tullow and Taylor for their interest in our commentary and for highlighting a very important issue regarding the future of microsurgical instrumentation. Instrument manufacturers are aware of the implications of contamination, in particular from transmissible spongiform encephalopathies. We agree that there is a need for everyone associated with high risk of transmission surgery, such as ophthalmology, to rethink the strategies towards avoiding the risks of contamination. This needs to include a review of cleaning and sterilisation procedures as well as surgical instrument design.

As far as engineers and manufacturers of ophthalmic surgical instruments are concerned, there needs to be a complete reconsideration of instrument design. This includes a review of the materials being utilised, taking into account the need for durability to rigorous sterilisation procedures as well as cost. The assembly of the instruments must enable easy and thorough cleaning, while an evaluation of the methods by which manufacturing costs can be kept to a minimum may enable the production of affordable disposable instruments. Despite such criteria, it is important to maintain the high standards of quality which are required from instruments used in this field of surgery. This poses an interesting challenge and one which we agree requires an active and productive discussion from surgeons, ophthalmic technicians, engineers, and manufacturers.

A WALDOCK
Bristol Eye Hospital, Lower Maudlin Street,
Bristol BS1 2LX

Central serous chorioretinopathy compromised by massive bilateral subretinal haemorrhage

EDITOR,—We read with interest the report by Lip et al., describing a 43 year old Asian man with central serous chorioretinopathy (CSCR) complicated by massive bilateral subretinal haemorrhage. The authors attributed the massive haemorrhage to CSCR itself. As the authors have pointed out, massive subretinal macular haemorrhage could be due to several causes, including idiopathic polypoidal choroidal vasculopathy (IPCV). In their article, there is a colour fundus photograph of the left eye (Fig 3A) showing a small red nodule in the centre of fovea with surrounding subretinal hemorrhage. The lesion corresponds to the hyperfluorescent spot in the fluorescein angiogram (FA) and indocyanine green angiogram (ICGA) in the same figure (Fig 3B, C). These clinical pictures are still compatible with the diagnosis of IPCV, although the presence of massive subretinal haemorrhage precludes the visualisation of other classic features of IPCV. Recently, we have had the opportunity of examining a similar patient presented with massive subretinal haemorrhage in one eye, with a history of CSCR documented by FA. ICG of the other eye showed the presence of classic signs of IPCV including dilated chorial vessels with terminal polyps. As CSCR and IPCV are both choroidal vascular diseases, their presence in the same eye or same patient is possible.

Financial and proprietary interest: Nil

ALVIN K H KWOK
TIMOTHY Y Y LAI
Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong

NITIN S SHETTY
Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong and Medical and Vision Research Foundations, Sankara Nethralaya, Chennai, India

DENNIS S C LAM
Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong

Correspondence to: Dr Alvin K H Kwok, Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, 3/F Hong Kong Eye Hospital, 147K Argyle Street, Hong Kong kwokkh@hku.hk


Reply

EDITOR,—We thank Kwok et al for their observations. Kwok et al felt that the case presented by us was compatible with a diagnosis of idiopathic polypoidal choroidal vasculopathy (IPCV). We have recently described the indocyanine green angiographic (ICG) findings in a group of patients with IPCV, its different modalities of treatment and follow up over a period of 6 years. The polyps in IPCV persist following recurrent haemorrhages, and only disappear following laser ablation. Ophthalmic imaging, before onset of the submacular haemorrhage, in this patient showed classic features of central serous retinopathy. There were no polypoidal lesions (including the fellow eye) seen before or after the submacular haemorrhage in our patient. The hyperfluorescent spot, shown on the fluorescein angiogram and the ICG, bears no resemblance to polypoidal lesions in IPCV. In addition, a solitary lesion is not a characteristic of IPCV.

We agree with Kwok et al that IPCV is a cause of massive submacular haemorrhage; the coexistence of two diseases in one patient
is certainly possible. In this case, however, we feel there is no evidence that our patient had IPCV.

P L LIP
L LIP
L LIP


Retinopathy and myopia of prematurity

EDITOR,—I have some comments on the recently published article by Choi et al dealing with long term refractive outcome and oculometry variables in Korean children of very preterm delivery. As for the sample under study (n=65) there are certain points to state. A main point is that in the Korean material, the material appears highly selective; over a 6 year period, from two university clinics, only 10–11 preterm infants have been included per year. Screening limits were 1500 g birth weight and 28 weeks gestational age. Exclusion of a great number of preterms appears likely, but criteria are not specified or discussed.

Eighty three per cent acquired active ROP of at least stage 3. If unselected, this is the formation of a great number of preterms appears year. Screening limits were 1500 g birth weight and 28 weeks gestational age. Exclusion of a great number of preterms appears likely, but criteria are not specified or discussed.

Cell subpopulations in failed human corneal grafts

EDITOR,—In the well illustrated paper by Kuf-fova and co-authors,1 conclusions are presented on the role of different inflammatory cell phenotypes based on immunohistochemical findings in excised corneal transplants. The detailed pathological findings should be interpreted with caution as insufficient information is presented to support the clinical diagnosis of rejection in some of those patients with graft inflammation.

In several patients in Table 2, and all in Table 3, surface wound healing problems, graft melting, and spontaneous perforation are listed as postoperative complications. However, none of these are clinical features of graft rejection, even in experimental models of unmodified rejection. They are signs typical of HSV epithelial or necrotising stromal keratitis, which can complicate transplantation in patients taking postoperative steroid treatment, particularly in whom HSV keratitis is the primary corneal diagnosis. This possibility would be less likely if the indication for transplantation was a corneal disorder other than HSV or viral infection was excluded by pathological study of the corneal specimens. It is also possible that in these specimens the immunochemical findings represent HSV recurrence accompanied by allograft rejection. However, we question the validity of the conclusions relating to rejection in specimens from patients with signs indicating possible viral keratitis. This may explain in part, for example, the counterintuitive finding that the number of CD1a/MHC class II positive cells was not significantly higher in a group with severe inflammation at the time surgery than in the group with no inflammation.

D P F LARKIN
Moorefield Eye Centre,
London

Reply

EDITOR,—Larkin’s letter questions the primary diagnosis in the patients listed in Tables 2 and 3 and suggests possible herpes virus origin of the question arises from our description of postoperative complications in some of our patients which include graft melting and perforation. We agree that graft melting is not a typical feature of corneal graft rejection.

We would wish to clarify the clinical status of our patients. Only in two patients was the primary condition related to HSV infection. In all other grafts, in which the cause of the corneal wound healing problems, the diagnoses included limbal closure, keratoconjunctivitis sicca, and Stevens–Johnson syndrome without signs of herpes simplex virus keratitis. In these patients graft epithelial healing problems are related to the limbal stem cells and tear film deficiency than to infectious causes. In fact, it is recognised that there are sometimes difficulties in distinguishing graft rejection from infiltration due to chronic astigmatism defect. In our patients we made a diagnosis of rejection in association with epithelial healing problems. We cannot exclude the possibility of HSV infection of the transplanted grafts but clinical signs indicated that limbal stem cell
deficiency was the cause of the epithelial healing problem and subsequent graft melting.

MARTIN PINELPEC

Late onset lattice dystrophy

EDITOR,—I read with great interest the article by Stewart et al on late onset corneal dystrophy with systemic amyloidosis (familial amyloid-amyloidosis of the Finnish type/Merotoja syndrome) and their claim that this was the first case described in the UK. I would like to point out our case report published in the *BJO* in November 1999. We described a classic case of Merotoja syndrome in an English woman which was confirmed by genetic testing of the patient and her daughter who both demonstrated the point mutation on the gelsolin located on chromosome 9.

The authors bring to our attention a second family with this disorder and rightly state that the concept of a geographically limited disorder—namely, familial amyloidosis of the Finnish type, must be treated with caution as identical phenoype can occur elsewhere.

In our patient, immunocytochemistry of the corneal button removed at keratoplasty showed no labelling of the amyloid deposits indeed the condition can occur elsewhere. This may cause patient discomfort, as well as financial and proprietary interest.

ALVIN K H KWOK

DEANIS S CLAM

Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong Eye Hospital, Hong Kong

Correspondence to: Dr Alvin K H Kwok, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 3/F Hong Kong Eye Hospital, 147K Argyle Street, Hong Kong, kwokhk@ha.org.hk


Topical analgesia during retinal laser photocoagulation

EDITOR,—We read with interest the report by Weinberger et al evaluating the analgesic effect of topical sodium diclofenac 0.1% during retinal laser photocoagulation. They found that topical sodium diclofenac 0.1% was associated with a statistically significant lower pain score compared with topical sodium chloride 0.9%, in patients receiving panretinal photocoagulation. We agree with the authors that topical sodium diclofenac 0.1% has a better analgesic effect than topical sodium chloride 0.9% in this group of patients. However, this finding may not be clinically relevant. Topical sodium chloride 0.9% does not have any significant analgesic effect. Moreover, it is a common practice that patients receive topical anaesthetic, like oxybuprocaine 4%, before the procedure of panretinal photocoagulation. It may be more meaningful to compare the analgesic effect of these two groups of agents. There is also concern about the side effects of topical diclofenac. Ocular stinging is one of them. This may cause patient discomfort, as well as financial and proprietary interest.

A A MEARZA

Department of Ophthalmology, The Royal Free Hospital, Pond Street, London NW3 2QG


BOOK REVIEWS


The Art of LASIK is the second edition of the well known *Excimer Refractive Surgery: Practice and Principles*, by Jeffrey Machat, Stephen Slade, and Louis Probst. It is an outstanding reference, not only for the refractive surgeon but also for anyone managing or referring patients. The book has an extensive coverage of the whole field of laser vision correction procedures, including the Center for Sight at the Queen Victoria Hospital) and the Hydroblade waterjet microkeratome.

Topical analgesia during retinal laser photocoagulation

EDITOR,—We read with interest the report by Weinberger et al evaluating the analgesic effect of topical sodium diclofenac 0.1% during retinal laser photocoagulation. They found that topical sodium diclofenac 0.1% was associated with a statistically significant lower pain score compared with topical sodium chloride 0.9%, in patients receiving panretinal photocoagulation. We agree with the authors that topical sodium diclofenac 0.1% has a better analgesic effect than topical sodium chloride 0.9% in this group of patients. However, this finding may not be clinically relevant. Topical sodium chloride 0.9% does not have any significant analgesic effect. Moreover, it is a common practice that patients receive topical anaesthetic, like oxybuprocaine 4%, before the procedure of panretinal photocoagulation. It may be more meaningful to compare the analgesic effect of these two groups of agents. There is also concern about the side effects of topical diclofenac. Ocular stinging is one of them. This may cause patient discomfort, as well as financial and proprietary interest.

A A MEARZA

Department of Ophthalmology, The Royal Free Hospital, Pond Street, London NW3 2QG


BOOK REVIEWS


The Art of LASIK is the second edition of the well known *Excimer Refractive Surgery: Practice and Principles*, by Jeffrey Machat, Stephen Slade, and Louis Probst. It is an outstanding reference, not only for the refractive surgeon but also for anyone managing or referring patients. The book has an extensive coverage of the whole field of laser vision correction procedures, including the Center for Sight at the Queen Victoria Hospital) and the Hydroblade waterjet microkeratome.

Section three is devoted to the preoperative evaluation of the patient. This is an extremely important topic, which should be read by anyone involved in the care of patients. To quote Dr Machat, “Managing patient expectations is the pivotal element to creating happy refractive patients”. Additionally, he writes “A surgeon who never has a complication is one who never performs surgery”. Candidate selection, careful screening for pre-existing conditions and anatomical limitations, as well as contraindications for LASIK are thoroughly explored, as is the topic of LASIK as the procedure of choice of patients over the age of 40 is given, but the reality is that few refractive surgeons wish to treat patients, and as such bilateral LASIK treatment is commonly recommended. This is unfortunate as most patients wish to shed their glasses or their presbyopic

As part of the Basic Bookshelf for Eyecare Professionals series Denise Cunningham’s contribution on clinical ocular photography deﬁnes exactly what it says and gives a clear, basic explanation of a range of photographic skills and techniques needed to provide an ophthalmic photography service.

There are 140 pages including a comprehensive bibliography and useful index. The photographs used to illustrate various viewpoints are excellent and ingeniously devised—for example, the use a photograph of the face with drawings of the pattern of blood vessels held in front of each eye to show orientation. The quality of reproduction in the publication is somewhat lacking although this is not glossy hardback and the price reﬂects this. It is suggested that gaining knowledge of the interpretation of ﬂuorescein angiography, including pattern recognition and association with disease or disorders, will make individuals’ work more stimulating and also make them more valuable to the employer. This book does not include digital photography of any kind and neither anterior segment ﬂuorescein angiography nor indocyanine green angiography get a mention. However, although the digital age is with us all, a good background awareness of silver based photography as related to ophthalmic photography is still very important, and this publication provides it.


This book is a diagnostic atlas of ophthalmic A and B mode scanning techniques and labelling formats are described with clarity in the opening chapter. The techniques described are based on those of Karl Ossoinig, which have been further reﬁned by Sandra Byrne. B-scans are taken using a dedicated eye scanner with a mechanically rocked single transducer producing a sector format image. The probe is coupled to the open eye with methyl cellulose but the dedicated eye scanners are much less sensitive than their more modern whole body counterparts, and often operators work on the open eye to avoid a reduction in sensitivity caused by attenuation of sound as it is transmitted through the eyelid.

This atlas contains over 400 diagnostic images, three quarters of which are B-scans. This reﬂects a shift in stress away from the A mode technique. Each chapter concentrates on a different portion of the globe. The resolution and grey scale on images is in general poor but, despite this, the authors illustrate some retinal tears and the diagnoses given in the clinical and comprehensive ﬁgure legends are correct.

The book does not cover colour ﬂow mapping or spectral Doppler techniques nowadays used routinely to image blood ﬂow. The authors generally attempt to determine blood ﬂow in tumours by ﬂickering of echoes as seen using A mode techniques.

I found this atlas to be a clearly presented, and, within the limitations mentioned above, well balanced book. I would recommend it to all those using dedicated eye scanners, and to those starting out in ophthalmic ultrasound.

MARIE RESTORI


This book will, no doubt, sell well. It has a well known editor and many prominent contributors. The book has a high quality feel to it but is let down by the very poor photographic reproduction of many of the photographs taken from preoperative videos. James David¬son (chapter 12) can produce reasonable quality stills. Why can’t the other contributors? Tables and ﬁgures, taken from lectures, may look great on screen, but look tacky when incorporated into text. There is no “house style” since some of the chapters have attractive line drawing ﬁgures in the text. The lack of style is irritating in a subject where presentation is so obviously important. Equally irritating is the needless repetition of some ﬁgures.

I found the title a little misleading since several of the chapters, particularly those towards the end of the book, really have very little to do with clear corneal incisions. The information on the very small portion of the book actually deals with the incision itself. For the most part what you have is a series of descriptions of “How I do phaco” by a series of well known cataract surgeons, which is ﬁne. Of course, there are lots of other books along the same lines and another would probably not look so attractive. What would be a catchy title for another of the same? Clear Corneal Lens Surgery? Am I being cynical?

Clear corneal cataract incisions were not practised very widely in the USA before phacoemulsiﬁcation but many British and quite a few European readers will have been entertained at home with examples of the incision through a clear corneal incision and will have been familiar with its many advantages over a corneoscleral incision. Thus, moving from a scleral tunnel to the cornea as they settled into phaco techniques was a natural and welcome step. I thought the chapter on historical background was superﬁcial and lacking the detail which subsequent chapters contained. Expansion could have made a much more ﬂuent introduction of the incision and would have helped put it in better context.

Reading most of the chapters in the main part of the book I found it difﬁcult to believe I was not reading a formalised version of the authors’ talks on their favourite method of performing cataract surgery. There was a lot of description and opinion but not very much in the way of explanation or justiﬁcation. This is not the sort of book that one could dip into, and it certainly is not the sort of “cookbook” that could take a beginner through a procedure. Someone trying to identify a technique that would suit his or her personal style would have to work quite hard to get what was wanted. The information is there but there is a great deal of repetition in the process.
In summary, dear reader, if you are the sort of person who likes to read or hear about lots of nice cataract surgeons do their cataracts, then this is just the sort of book that you’ll like.

COLIN M KIRKNESS


It really is a misnomer to refer to Professor Behrens-Baumann as editor since he has written all but the first chapter himself. I must plead a certain personal pleasure in being asked to review this book, since I have always found Behrens-Baumann’s writing clear and to the point. He writes from a position of strength about things he understands in a way that is comprehensible to the clinician.

The approach is straightforward and logical. An overview of important ocular pathogenic fungi is provided by a mycologist. Thereafter, there is a clear exposition of the few antifungal drugs available to us including a useful description of how these can be manufactured in drop form, which is of considerable use to those ophthalmologists working without the support of a good manufacturing pharmacy department.

There follow three large chapters or sections covering adnexal infection, keratomycosis, and fungal endophthalmitis. Histoplasmosis is treated separately and, finally, there is a chapter on laboratory experimental work which probably could be subdivided into animal models and pharmacology.

If I have any criticism it is about the very extensive listing the author provides in the clinical section. He has large tables listing fungi that have caused infection in various sites—for example, lids, cornea, or endophthalmitis. It is not explicit that these lists are meant to be exhaustive but the presentation makes one assume they are. They are not. He omits a number of single case reports of infections while including others. This may just be the fault of his search engine or perhaps more likely the fact that he missed them when they were first published. It is a small point but it detracts from what otherwise would be an encyclopaedic work.

The text is, nevertheless, concise. There are only 201 pages and many of these are lists of references (381 on keratomycosis). It is highly readable and of good practical value not just for the candidate cramming for Part 3 membership but for anyone, either specialist or non-specialist, who has to manage a case of fungal infection. He gives useful information on how to improve the yield of laboratory investigation, always a difficult question. Perhaps this section could have been expanded a little. I would also have liked to have seen a little more on epidemiology (although this was covered) and on geographic variation which was only mentioned in passing.

These relatively minor whinges aside, this is an important text which should be on the shelf of every ophthalmology in the Netherlands, Finland, Ireland, Germany, Denmark, France, Austria, or Portugal should apply to: Mr Robert Acheson, Secretary of the Foreign Exchange Committee, European Board of Ophthalmology, Institute of Ophthalmology, University College Dublin, 60 Eccles Street, Dublin 7, Ireland.

Ophthalmology 2000

A conference “Eye care in the clinic and the community” will be held 9–12 August 2000 in Melbourne, Australia. Further details: John Keefe, Centre for Eye Research Australia at the Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne 3002, Australia (tel: +61 3 9929 8360; fax: +61 3 9662 3859; email: 2000@cerad.unimelb.edu.au).

American Institute of Ultrasound in Medicine—Millennium Ultrasound Course Series

A course entitled “Diagnostic Ultrasound in the 21st Century” will be held in New York City, NY, on 25–27 August 2000. Further details: Stacey Bessling, Public Relations Coordinator, AIUM, 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906, USA (tel: 301-498-4100; email: sbessling@aium.org).

DR-2000, International Forum on Diabetic Retinopathy

The International Forum on Diabetic Retinopathy will take place on 7–9 September 2000 at the Palazzo Reale, Naples, Italy. Further details: Francesco Bandello, Congress Secretary, MGR Congressi, Via Servio Tullio, 4, 20123 Milano, Italy (tel: 39 02 430071; fax: 39 02 48008471; email: dr2000@mgr.it).

VIII Tuebingen Angiography course

The VIII Tuebingen Angiography course with wet lab will take place on 9 September 2000 in the auditorium, University Eye Clinic, Schleichstrasse 12, 72076 Tuebingen, Germany. Further details: WTI-Wissenstransfer, Universitats Tuebingen (tel: ++49 7071 29 76439; fax: ++49 7071 29 5051; email: wti@uni-tuebingen.de/wit).

30th Cambridge Ophthalmological Symposium

The 30th Cambridge Ophthalmological Symposium entitled “The Ageing Macula” will be held on 13–15 September 2000 at St John’s College Cambridge. Chairman: Professor Alan Bird. Further details: COS Secretariat, Cambridge Conferences, The Lawn, 33 Church Street, Great Shelford, Cambridge CB22 4EL (tel: 01223 847464; fax: 01223 847465; email: b.ashworld@easynet.co.uk).


This is one of a series of CD ROMs on international health produced by the Wellcome Trust. The series was originally planned as a replacement when the trust closed its museum of tropical medicine more than 10 years ago, and has been a long time in gestation. The available software has come a long way in the past 10 years, and we have come to expect a degree of user friendliness that enables a computer illiterate such as myself to gain easy access to the material; but unfortunately this CD ROM did not come up to my expectations in this respect. It was only after some frustration and considerable help from my wife that I was able to get hold of the main menu.

The menu revealed that the material was arranged in three main scenarios: a glossary, an image library, and a tutorial. The glossary is very broad and covers a wide variety of ophthalmological terms that bear no relation to trachoma. The image library is extensive, but includes a large number of pictures of Chlamydia trachomatis at various stages of its life cycle in tissue culture; it is hard to see that these will be relevant to most users with an interest in trachoma, who are unlikely to have access to tissue culture facilities. The other unfortunate, but undeniable fact is that all images are of very poor quality when viewed on standard PCs, whether desktop or laptop. I tried both, but the images were at best of advanced cartoon standard. The tutorial was well written and well planned, but also suffered seriously from the poor quality of the images; it would not be possible to learn how to diagnose or grade trachoma with images such as these.

In conclusion, given the choice, I would prefer a simple manual written on paper, which would be more easily accessible, and considerably more informative than this expensive produced CD ROM.

DAVID MABEY

NOTICES

Community participation in eye health and trachoma and the SAFE strategy

The latest issue of Community Eye Health (33) discusses provision of services for individuals with refractive errors with an editorial by Hugh R Taylor. For further information please contact Community Eye Health, International Centre for Eye Health, Institute of Ophthalmology, 11–13 Bath Street, London EC1V 9EL. (Tel: (+44) (0) 20-7608 6909/6910/6923; fax: (+44) (0) 7250 3207; email: pressource@ucl.ac.uk) Annual subscription £25. Free to workers in developing countries.

Residents’ Foreign Exchange Programme

Any resident interested in spending a period of up to one month in departments of ophthalmology in the Netherlands, Finland, Ireland, Germany, Denmark, France, Austria, or Portugal should apply to: Mr Robert Acheson, Secretary of the Foreign Exchange Committee, European Board of Ophthalmology, Institute of Ophthalmology, University College Dublin, 60 Eccles Street, Dublin 7, Ireland.

Guide Dogs for the Blind Association

The Guide Dogs for the Blind Association will host the 10th International Mobility Conference at Warwick University on 4–7 August 2000. Further details: Guide Dogs, c/o Michelle Grant, One Events (tel: 020 8682 2442; email: michelle@one-events.com).

CD ROM REVIEW

Reader’s report

COLIN M KIRKNESS

In summary, dear reader, if you are the sort of person who likes to read or hear about lots of nice cataract surgeons do their cataracts, then this is just the sort of book that you’ll like.

COLIN M KIRKNESS

www.bjophthalmol.com
American Institute of Ultrasound in Medicine—Millennium Ultrasound Course Series

A course entitled “Obstetrical Ultrasound” will be held in New York City, NY, on 12–14 January 2001. Further details: Stacey Bessling, Public Relations Coordinator, AIUM, 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906, USA (tel: 301-498-4100; email: sbessling@aium.org).

American Institute of Ultrasound in Medicine—Millennium Ultrasound Course Series

A course entitled “Obstetrical and Gynecological Ultrasound” will be held in New York City, NY, on 24–26 August 2001. Further details: Stacey Bessling, Public Relations Coordinator, AIUM, 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906, USA (tel: 301-498-4100; email: sbessling@aium.org).

Contributors please note:

Communications from all countries except the UK and Republic of Ireland should be sent to Professor C Hoyt, Editor, British Journal of Ophthalmology, University of California, Department of Ophthalmology, 10 Kirkham Street, K 301, San Francisco, CA 94143-0730, USA (tel: 001 415 502-6871; fax: 001 415 514-1512).

Manuscripts from the UK and the Republic of Ireland should be sent to Professor Andrew Dick, UK Editor, British Journal of Ophthalmology, Division of Ophthalmology, University of Bristol, Lower Maudlin Street, Bristol BS1 2LX (tel: +44 (0)117 929-4496; fax: +44 (0)117 929-4607).