LETTERS TO THE EDITOR

Waardenburg syndrome type 2 in a Turkish family: implications for the importance of the pattern of fundus pigmentation

EDITOR.—Waardenburg syndrome (WS) is a typical auditory pigmentary syndrome with affected individuals showing varying combinations of sensorineural hearing loss, patchy abnormal pigmentation of the eyes, hair and skin, and various defects of neural crest derived tissues.1,2

This syndrome is both clinically and genetically heterogeneous and is clinically classified into four types.1 Mutations of the PAX3 gene have been identified in WS type 1 and 3, while those of either the endothelin B receptor gene, the endothelin-3 gene or the soxio gene have been identified in WS type 4.1,3,4 WS type 2 is a heterogeneous group, with about 10% of cases caused by mutations in MITF. But MITF mutations are obviously not the major cause of WS type 2 and for most cases the genetic basis is as yet unknown.

The diagnostic criteria for WS type 2 proposed by Liu et al.1 include, in addition to congenital sensorineural hearing loss and pigmentary disturbances of the hair, pigmentary disturbances of the iris but not of the fundus.

In the two affected boys of the Turkish family presented here, the pattern of fundus pigmentation was one of the most striking clinical features, with dense hyperpigmented areas next to hypopigmented areas. We want to emphasise the importance of a thorough observation of the clinical phenotype and especially of the pattern of fundus pigmentation in WS type 2.

CASE REPORT
A Turkish family presented with two of three sons showing clinical symptoms of WS type 2. Firstly, the 5 year old boy, the youngest of three children of a non-consanguineous couple, was referred for ophthalmological evaluation because of constant esotropia in the left eye. The child has worn hearing aids since the age of 16 months; the first reliable audiogram at age 3 years showed profound sensorineural hearing loss which had not changed over the past years. Best corrected visual acuity was right eye 20/20 and left eye 20/400. Cycloplegic refraction showed anisohypermetropia (right eye +2.5D and left eye +4.5D). He had bilateral dark brown irides and strabismus (right eye +2.5D and left eye +4.5D). He had bilateral dark brown irides and strabismus (right eye +2.5D and left eye +4.5D). Hypoplasia of alae nasi, or premature greying of hair) were found among the family members. To calculate the W index, a biometric index for dystopia canthorum, we used dystopia indices for WS as reported by Arias,5

Figure 1 (Top) The 5 year old boy (III-5) with bilateral dark brown irides; corneal reflexes demonstrate left esotropia; there is no evidence of dystopia canthorum. (Centre) Left: right fundus with an area of hypopigmentation on the posterior pole as well as nasally; pigmented mottling and spots of hyperpigmentation in the temporal periphery (arrows); (right) left fundus, albino in type with spots of hyperpigmentation nasally and around the whole fundus periphery (arrows). (Bottom) Audiogram: profound bilateral sensorineural hearing loss.

www.bjophthalmol.com
based upon the inner canthal, interpupillary, and outer canthal distances. The W index for this family was 1.45, indicating that none of the individuals had dystopia canthorum. This was consistent with the clinical picture of WS type 2.

The genomic DNA samples, tested for mutations in the PAX3 and MITF genes as described elsewhere, showed no abnormally migrating bands.

COMMENT
Given the classic symptoms of WS type 2 expressed in this Turkish family, we had the opportunity to make some interesting observations on the clinical findings in this syndrome.

In the genomic DNA samples of this family no abnormally migrating bands in the MITF gene or the PAX 3 gene were seen. Only about 10% of patients who fulfil the diagnostic criteria for WS type 2 have an MITF mutation and for most cases the genetic basis is as yet unknown.** Dominantly inherited examples of auditory pigmentary syndromes with patchy depigmentation of the skin, hair, eyes or the stria vascularis of the cochlea are usually labelled as Waardenburg syndromes.**

Expression of clinical findings is extremely variable** and the evaluation of a correct history of pedigree was difficult in this family because of the fact that most of the other family members were living in the Turkey. However, the fundal pigmentedary changes of the mother were distinct enough to mark her as affected.

Complete heterochromia irides and especially the brilliant sapphire-blue eye colour have been noted rarely in non-Waardenburg people.** Slit lamp examination of the left iris of the second son showed a thick iris of a brilliant blue colour without any hypoplastic structures or transillumination defects. It is generally assumed that in WS type 2 only the mesodermal component of the iris is involved owing to a lack of melanocytes in the mesodermal part of the iris.

Congenital deafness is clinically the most serious symptom. WS type 2 individuals were found to have a greater incidence of deafness, more severe and more often bilateral forms of deafness.** Hearing impairment can be explained by a lack of melanocytes in the stria vascularis of the cochlea. These two affected boys showed bilateral sensorineural hearing loss. Interestingly, we found that the auditory results are paralleled by the pattern of fundus pigmentation. While the youngest boy with bilateral brown irides and marked bilateral pigmentary abnormalities of the fundus had profound bilateral hearing loss (Fig 1), the 7 year old boy with heterochromia irides showed different degrees in the severity of fundus anomalies and hearing loss: the moderate degree of hearing loss of the right ear correlated with mild irregularities of pigmentation of the homolateral fundus, total deafness left correlated with severe homolateral fundus pigmentary disturbances and the brilliant blue iris (Fig 2).

The pattern of fundus pigmentation is not considered as part of diagnostic criteria for WS type 2.** However, in our family, abnormalities in fundus pigmentation seem to constitute an integral part of this syndrome. Fundi in patients with WS were described as “patchy hypopigmentation,” “pigmented mottling,” or “albinoid in type” in most cases.** Only Goldberg reported “blond next to hyperpigmented areas” in a black boy. In the two affected boys, dense hyperpigmented areas next to marked hypopigmented areas were one of the most impressive clinical findings. This picture seems to be the result of a localised accumulation of pigmented melanocytes which were handicapped in their determined homogeneous distribution.

In conclusion, we have presented a Turkish WS type 2 family in which no mutations of the MITF gene could be found. The affected family members showed a conspicuous fundus picture with ipsilateral connections between iris, fundus, and perhaps, inner ear pigmentation. Therefore, one might suggest, that the clinical signs in WS type 2 could be a consequence of a failure in distribution of pigmented melanocytes in their final location. The genetic basis, as yet unknown for most cases of WS type 2, might be found in a very late step of the pigmentation pathway.

ANDREAAA MÜLLNER-EIDENBÖCK
ELISABETH MOSEER
Department of Ophthalmology, University Hospital of Vienna, Austria
HERWIG FRISCH
Department of Paediatrics, University Hospital of Vienna, Austria
ANDREW P READ
University Department of Medical Genetics, St Mary's Hospital, Manchester M 13 9JH, UK

Correspondence to: Andrea Müllner-Eidenböck, MD, Department of Ophthalmology, University of Vienna Medical School, Allgemeines Krankenhaus, A-1090 Vienna, Wachsturger Guertel 18–20, Austria andrea.muellner-eidenboeck@akh-wien.ac.at
Accepted for publication 20 April 2001

Trichotillomania

EDITOR,—Trichotillomania is the inability to resist the urge to pull out body hair. We present a case of this rare condition.

CASE REPORT

A 12 year old boy was referred to the eye clinic with complaints of dropping of eyelashes of both upper eyelids. He was seen by his optician before the referral. Lid hygiene, propamidine isethionate eye ointment 0.15% (Brolene), and sodium cromoglycate eye drops 2% (Opticrom) were tried but with no benefit. The mother reports that his eyelashes grew while they were abroad on a holiday for a fortnight and then fell off once they returned from their holiday!

When seen in the eye clinic his visual acuity was 6/5 bilaterally. He had no significant ocular history, was generally fit and well, and was taking no regular medications. His parents did not express any concerns regarding his health or his behaviour. On examination, the eyelashes of both upper eyelids were sparse centrally. The few lashes, which were seen, had pointed and not cut ends. On either side the lashes were normal. There was no evidence of inflammation or disease of the lid margins and the rest of the ocular examination was normal. There was no evidence of loss of eyebrow or scalp hair. He is being considered for psychiatric evaluation.

COMMENT

Trichotillomania is characterised by an irresistible urge to pull one's hair. Any body hair may be targeted. Scalp and eyelashes are most commonly affected. Onset is generally in childhood or adolescence, and a chronic course is typical. Depression and anxiety frequently accompany this disorder. An increased incidence of comorbid obsessive-compulsive disorder (OCD) has been noted. The estimated lifetime prevalence is 1.5% for male and 3.4% for female college students. In very young patients, a more equal sex ratio is observed. On the whole, women show 5–10 times higher prevalence rates than men. The majority of the sufferers disguise their hair loss very well. Because of the secrecy and shame about their behaviour, many remain silent sufferers and treatment is often delayed. It is a chronic mental illness that imposes severe limitations on the patient's social, emotional, and occupational adjustment. The pathophysiology of trichotillomania is not well understood. Treatment options include: medications such as serotonin reuptake inhibitors with or without haloperidol, paroxetine, clomipramine, pimozide, risperidone, and venlafaxine; and hypnotherapy.

Trichotillomania has been infrequently reported in the ophthalmic literature. Management can be difficult. Many of these patients are aware of their behaviour, but are unable to curtail it. Others may conceal or deny their habit. Psychiatric counselling may be of benefit if patients are willing to undergo it.

B B PATIL

Correspondence to: B B Patil
bheemapatil@hotmail.com
Accepted for publication 5 February 2001

Gold induced interstitial keratitis

EDITOR,—A 60 year old woman presented with intense, bilateral ocular irritation and photophobia. She had a history of rheumatoid arthritis and was under treatment with prednisone, azathioprine, sulindac, plaquenil, and intramuscular injections of gold sodium thiomalate (50 mg once weekly). She had received a total of 7.4 g of gold over the past 3 years. Examination revealed an extremely photophobic patient with a visual acuity of 20/20 in both eyes. The conjunctivae were mildly injected, with bilateral perilimbal chemosis. The peripheral cornea showed 360° stromal oedema. Mid-stromal vessels were seen entering the oedematous stroma from the limbus (Fig 1 (left)). The rest of the examination was unremarkable. The patient was diagnosed with rheumatoid marginal keratitis, and therapy was started with hourly application of topical prednisolone acetate. Over the next 2 months her symptoms gradually resolved, as did most of her inflammatory findings. However, granular, golden brown pigmented deposits appeared in the corneal stroma in the same peripheral, ring-like distribution as the now resolved stromal keratitis (Fig 1 (right)).

A diagnosis of gold keratopathy was made, and the patient was referred for rheumatological consultation. A systemic evaluation did not reveal signs of gold toxicity. Gold therapy was discontinued. Over the next 6 months, the stromal deposits partially cleared, and topical prednisolone was gradually tapered off. A milder episode of photophobia and irritation
then occurred, with stromal oedema in the same distribution. This was controlled by reintroduction of topical prednisolone therapy. One year after onset, the patient continues to use topical prednisolone once a day and is asymptomatic. There is no stromal inflammation, but fine golden granules are still evident.

COMMENT

Two variants of gold induced keratopathy (corneal chrysalis) have been described. The more common variant manifests as asymptomatic deposition of fine brown or purple granules in the central posterior corneal stroma, sparing the periphery. Other patterns include peripheral deposition with extension towards the central cornea, superficial and dendral deposition. Corneal stromal granule deposition correlates with duration and dosage of therapy and occurs in most, if not all patients after a cumulative dose of 1 g has been reached. Corneal gold deposition by itself is not considered an indication to discontinue gold therapy.

The second variant of keratopathy is rare, presenting with inflammatory symptoms and signs. Examination reveals marginal interstitial keratitis that may ulcerate, with white subepithelial limbal infiltration and deep, brush-like stromal vascularisation. Crescent-shaped marginal ulcers, 2–3 mm in length may be present. This variant is presumed to be an idiosyncratic reaction. It may be unilateral or bilateral, and is considered an indication to stop gold therapy. The underlying pathogenic mechanism, as well as the possible associations with other systemic gold toxicity, is unknown. However, it is notable that the keratitis in our case was responsive to topical corticosteroids and recurred after their withdrawal. A similar response has been reported in systemic manifestations of gold toxicity.

The diagnosis of gold keratopathy should be considered in patients with rheumatoid arthritis who present with marginal keratitis. Assessment of possible systemic toxicity is warranted and cessation of therapy should be considered in such cases. Patients should be continuously followed, since stromal inflammation may recur even after cessation of gold therapy.

Supported in part by National Institute of Health core grant EY03040 and by an unrestricted grant from Research to Prevent Blindness, New York, USA. Dr Zamir is the recipient of an American Physician fellowship, Boston, MA. Dr Read is the recipient of an American Ophthalmological Society/Herman Knapp Testimonials Fund fellowship, Cleveland, OH, USA.

EHUD ZAMIR
RUSSELL W READ
JOHN C AFFELDT
Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA

DHARMARAJAN RAMASWAMY
Department of Rheumatology
NARSING A RAO
Doheny Eye Institute
Correspondence to: Narsing A Rao, MD, Doheny Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, IVRC 211, Los Angeles, CA 90033, USA

rao@hsc.usc.edu
Accepted for publication 18 April 2001

Osteosarcoma with metastasis to orbit

EDITOR,—Osteosarcoma is the most common primary malignant tumour of the bone. More than 90% of patients with this disease die with pulmonary metastases. Metastatic disease to the orbit from sarcomas is rare. An English language computer Medline search (from January 1966 to December 2000) for osteosarcoma metastatic to the orbit did not reveal any previous report. We describe perhaps the first case of osteosarcoma metastasising to the orbit.

CASE REPORT

An 8 year old boy was referred from a district hospital for a swelling over the proximal right leg of 5 months’ duration. Lower extremity radiographs showed a metaphyseal lesion in the proximal tibia with bone destruction and new bone formation. A clinical and radiological diagnosis of osteosarcoma was made. A plain chest radiograph did not reveal any abnormality. Histopathological examination of the tumour confirmed the diagnosis of osteosarcoma. An above knee amputation of the right leg was performed.

One month later, the child developed proptosis of the right eye (Fig 1). An ophthalmic examination confirmed proptosis of the right eye. Vision, fundus, and eye movements were normal in both eyes. Ultrasound examination of the eye revealed a 12 mm × 18 mm lobulated, nodular, hypodense retrobulbar shadow on the temporal side, displacing the optic nerve medially. An area of necrosis was seen in the mass, but no calcification was present (Fig 2). Computed tomography of the orbit confirmed the findings of ultrasonography, demonstrating a soft tissue density mass in the right orbit displacing the eyeball. Fine needle aspiration cytology from the mass showed malignant spindle cells. A diagnosis of osteosarcoma with metastasis to right orbit was made. The patient was offered palliative chemotherapy but refused further treatment and was discharged from the hospital.

COMMENT

Osteosarcoma is the most common primary malignant tumour of bone. Most cases occur in children, adolescents, and young adults with a male predominance. The classic site of occurrence is the medulla of the metaphysis of the long bones, particularly the distal femur, proximal tibia, and proximal humerus. Metastases of osteosarcoma typically affect the lungs. Recent studies indicate, however, that the incidence of non-pulmonary metastases is increasing.

Orbital metastases from malignant neoplasms are rare and can originate from anywhere in the body. In adults, the primary tumour is almost always a carcinoma, with breast and lung accounting for the vast majority of orbital metastases, followed in frequency by genitourinary and gastrointestinal primaries. In children with orbital metastases the primary tumours in descending order of frequency are neuroblastoma, Ewing’s sarcoma, and Wilms’ tumour. Osteosarcoma is very rare. Newman and DiLoretto reported a single case metastatic to the synovial and Woodin and Lees have reported single cases of osteosarcoma metastatic to the choroid. The lung was not involved as a metastatic site in our patient. The spread of tumour to the orbit, sparing the lung, may have possibly been through the Batson’s paravertebral system. Physicians should be aware that non-pulmonary metastases of osteogenic sarcoma may exist at unusual sites.

A MISRA
Department of Ophthalmology, King George’s Medical College, Lucknow - 226003, India

S MISRA
A CHATURVEDI
P K SRIVASTAVA
Department of Radiotherapy
Correspondence to: Dr Sanjeev Misra, 122, Faizabad Road, Lucknow-226007, UP, India

misraalko@satyam.net.in
Accepted for publication 17 May 2001

Oscillopsia is an illusion that the world is in motion; we believe this to be the first report in a patient with SSS. It occurs most frequently with disorders of the vestibular system, cerebellum, or brainstem. Our patient had no associated neurological signs or symptoms, and a normal head CT scan. A mechanical cause of oscillopsia caused by an instability of fixation is a rare but well documented finding.1

In our patient we postulate that the oscillopsia during jogging arises from inadequate globe support caused by demineralisation and downward displacement of the orbital floor and Lockwood’s ligament, while the levator palpebrae superioris and Whitnail’s ligament remain in their normal position. Patients with SSS may also develop vertical diplopia, lid retraction, lagophthalmos, or blurred vision.1

Spontaneous enophthalmos unrelated to trauma, surgery, local malignancy, or systemic disease is uncommon. The presence of diplopia may suggest an underlying neuroophthalmic disorder; however, hypoglobus and enophthalmos point to the orbital/maxillary area as the primary site of pathology.

HADI J ZAMBARAKJI GEOFREY E ROSE
Orbital Clinic, Moorfields Eye Hospital, City Road, London EC1V 2PD, UK

Correspondence to: Mr G E Rose
Accepted for publication 6 June 2001

Figure 1 Photograph showing the conjunctival lesion at presentation.

Figure 2 Colour fundus photograph showing the posterior extension of the lesion. (A) Fundus fluorescein angiography showing multiple areas of hyperfluorescence.
of the mass. The patient has since been asymptomatic.

COMMENT

Characteristic cytogenetic abnormalities are known to be associated with certain types of lymphoma. In addition to classic translocation of chromosome 8 and 14 in Burkitt’s lymphoma, other chromosome rearrangements are related to subsets of lymphoma. To our knowledge this is the first report of chromosome abnormalities in ocular lymphoma. We observed abnormalities frequently associated with non-Hodgkin’s lymphoma (NHL), including rearrangements of chromosome 1 and 6, which are found in both B and T cell NHL, as is a loss of the Y chromosome. Trisomy of chromosome 12 was also observed in this ocular lymphoma, and has been linked with small lymphocytic or diffuse large cell B NHL, and from a study of diffuse large cell lymphomas of stomach, chromosome 12 was again found to be the most consistent abnormality. Although its too early to identify which abnormalities are specifically related to the development of this eye lymphoma, it is apparent that certain alterations are characteristic of lymphoma in general, suggesting that similarities exist between development of ocular and other lymphomas.

S PRASAD
Department of Ophthalmology and Orthoptics, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK

P PURI
Department of Ophthalmology, Royal Hallamshire Hospital

K SISLEY
Department of Ophthalmology and Orthoptics, University of Sheffield

A PARSONS
I G RENNIE
Department of Ophthalmology and Orthoptics, University of Sheffield

Correspondence to: Mr S Prasad
Accepted for publication 4 February 2001

Grostesque bilateral eyelid swelling as a symptom of Munchausen’s syndrome

EDITOR,—Eyelid swelling can be diffuse or solid, acute or chronic, isolated or part of a syndrome. The differential diagnosis of solid, chronic, and isolated eyelid swelling comprises tumours of multiple origin. We report a case of eyelid swelling which was caused by automutilation as part of Munchausen’s syndrome.

CASE REPORT

A 44 year old white woman presented with bilateral lower eyelid swelling that had been present for 6 months, which made reading impossible (Fig 1). In the past she had undergone several paranasal sinus operations and 3 years earlier she had been treated for a preseptal orbital cellulitis and pansinusitis. For the past 4 years she had been bedridden because of fibromyalgia.

The swellings measured 7 × 5 × 2 cm and felt solid on palpation. Complete ocular, internal, otorlaryngological, dermatological, parasitological, and psychological examination revealed no clues for the diagnosis. The swellings were surgically removed to the level of the orbital septum, the defects being covered with full thickness skin grafts. Histological examination showed chronic lymphoedema with lymphangiectasia, inflammation, and striking eosinophilia, but no conclusive diagnosis could be made at this time. During uneventful healing of the lower lids, the patient developed bilateral upper eyelid swelling. These swellings were removed as well and replaced by split skin grafts. Histology of the upper lids showed densely packed empty spaces, which almost obscured pre-existent structures such as the orbicularis muscle (Fig 2). In between a patchy infiltrate of lymphocytes, neutrophils, eosinophils, and many macrophages was seen. At high magnification (Fig 3), the empty spaces revealed a lining of macrophages as was demonstrated by positivity for the CD 68 antibody, a reaction pattern highly suggestive of a factitial process. The diagnosis of Munchausen’s syndrome was made.

COMMENT

The patient was confronted with these results and admitted having pin-pricked herself after putting fatty ointments on her eyelids. She thought this would help the “blisters” to disappear more rapidly. After an emotional conversation, she was able to get up and walk for the first time in 4 years. The repeated psychiatric evaluation resulted in a diagnosis of a factitious disorder with physical signs superimposed on a somatisation disorder. The complaints seemed to have a function in the maintenance of the balance of power in the matrimonial relationship. The patient refused psychiatric treatment.

Factitious disorders, such as the Munchausen’s syndrome, are under the patient’s voluntary control and are intended to get or maintain the role of patient. Self inflicted enucleation and corneal perforation are described ophthalmological representatives of these disorders and easy to recognise. The above described swellings are a less common www.bjophthalmol.com
and more difficult to prove example of an ocular factitious disorder, although the patient's medical history might make the doctor suspicious. In summary, self-inflicted disorders must be considered as a cause of cydysis swelling.

MAARTEN PH MOURITS
Department of Ophthalmology, University Medical Center Utrecht, Netherlands

SEBASTIAAN C J VAN DER PUTTE
Department of Pathology

Correspondence to: Dr Maarten Ph Mourits, Orbital Unit, Department of Ophthalmology, University Medical Center Utrecht, POBox 85550, 3508 GA Utrecht, Netherlands
M.P.Mourits @ospoh.azu.nl
Accepted for publication 16 April 2001

2 Rosenberg PN, Krehel GB, Webb RM, et al. Corrected visual acuity was 20/200 right eye.

Angle closure glaucoma secondary to hemiretinal vein occlusion

CASE REPORT

A 63 year old African American man with controlled systemic hypertension noted reduced vision in his right eye for 1 month. Best corrected visual acuity was 20/200 right eye with +1.75 −0.75 × 85 and 20/25 left eye with +2.25 −1.00 × 95. Slit lamp examination was unremarkable, pupils were equally reactive without an afferent pupillary defect. Intraocular pressure (IOP) was 26 mm Hg right eye and 25 mm Hg left eye. Gonioscopy revealed grade 3 angles in both eyes. The superior half of the retina right eye had dilated tortuous veins and multiple superficial haemorrhages. The right optic nerve was oedematous and hyperaemic. The superior half of the superior vein right eye, and grade 3 left eye. B scan ultrasonography revealed an unremarkable posterior segment without choroidal detachments right eye. The right eye was 37 mm Hg. The patient was discharged on acetazolamide 250 mg by mouth four times daily, brimonidine 0.2% three times daily right eye, Cosopt twice daily right eye, and pilocarpine 2% four times daily right eye.

The following day, the anterior chamber had deepened and the IOP was 24 mm Hg right eye. Gonioscopy revealed a closed angle (Fig 1). Pilocarpine 2% was instilled and a laser iridotomy performed right eye. The following day the IOP was 16 mm Hg right eye. Gonioscopy revealed a grade 2 angle. Acetazolamide was discontinued, pilocarpine 4% four times daily and brimonidine 0.2% three times daily right eye, and Cosopt twice daily right eye were continued.

Two months later, the anterior chambers were deep and the angles were grade 3 in both eyes. IOP was 14 mm Hg right eye on pilocarpine 4% four times daily and Timoptic XE four times daily. 0.5% IOP on subsequent visits remained below 20 mm Hg, and the angle remained open (Fig 2). Visual acuity did not improve.

COMMENT

Transient angle closure glaucoma, an infrequent sequel of CRVO, has not been reported following hemiretinal vein occlusion (HRVO). Angle closure may occur days to months following a CRVO. Neovascular glaucoma may develop weeks or months following a retinal vascular occlusion. Elevated IOP during an acute attack of primary pupillary block angle closure glaucoma can lead to a retinal vascular occlusion. Risk factors for CRVO and HRVO include systemic hypertension and diabetes mellitus. A history of glaucoma has been associated with CRVO, HRVO, and branch retinal vein occlusion (BRVO).

The patient in this report developed angle closure glaucoma within a few weeks of the HRVO. He had a history of systemic hypertension. Elevated IOP was noted in both eyes on initial examination. Cycloplegic agents increased the IOP, suggesting the angle closure was not due to a ciliary block mechanism. Pilocarpine and a laser iridotomy reduced the IOP and opened the angle in this patient, suggesting a secondary pupillary block mechanism. At the time of diagnosis of angle closure glaucoma the contralateral eye had a deep anterior chamber and a wide open angle, making a diagnosis of primary pupillary block angle closure glaucoma unlikely.

Supported in part by grant EY01867 from the National Eye Institute, National Institutes of Health, Bethesda, MD, and an unrestricted grant from Research to Prevent Blindness Inc, New York, and the Louis and Rachel Rudin Foundation, Inc, New York, NY, USA.

DEMITRIOS HALIKIOPOULOS
Department of Ophthalmology, Mount Sinai School of Medicine of New York University, New York, USA
Correspondence to: Janet B Serle, MD, Box 1183, Mount Sinai School of Medicine, Gustave L Levy Place, New York, NY 10029, USA
Janet.serle@msm.edu
Accepted for publication 17 May 2001

Varicella zoster virus immune recovery stromal keratitis in a patient with AIDS

EDITOR,—The advent of potent antiretroviral therapy has resulted in the recognition of the syndrome of immune recovery uveitis in patients with AIDS and a history of cytomegalovirus (CMV) retinitis. Although the pathogenesis of this disease is poorly understood, it is hypothesised to be a consequence of an improved immune response to viral antigen.
already present in the eye, with or without active viral replication. We describe a case of immune recovery varicella zoster virus (VZV) stromal keratitis in a patient with AIDS.

CASE REPORT
A 37 year old man with AIDS (CD4 = 180 cells × 10^9/l) developed right sided ophthalmic zoster and was treated with aciclovir (800 mg by mouth five times a day). Twelve days after onset of the rash, topical prednisolone acetate (one drop every 2 hours) was prescribed to treat multiple anterior stromal corneal infiltrates. The keratitis promptly resolved, and the corticosteroid drops were discontinued within 3 weeks. Over the next 5 months his cornea remained clear, but his HIV disease progressed with the CD4 count dropping to a nadir of 88 cells × 10^9/l. He was started on potent antiretroviral therapy and prophylactic aciclovir 400 mg by mouth twice daily. His cornea remained clear for the next 2 years, but as his CD4 reached 398 cells × 10^9/l, he presented with a complaint of redness of his right eye. On examination he had multiple anterior stromal infiltrates of his right cornea, similar in appearance to the keratitis associated with the previous episode of ophthalmic zoster (Fig 1). The recurrence of stromal keratitis occurred 2½ years after discontinuation of topical steroids and while the patient was taking aciclovir prophylaxis.

COMMENT
VZV associated anterior stromal keratitis is thought to be due to immune recognition of residual viral antigen in the corneal stroma. The incidence of recurrent VZV stromal keratitis has not been well characterised, nor have factors which might precipitate recurrences. Recurrent keratitis related to immune system activation has been recognised following adenoviral infection. In that case, subepithelial oedema associated with a previous adenoviral follicular, keratoconjunctivitis recurred 9 months following the original infection in association with a severe upper respiratory infection. In this report, a patient with AIDS and a history of ophthalmic zoster had a recurrence of anterior corneal stromal infiltrates almost 3 years after the initial skin eruption. Recurrence of the keratitis was not associated with skin or corneal epithelial disease and occurred despite aciclovir prophylaxis. Although the recurrence of the keratitis with this patient’s immune recovery may be coincidental, the significant delay between his initial zosteriform eruption and the recurrence of his stromal disease, as well as the close temporal relation between the recurrence and the patient’s immune recovery, suggest that this is a case of immune recovery zoster keratitis in a patient with ophthalmic zoster.

Other examples of immune recovery disease in patients with previously potent antiretroviral therapy are well recognised. Immune recovery uveitis has been described in patients with previous CMV retinitis. In addition, immune recovery inflammation has been seen in association with previously clinically silent systemic Mycobacterium avium complex infection and in patients with cryptococcal meningitis. In at least one of the cases of meningitis, immune recovery inflammation was thought to be directed against residual cryptococcal antigen, as opposed to a delayed immune response to viable organisms. As advances in AIDS therapy continue to improve the immune status of patients, immune recovery inflammation may become increasingly recognised.

TPM is the recipient of a Research to Prevent Blindness (NY, NY) Low Wasserman award.

AYMAN NASEERI
TODD P MARGOLIS
The Francis I Proctor Foundation and the Department of Ophthalmology, UCSF, Medical Center, San Francisco, USA

Correspondence to: Dr Todd P Margolis, The Francis I Proctor Foundation, UCSF, Medical Center, San Francisco, CA, 94143-0944, USA

Accepted for publication 15 June 2001

Figure 1 Slit lamp photograph of the temporal aspect of the patient’s right eye shows stromal infiltrates with an intact corneal epithelium.

Dipetalonema reconditum in the human eye

EDITOR,—Human ocular invasion by non-human filarial parasites has been reported for more than 200 years. However, only just over a handful have actually been removed, described and identified in detail. Furthermore, the Dipetalonema species that have been described in three cases were thought to be from the body cavity of the natural hosts—the porcupine and the beaver.

Dipetalonema reconditum (arrow).

This report describes a case of Dipetalonema reconditum (usually associated with canine filariasis) in the human eye. It is noteworthy that this worm has morphological similarities to the canine heartworm Dirofilaria immitis, which in the past has been described in the human eye but not satisfactorily identified.

CASE REPORT
A 62 year old white resident of suburban Victoria, Australia, presented with a red and irritated right eye of 2 weeks’ duration. This was exacerbated after a rural walking trip and did not improve with topical lubrication. He also noted mild diplopia on extreme gaze. On examination, the visual acuity was 6/6 in the right eye and 6/4 in the left. There was mild limitation of right eye abduction. Localised bulbar conjunctival erythema and chemosis were noted infra-temporally in the right eye near the insertion of the lateral rectus. Slit lamp biomicroscopy revealed a slithering, clear, thread-like mobile mass in the subconjunctival space of the involved area (Fig 1 and video report (see BJO website)). Intraocular pressure and the rest of the ocular examination, including anterior and posterior segments, were unremarkable. Previous history included pyrexia of unknown origin (PUO) and lancinating headaches 5 months previously. Investigation results then of note included erythrocyte sedimentation rate (ESR) 96 mm in the first hour, C reactive protein (CRP) 411 mg/l, and trace proteinuria. He improved on intravenous ceftriaxone, metronidazole, and oral roxithromycin. He had also had another period of PUO and suffered with chronic Guardia infection.

The worm was removed following localised peritomy under topical local anaesthesia using lignocaine 2%, phenylephrine 10%, and phos- pholine iodide 12.5% (in an attempt to paralyse the worm). The specimen was removed alive and intact and sent in normal saline for identification. Laboratory examination revealed a worm measuring 32 mm in length with morphological features consistent with an unfertilised adult female D reconditum.

Patient investigations including thick and thin blood film, full blood count, ESR, CRP electrolites, liver function tests, and chest x ray were all within normal limits. His pet dogs were found to be serologically negative for Dipetalonema.

He was treated with oral mebendazole, topical prednisolone acetate 1%, and chloramphenicol before the worm’s identification. Two weeks following removal of the worm the diplopia had resolved and residual fibrosis of the conjunctiva at the site of removal was noted.

COMMENT
Dipetalonema reconditum is a nematode that is commonly found to be endemic in dogs’ subcutaneous tissues. Worldwide distribution...
includes the United States, Italy, and Africa. Its infestation in dogs, the only definitive host, is not clinically significant, although they may manifest an elevated eosinophil and leukocyte count. This manifestation may result in false positives in test for circulating *Dirofilaria immitis* microfilariae, also known as the dog heartworm. The differentiation of these two worms is important as *Dirofilaria* is pathogenic to canines. Knott's test is used to detect these microfilariae serologically. Identification of these two adult worms is by their staining patterns with acid phosphatase: *Dipetalonema* stains evenly while *Dirofilaria* concentrates the acid phosphatase in two regions.

Dipetalonema reconditum microfilariae averages about 250–270 µm in length and 4–4.5 µm in width with a round curved body, a distinguishing cephalic hook, and a blunt anterior end. Adult males average 13 mm in length and females 17–32 mm.

Dipetalonema has an indirect life cycle with development of infective larvae that are carried by fleas (*genus Ctenocephalides, Pulex*), ticks (*Rhipicephalus sanguineus*), and lice (*Linognathus*). The microfilarium circulates in the blood as a first stage larva. The larval life cycle is completed when the microfilariae are ingested by the fleas. The microfilariae circulate in the blood as a first stage larva. The larval life cycle lasts 61–68 days. The adult worm tends to infect the subcutaneous tissues.

The authors thank Dr Harsha Sheorey, microbiologist at St Vincent’s Hospital, Melbourne, for his help in identifying the organism.

T HUYNH
Royal Victorian Eye and Ear Hospital, Melbourne, Australia

R MAINI
Centre for Eye Research Australia

Correspondence to: Dr T Huynh, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia

Accepted for publication 14 August 2001

Website extra

A video report is on the BJO website. It shows the undulating appearance of the right upper lid of a patient with *Dipetalonema reconditum* excysting on the conjunctiva. There was no infection in the basal stem cells of the nasal epithelium.

![Video](https://www.bjophthalmol.com)

Table 1 Immunohistochemical staining of epithelial cells for *Hsp27* and *Ki-67* in normal conjunctiva and pterygium

<table>
<thead>
<tr>
<th>Hsp27 Immunoreactivity (%) Positive Cells</th>
<th>Ki-67 Immunoreactivity (%) Positive Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pterygium</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>95</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
</tr>
<tr>
<td>Mean: 88.1</td>
<td>Mean: 9.4</td>
</tr>
<tr>
<td>SD: 10.45</td>
<td>SD: 7.75</td>
</tr>
</tbody>
</table>

Pterygium

<table>
<thead>
<tr>
<th>Pterygium</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
</tr>
</tbody>
</table>

Normal Conjunctiva

<table>
<thead>
<tr>
<th>Normal Conjunctiva</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
</tr>
</tbody>
</table>

Mean: 36.7

SD: 5.2

Mean: 5.2

SD: 3.54

Hsp27 cytoplasmic immunoreactivity was observed only in basal and suprabasal layers of normal conjunctival epithelium (mean 36.7) (Fig 1A). On the other hand, strong Hsp27 immunopositivity in a high percentage of cells in all layers of epithelium was found in all pterygia examined in this study (mean 88.1) (Fig 1B, Table 1). *Ki-67* immunoreactivity was confined in nuclei of scattered cells, located mostly in the basal layers of epithelium, in normal conjunctival epithelium (mean 5.2) as well as in pterygium (mean 9.4) (Table 1). No staining of Hsp27 and/or *Ki-67* was observed in substantia propria in normal conjunctiva tissues and pterygia but in pterygium, Hsp27 strong immunoreactivity was observed in endothelial cells and smooth muscle cells of vessels. There was a statistically significant difference in *Ki-67* immunoreactivity between normal conjunctival epithelium and pterygia (*p<0.001*) but no difference in *Ki-67* immunoreactivity (*p>0.1*) although some pterygia contained large number of proliferative cells. There was no correlation between Hsp27 and *Ki-67* labelling percentage in pterygia (*p=0.7*) and normal conjunctiva (*p=0.9*).

Our findings concerning *Ki-67* expression are consistent with previous results suggesting that pterygium may not be a disorder of cell proliferation. 1. Overexpression of Hsp27 in all
PTERYGIA IS INTERESTING BECAUSE THIS PROTEIN IS KNOWN TO BE RELATED TO DIFFERENTIATION WHEN EXPRESSED IN OTHER EPITHELIAL TISSUES—FOR EXAMPLE, SKIN, AND IN VIEW OF THE RECENT REPORT THAT HSP27 TRANSIENT EXPRESSION SEEMS ESSENTIAL FOR PREVENTING EMBRYONIC STEM CELLS FROM UNDERGOING APOPTOSIS. FURTHERMORE, TAN ET AL. RECENTLY PROPOSED THAT PTERYGIUM MAY BE RELATED TO FAULTY APOPTOSIS. THE ROLE OF HSP27 IN PTERYGIUM REMAINS TO BE ELUCIDATED SINCE HSP27 IS EXPRESSED IN BASAL EPITHELIAL CELLS OF NORMAL CONJUNCTIVA, WHERE THE CELLS ARE MAINLY DIFFERENTIATING STEM CELLS AND IN ALL LAYERS OF EPITHELIUM IN PTERYGIUM. FURTHER STUDIES WOULD PROVIDE VALUABLE INFORMATION REGARDING THE POSSIBLE ROLE OF HSP27, AND THE INVOLVEMENT OF HEAT SHOCK PROTEINS IN GENERAL IN THE PATHOGENESIS OF PTERYGIUM.

NIKOLAOI PHARMAKAKIS
Department of Ophthalmology, School of Medicine, University of Patras, Patras 26500, Greece

MARTHA ASSIMAKOPOULOU
Department of Anatomy, School of Medicine, University of Patras

Correspondence to: Nikolaos Pharmakakis, MD, Department of Ophthalmology, School of Medicine, University of Patras, 26500 Greece
npharmak@med.upatras.gr

Accepted for publication 14 March 2001