LETTERS TO THE EDITOR

Waardenburg syndrome type 2 in a Turkish family: implications for the importance of the pattern of fundus pigmentation

EDITOR,—Waardenburg syndrome (WS) is a typical auditory pigmentary syndrome with affected individuals showing varying combinations of sensorineural hearing loss, patchy abnormal pigmentation of the eyes, hair and skin, and various defects of neural crest derived tissues.1,2

This syndrome is both clinically and genetically heterogeneous and is clinically classified into four types.3 Mutations of the PAX3 gene have been identified in WS type 1 and 3, while those of either the endothelin B receptor gene, the endothelin-3 gene or the sox10 gene have been identified in WS type 4.4,5 WS type 2 is a heterogeneous group, with about 10% of cases caused by mutations in MITF. But MITF mutations are obviously not the major cause of WS type 2 and for most cases the genetic basis is as yet unknown.

The diagnostic criteria for WS type 2 proposed by Liu et al6 include, in addition to congenital sensorineural hearing loss and pigmentary disturbances of the hair, pigmentary disturbances of the iris but not of the fundus.

In the two affected boys of the Turkish family presented here, the pattern of fundus pigmentation was one of the most striking clinical features, with dense hyperpigmented areas next to hypopigmented areas. We want to emphasise the importance of a thorough observation of the clinical phenotype and especially of the pattern of fundus pigmentation in WS type 2.

CASE REPORT
A Turkish family presented with two of three sons showing clinical symptoms of WS type 2. Firstly, the 5 year old boy, the youngest of three children of a non-consanguineous couple, was referred for ophthalmological evaluation because of constant esotropia in the left eye. The child has worn hearing aids since the age of 16 months; the first reliable audiogram at age 3 years showed profound sensorineural hearing loss which had not changed over the past years. Best corrected visual acuity was 20/20 right eye and 20/200 left eye.

Figure 1 (Top) The 5 year old boy (III-5) with bilateral dark brown irides; corneal reflexes demonstrate left esotropia; there is no evidence of dystopia canthorum. (Centre) Left: right fundus with an area of hypopigmentation on the posterior pole as well as nasally; pigmentary mottling and spots of hyperpigmentation in the temporal periphery (arrows); (right) left fundus, allowed in type with spots of hyperpigmentation nasally and around the whole fundus periphery (arrows). (Bottom) Audiogram: profound bilateral sensorineural hearing loss.

Severe fundus pigmentary disturbances were found in the left (blue) eye, with extensive albinoid areas nasally and on the posterior pole, whereas the temporal region showed a homogeneous area of dense hyperpigmentation. In the right (dark brown) eye, the pigmentary disturbances were less extensive with a hyperpigmented peripapillary ring and pigmentary mottling especially in the nasal region (Fig 2, centre). Conventional audiological examinations showed bilateral sensorineural hearing loss with moderate impairment on the right and total deafness on the left side (Fig 2, bottom).

Ophthalmological and audiological evaluations made of the father, the eldest brother, and a son of the father’s first marriage were within normal limits. The mother showed pigmentary mottling in the periphery of the fundus only. No other associated abnormalities (such as hair or skin hypopigmentation, medial eyebrow flare, broad and high nasal root, hypoplasia of alae nasi, or premature greying of hair) were found among the family members. To calculate the W index, a biometric index for dystopia canthorum, we used dystopia indices for WS as reported by Arias,7
described elsewhere, no abnormally migrating bands in the MITF syndrome.

The genomic DNA samples, tested for mutations in the PAX3 and MITF genes as described elsewhere,4 showed no abnormally migrating bands.

COMMENT

Given the classic symptoms of WS type 2 expressed in this Turkish family, we had the opportunity to make some interesting observations on the clinical findings in this syndrome.

In the genomic DNA samples of this family no abnormally migrating bands in the MITF gene or the PAX 3 gene were seen. Only about 10% of patients who fulfil the diagnostic criteria for WS type 2 have an MITF mutation and for most cases the genetic basis is as yet unknown.4 5 Dominantly inherited examples of auditory pigmentary syndromes with patchy depigmentation of the skin, hair, eyes or the stria vascularis of the cochlea are usually labelled as Waardenburg syndromes.1 6 Expression of clinical findings is extremely variable1 6 and the evaluation of a correct history of pedigree was difficult in this family because of the fact that most of the other family members were living in the Turkey. However, the fundal pigmentary changes of the mother were distinct enough to mark her as affected.

Complete heterochromia irides and especially the brilliant sapphire-blue eye colour have been noted rarely in non-Waardenburg people.4 Slit lamp examination of the left iris of the second son showed a thick iris of a brilliant blue colour without any hypoplastic structures or transillumination defects. It is generally assumed that in WS type 2 only the mesodermal component of the iris is involved owing to a lack of melanocytes in the mesodermal part of the iris.

Congenital deafness is clinically the most serious symptom. WS type 2 individuals were found to have a greater incidence of deafness, more severe and more often bilateral forms of deafness.2 Hearing impairment can be explained by a lack of melanocytes in the stria vascularis of the cochlea. These two affected boys showed bilateral sensorineural hearing loss. Interestingly, we found that the auditory results are paralleled by the pattern of fundus pigmentation. While the youngest boy with bilateral brown irides and marked bilateral pigmented abnormalities of the fundus had profound bilateral hearing loss (Fig 1), the 7 year old boy with heterochromia irides showed different degrees in the severity of fundus anomalies and hearing loss: the moderate degree of hearing loss of the right ear correlated with mild irregularities of pigmentation of the homolateral fundus, total deafness left correlated with severe homolateral fundus pigmentary disturbances and the brilliant blue iris (Fig 2).

The pattern of fundus pigmentation is not considered as part of diagnostic criteria for WS type 2.2 However, in our family, abnormalities in fundus pigmentation seem to constitute an integral part of this syndrome. Fundi in patients with WS were described as “patchy hypopigmentation,” “pigmentary mottling,” or “albinoid in type” in most cases.4 6 Only Goldberg reported “blond next to hyperpigmented areas” in a black boy. In the two affected boys, dense hyperpigmented areas next to marked hypopigmented areas were one of the most impressive clinical findings. This picture seems to be the result of a localised accumulation of pigmented melanocytes which were handicapped in their determined homogeneous distribution.

In conclusion, we have presented a Turkish WS type 2 family in which no mutations of the MITF gene could be found. The affected family members showed a conspicuous fundus picture with ipsilateral connections between iris, fundus, and perhaps, inner ear pigmentation. Therefore, one might suggest, that the clinical signs in WS type 2 could be a consequence of a failure in distribution of pigmented melanocytes in their final location. The genetic basis, as yet unknown for most cases of WS type 2, might be found in a very late step of the pigmentation pathway.

ANDREA MULLNER-RIDENTBOCK ELISABETH MOSER
Department of Ophthalmology, University Hospital of Vienna, Austria

HERWIG FRISCH
Department of Paediatrics, University Hospital of Vienna, Austria

ANDREW P READ
University Department of Medical Genetics, St Mary’s Hospital, Manchester M 13 0JH, UK

Correspondence to: Andrea Mullner-Ridentbock, MD, Department of Ophthalmology, University of Vienna Medical School, Allgemeines Krankenhaus, A-1090 Vienna, Wahringer Gürtel 18–20, Austria andrea.mullner-ridentbock@akh-wien.ac.at

Accepted for publication 20 April 2001

Trichotillomania

Editor.—Trichotillomania is the inability to resist the urge to pull out body hair. We present a case of this rare condition.

CASE REPORT

A 12 year old boy was referred to the eye clinic with complaints of dropping of eyelashes of both upper eyelids. He was seen by his optician before the referral. Lid hygiene, propramidine isethionate eye ointment 0.15% (Brolene), and sodium cromoglicate eye drops 2% (Opticrom) were tried but with no benefit. The mother reports that his eyelashes grew while they were abroad on a holiday for a benefit. The mother reports that his eyelashes were normal. There was no evidence of inflammation or disease of the lid margins and the rest of the ocular examination was normal. There was no evidence of loss of eyebrow or scalp hair. He is being considered for psychiatric evaluation.

COMMENT

Trichotillomania is characterised by an irresistible urge to pull one’s hair. Any body hair may be targeted. Scalp and eyelashes are most commonly affected. Onset is generally in childhood or adolescence, and a chronic course is typical. Depression and anxiety frequently accompany this disorder. An increased incidence of comorbid obsessive-compulsive disorder (OCD) has been noted. The estimated lifetime prevalence is 1.5% for male and 3.4% for female college students. In young patients, a more equal sex ratio is observed. On the whole, women show 5–10 times higher prevalence rates than men. The majority of the sufferers disguise their hair loss very well. Because of the secrecy and shame about their behaviour, many remain silent sufferers and treatment is often delayed. It is a chronic mental illness that imposes severe limitations on the patient’s social, emotional, and occupational adjustment. The pathophysiology of trichotillomania is not well understood. Treatment options include: medications such as serotonin reuptake inhibitors with or without haloperidol, clomipramine, clomipramine, pimozide, risperidone in serotonin reuptake inhibitor refractory trichotillomania, venlafaxine; behaviour therapy: habit reversal training and hypnotherapy.

Trichotillomania has been infrequently reported in the ophthalmic literature. Management can be difficult. Many of these patients are aware of their behaviour, but are unable to curtail it. Others may conceal or deny their habit. Psychiatric counselling may be of benefit if patients are willing to undergo it.

B B Patil
T C Dowd
North Riding Infirmary, Newport Road, Middlesbrough TS1 5JE, UK

Correspondence to: B B Patil bheemapati@hotmail.com

Accepted for publication 5 February 2001

Gold induced interstitial keratitis

Editor.—A 60 year old woman presented with intense, bilateral ocular irritation and photophobia. She had a history of rheumatoid arthritis and was under treatment with prednisolone, azathioprine, sulindac, plaquenil, and intramuscular injections of gold sodium thiomalate (50 mg once weekly). She had received a total of 7.4 g of gold over the past 3 years. Examination revealed an extremely photophobic patient with a visual acuity of 20/20 in both eyes. The conjunctivas were mildly injected, with bilateral perilimbal chemosis. The peripheral cornea showed 360° stromal oedema. Mid-stromal vessels were seen entering the oedematous stroma from the limbus (Fig 1 (left)). The rest of the examination was unremarkable. The patient was diagnosed with rheumatoid marginal keratitis, and therapy was started with hourly application of topical prednisolone acetate. Over the next 2 months her symptoms gradually resolved, as did most of her inflammatory findings. However, granular, golden brown pigmented deposits appeared in the corneal stroma in the same peripheral, ring-like distribution as the previous deposits appeared in the corneal stroma in the inferior corneal stroma superior to the limbus. Deposits were removed by means of curettes. The patient was referred for rheumatological consultation. A systemic evaluation did not reveal any signs of gold toxicity. Gold therapy was discontinued. Over the next 6 months, the stromal deposits partially cleared, and topical prednisolone was gradually tapered off. A milder episode of photophobia and irritation persisted.

Trichotillomania

Figure 1 Scarce central eyelashes on both upper eyelids.

Gold induced interstitial keratitis

Figure 1 (Left) Slit lamp photograph of the right cornea. Stromal oedema with brush-like stromal vascularisation (arrows). (Right) Slit lamp photograph of the right cornea, using a narrow slit beam. Dense deposition of golden brown granules is seen in the inferior corneal stroma superior to the limbus. Arrows indicate epithelium (long arrow) and endothelium (short arrow).
then occurred, with stromal oedema in the same distribution. This was controlled by reinstitution of topical prednisolone therapy. One year after onset, the patient continues to use topical prednisolone once a day and is asymptomatic. There is no stromal inflammation, but fine golden granules are still evident.

COMMENT

Two variants of gold induced keratopathy (corneal chrysiasis) have been described. The more common variant manifests as asymptomatic deposition of fine brown or purple granules in the central posterior corneal stroma, sparing the periphery. Other patterns include peripheral deposition with extension towards the central cornea, superficial and diffuse stromal deposition. Corneal stromal granule deposition correlates with duration and dosage of therapy and occurs in most, if not all patients after a cumulative dose of 1 g has been reached. Corneal gold deposition by itself is not considered an indication to discontinue gold therapy.

The second variant of keratopathy is rare, presenting with inflammatory symptoms and signs. Examination reveals marginal interstitial keratitis that may ulcerate, with white, subepithelial limbal infiltration and deep, brush-like stromal vascularisation. Crescent-shaped marginal ulcers, 2–3 mm in length may be present. This variant is presumed to be an idiiosyncratic reaction. It may be unilateral or bilateral, and is considered an indication to stop gold therapy. The underlying pathogenic mechanism, as well as the possible associations with other systemic gold toxicity, is unknown. However, it is notable that the keratitis in our case was responsive to topical corticosteroids and recovered after their withdrawal. A similar response has been reported in systemic manifestations of gold toxicity.

The diagnosis of gold keratopathy should be considered in patients with rheumatoid arthritis who present with marginal keratitis. Assessment of possible systemic toxicity is warranted and cessation of therapy should be considered in such cases. Patients should be continuously followed, since stromal inflammation may recur even after cessation of gold therapy.

Supported in part by National Institute of Health core grant EY03040 and by an unrestricted grant from Research to Prevent Blindness, New York, USA. Dr Zamir is the recipient of an American Physican fellowship, Boston, MA. Dr Read is the recipient of an American Ophthalmological Society/Herman Knapp Testimonial Fund fellowship, Cleveland, OH, USA.

EHUD ZAMIR
RUSSELL W READ
JOHN C AFFELDT
Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA

DHARMARAJAN RAMASWAMY
Department of Rheumatology
NARSING A RAO
Doheny Eye Institute
Correspondence to: Nursing A Rao, MD, Doheny Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, IVRC 211, Los Angeles, CA 90033, USA
nrao@hsc.usc.edu

Accepted for publication 18 April 2001

Osteosarcoma with metastasis to orbit

EDITOR,—Osteosarcoma is the most common primary malignant tumour of the bone. More than 90% of patients with this disease die with pulmonary metastases. Metastatic disease to the orbit from sarcomas is rare. An English language computer Medline search (from January 1966 to December 2000) for osteosarcoma metastatic to the orbit did not reveal any previous report. We describe perhaps the first case of osteosarcoma metastasising to the orbit.

CASE REPORT

An 8 year old boy was referred from a district hospital for a swelling over the proximal right leg of 5 months’ duration. Lower extremity radiography showed a metaphyseal lesion in the proximal tibia, superficial and axial bone formation. A clinical and radiological diagnosis of osteosarcoma was made. A plain chest radiograph did not reveal any abnormality. Histopathological examination of the tumour confirmed the diagnosis of osteosarcoma. An above knee amputation of the right leg was performed.

One month later, the child developed proptosis of the right eye (Fig 1). An ophthalmic examination confirmed proptosis of the right eye. Vision, fundus, and eye movements were normal in both eyes. Ultrasound examination of the eye revealed a 12 mm × 18 mm lobulated, nodular, hypodense retrobulbar shadow on the temporal side, displacing the optic nerve medially. An area of necrosis was seen in the mass, but no calcification was present (Fig 2). Computed tomography of the orbit confirmed the findings of ultrasonography, demonstrating a soft tissue density mass in the right orbit displacing the eyeball. Fine needle aspiration cytology from the mass showed malignant spindle cells. A diagnosis of osteosarcoma with metastasis to right orbit was made. The patient was offered palliative chemotherapy but refused further treatment and was discharged from the hospital.

COMMENT

Osteosarcoma is the most common primary malignant tumour of bone. Most cases occur in children, adolescents, and young adults with a male predominance. The classic site of occurrence is the medulla of the metaphysis of the long bones, particularly the distal femur, proximal tibia, and proximal humerus. Metastases of osteosarcoma typically affect the lungs. Recent studies indicate, however, that the incidence of non-pulmonary metastases is increasing.

Orbital metastases from malignant neoplasms are rare and can originate from anywhere in the body. In adults, the primary tumour is almost always a carcinoma, with breast and lung accounting for the vast majority of orbital metastases, followed in frequency by genitourinary and gastrointestinal primaries. In children with orbital metastases the primary tumours in descending order of frequency are neuroblastoma, Ewing’s sarcoma, and Wilms’ tumour.6–9 Found leukaemia and neuroblastoma as the commonest tumours producing orbital metastases. The two populations studied in these reports differed geographically (United States and India respectively). These tumours tend to involve the orbits and spare the globes in contradistinction to metastatic disease in adults. Metastatic osteosarcoma to the eye is very rare. Newman and DiLoreto6 reported a single case metastatic to the synaeresis. Sauffman and Woodin and Lees10 have reported single cases of osteosarcoma metastatic to the choroid. The lung was not involved as a metastatic site in our patient. The spread of tumour to the orbit, sparing the lung, may have possibly been through the Batson’s paravertebral system. Physicians should be aware that non-pulmonary metastases of osteogenic sarcoma may exist at unusual sites.

A MISRA
Department of Ophthalmology, King George’s Medical College, Lucknow - 226003, India

S MISRA
A CHATURVEDI
P K SRIVASTAVA
Department of Radiotherapy
Correspondence to: Dr Sanjeev Misra, 122, Faizabad Road, Lucknow-226007, UP, India
msralka@satyam.net.in

Accepted for publication 17 May 2001

An unusual cause of oscillopsia

CASE REPORT

A 26 year old woman was referred with a 6 month history of painless gradual sinking of her left eye (Fig 1). She had suffered two episodes of mild sinusitis, one at the age of 12 and one at a year before presentation. Visual acuity was 6/6 in each eye and there was no evidence of optic neuropathy. There were 4 mm of left relative enophthalmos, no manifest deviation, and full extraocular movements. The height of the palpebral aperture was 1 mm less on the left. Orbital CT scans demonstrated ipsilateral sinus constriction, orbital floor resorption, and thinning with inferior prolapose into the maxillary sinus. We present a patient who noted oscillopsia while jogging 1 year after being diagnosed with SSS.

COMMENT

Oscillopsia is an illusion that the world is in motion; we believe that this is the first report in a patient with SSS. It occurs most frequently with disorders of the vestibular system, cerebellum, or brainstem. Our patient had no associated neurological signs or symptoms, and a normal head CT scan. A mechanical cause of oscillopsia caused by an instability of fixation is a rare but well documented finding.

In our patient we postulate that the oscillopsia during jogging arises from inadequate globe support caused by demineralization and downward displacement of the orbital floor and Lockwood’s ligament, while the levator palpebrae superioris and Whitnall’s ligament remain in their normal position. Patients with SSS may also develop vertical diplopia, lid retraction, lagophthalmos, or blurred vision.

Spontaneous enophthalmos unrelated to trauma, surgery, local malignancy, or systemic disease is uncommon. The presence of diplopia may suggest an underlying neuro-ophthalmic disorder; however, hypoglobus and enophthalmos point to the orbital/maxillary area as the primary site of pathology.

HADI J ZAMBARAKJI
GEOFFREY E ROSE
Orbital Clinic, Moorfields Eye Hospital, City Road, London EC1V 2PD, UK

Correspondence to: Mr G E Rose
Accepted for publication 6 June 2001

Figure 1 Photograph showing the conjunctival lesion at presentation.

Figure 2 (A) Colour fundus photograph showing the posterior extension of the lesion. (B) Fundus fluorescein angiography showing multiple areas of hyperfluorescence.
general, suggesting that similarities exist between development of ocular and other lymphomas.

S PRASAD
Department of Ophthalmology and Orthoptics, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK

P PURI
Department of Ophthalmology, Royal Hallamshire Hospital

K SISLEY
Department of Ophthalmology and Orthoptics, University of Sheffield

A PARSONS
I G RENNIE
Department of Ophthalmology and Orthoptics, University of Sheffield

Correspondence to: Mr S Prasad
Accepted for publication 4 February 2001

Grotesque bilateral eyelid swelling as a symptom of Munchausen’s syndrome

EDITOR,—Eyelid swelling can be diffuse or solid, acute or chronic, isolated or part of a syndrome. The differential diagnosis of solid, chronic, and isolated eyelid swelling comprises tumours of multiple origin. We report a case of eyelid swelling which was caused by automutilation as part of Munchausen’s syndrome.

CASE REPORT
A 44 year old white woman presented with bilateral lower eyelid swelling that had been present for 6 months, which made reading impossible (Fig 1). In the past she had undergone several paranasal sinus operations and 3 years earlier she had been treated for a preseptal orbital cellulitis and pansinusitis. For the past 4 years she had been bedridden because of fibromyalgia.

The swellings measured 7 × 5 × 2 cm and felt solid on palpation. Complete ocular, internal, otorhinolaryngological, dermatological, parasitological, and psychological examination revealed no clues for the diagnosis. The swellings were surgically removed to the level of the orbital septum, the defects being covered with full thickness skin grafts. Histological examination showed chronic lymphoedema with lymphangiectasia, inflammation, and striking eosinophilia, but no conclusive diagnosis could be made at this time. During uneventful healing of the lower lids, the patient developed bilateral upper eyelid swelling. These swellings were removed as well and replaced by split skin grafts. Histology of the upper lids showed densely packed empty spaces, which almost obscured pre-existent structures such as the orbicularis muscle (Fig 2). In between a patchy infiltrate of lymphocytes, neutrophils, eosinophils, and many macrophages was seen. At high magnification (Fig 3), the empty spaces revealed a lining of macrophages as was demonstrated by positivity for the CD 68 antibody, a reaction pattern highly suggestive of a factitial process. The diagnosis of Munchausen’s syndrome was made.

COMMENT
The patient was confronted with these results and admitted having pin-pricked herself after putting fatty ointments on her eyelids. She thought this would help the “blisters” to disappear more rapidly. After an emotional conversation, she was able to get up and walk for the first time in 4 years. The repeated psychiatric evaluation resulted in a diagnosis of a factitious disorder with physical signs superimposed on a somatisation disorder. The complaints seemed to have a function in the maintenance of the balance of power in the matrimonial relationship. The patient refused psychiatric treatment.

Factitious disorders, such as the Munchausen’s syndrome, are under the patient’s voluntary control and are intended to get or maintain the role of patient. Self inflicted enucleation and corneal perforation are described ophthalmological representatives of these disorders and easy to recognise. The above described swellings are a less common
and more difficult to prove example of an ocular factitious disorder, although the patient’s medical history might make the doctor suspicious. In summary, self inflicted disorders must be considered as a cause of eyelid swelling.

MAARTEN PH MOURITS
INNA V SASIM
Department of Ophthalmology, University Medical Center Utrecht, Netherlands
SEBASTIAAN C J VAN DER PUTTE
Department of Pathology
Correspondence to: Dr Maarten Ph Mourits, Orbital Unit, Department of Ophthalmology, University Medical Center Utrecht, POBox 85500, 3508 GA Utrecht, Netherlands
M.P.Mourits @oogh.arn.nl
Accepted for publication 16 April 2001

Angle closure glaucoma secondary to hemiretinal vein occlusion

EDITOR.—Central retinal vein occlusion (CRVO) has been reported to cause shallowing of the anterior chamber with acute angle closure glaucoma.1 This is due to anterior displacement of the lens-iris diaphragm caused by either the transudation of fluid from retinal vessels into the vitreous cavity or swelling of the ciliary body due to spasm, oedema, or detachment which may cause relaxation of lens zonules with subsequent crowding and closure of the angle.2 We describe a patient who developed angle closure glaucoma without neovascularisation of the angle secondary to hemiretinal vein occlusion which responded to miotics and iridotomy suggesting a “pupillary block” mechanism. This is the first report of angle closure glaucoma following a hemiretinal vein occlusion.

CASE REPORT
A 63 year old African American man with controlled systemic hypertension noted reduced vision in his right eye for 1 month. Best corrected visual acuity was 20/200 right eye with +1.75 –0.75 × 85, and 20/25 left eye with +2.25 –1.00 × 95. Slit lamp examination was unremarkable, pupils were equally reactive without an afferent pupillary defect. Intraocular pressure (IOP) was 26 mm Hg right eye and 25 mm Hg left eye. Gonioscopy revealed grade 3 angles in both eyes. The superior half of the retina right eye had dilated tortuous veins and multiple superficial haemorrhages. The right optic nerve was oedematous and hyperemic. Retinal examination was unremarkable left eye with a cup to disc ratio of 0.4 horizontally by 0.5 vertically. The patient was diagnosed with a hemiretinal vein occlusion right eye, elevated IOP in both eyes, and treated with betaxolol 0.25% twice daily in both eyes.

Two weeks later visual acuity was counting fingers right eye and unchanged left eye. IOP was 42 mm Hg right eye and 20 mm Hg left eye, on betaxolol. The patient was referred to our office.

On examination the anterior chambers were shallow right eye and deep left eye. IOP was 45 mm Hg right eye and 21 mm Hg left eye. The patient’s corrected visual acuity was 20/200 right eye and 20/100 left eye. Gonioscopy revealed grade 3 right eye and grade 3 left eye. B scan ultrasonography revealed an unremarkable posterior segment without choroidal detachments right eye. Brimonidine 0.2% twice daily right eye, and pilocarpine 2% four times daily right eye.

The following day, the anterior chamber had deepened and the IOP was 24 mm Hg right eye. Gonioscopy revealed a closed angle right eye (Fig 1). Pilocarpine 2% was instilled and a laser iridotomy performed right eye. The following day the IOP was 16 mm Hg right eye. Gonioscopy revealed a grade 2 angle. Acetazolamide was discontinued, pilocarpine 4% four times daily right eye, brimonidine 0.2% three times daily right eye, and Cosopt twice daily right eye were continued.

Two months later, the anterior chambers were deep and the angles were grade 3 in both eyes. IOP was 14 mm Hg right eye on pilocarpine 4% four times daily and Timoptic XE four times daily 0.5% IOP on subsequent visits remained below 20 mm Hg, and the angle remained open (Fig 2).

Visual acuity did not improve.

COMMENT
Transient angle closure glaucoma, an infrequent sequela of CRVO, has not been reported following hemiretinal vein occlusion (HRVO). Angle closure may occur days to months following a CRVO. Neovascular glaucoma may develop weeks or months following a retinal vascular occlusion. Elevated IOP during an acute attack of primary pupillary block angle closure glaucoma can lead to a retinal vascular occlusion. Risk factors for CRVO and HRVO include systemic hypertension and diabetes mellitus. A history of glaucoma has been associated with CRVO, HRVO, and branch retinal vein occlusion (BRVO).3

The patient in this report developed angle closure glaucoma within a few weeks of the HRVO. He had a history of systemic hypertension. Elevated IOP was noted in both eyes on initial examination. Cycloplegic agents increased the IOP, suggesting the angle closure was not due to a ciliary block mechanism. Pilocarpine and a laser iridotomy reduced the IOP and opened the angle in this patient, suggesting a secondary pupillary block mechanism. At the time of diagnosis of angle closure glaucoma the contralateral eye had a deep anterior chamber angle and a wide open angle, making a diagnosis of primary pupillary block angle closure glaucoma unlikely.

Previous reports of angle closure glaucoma secondary to central retinal vein occlusion suggest treatment options, mydriatic or miotic therapy. Ultrasonic biomicroscopy may be of benefit in differentiating between a ciliary block mechanism and a pupillary block mechanism.

Supported in part by grant EY01867 from the National Eye Institute, National Institutes of Health, Bethesda, MD, an unrestricted grant from Research to Prevent Blindness Inc, New York, and the Louis and Rachel Rudin Foundation, Inc, New York, NY, USA.

DEMETRIOS HALIKIOPOULOS
JANET B SERLE
Department of Ophthalmology, Mount Sinai School of Medicine of New York University, New York, USA
Correspondence to: Janet B Serle, MD, Box 1183, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY 10029, USA
janet.serle@mssm.edu
Accepted for publication 17 May 2001

Varicella zoster virus immune recovery stromal keratitis in a patient with AIDS

EDITOR.—The advent of potent antiretroviral therapy has resulted in the recognition of the syndrome of immune recovery uveitis in patients with AIDS and a history of cytomegalovirus (CMV) retinitis.4 Although the pathogenesis of this disease is poorly understood, it is hypothesised to be a consequence of an improved immune response to viral antigen

www.bjophthalmol.com
already present in the eye, with or without active viral replication. We describe a case of immune recovery varicella zoster virus (VZV) stromal keratitis in a patient with AIDS.

CASE REPORT
A 37 year old man with AIDS (CD4 = 180 cells × 10^9/l) developed right sided ophthalmic zoster and was treated with aciclovir (800 mg by mouth five times a day). Twelve days after onset of the rash, topical prednisolone acetate (one drop every 2 hours) was prescribed to treat multiple anterior stromal corneal infiltrates. The keratitis promptly resolved, and the corticosteroid drops were discontinued within 3 weeks. Over the next 5 months his cornea remained clear, but his HIV disease progressed with the CD4 count dropping to a nadir of 88 cells × 10^9/l. He was started on potent antiretroviral therapy and prophylactic aciclovir 400 mg by mouth twice daily. His cornea remained clear for the next 2 years, but as his CD4 reached 398 cells × 10^9/l, he presented with a complaint of redness of his right eye. On examination he had multiple anterior stromal infiltrates of his right cornea, similar in appearance to the keratitis associated with the previous episode of ophthalmic zoster (Fig 1). The recurrence of stromal keratitis occurred 2½ years after discontinuation of topical steroids and while the patient was taking aciclovir prophylaxis.

COMMENT
VZV associated anterior stromal keratitis is thought to be due to immune recognition of residual viral antigen in the corneal stroma. The incidence of recurrent VZV stromal keratitis has not been well characterised, nor have recurrent VZV associated anterior stromal keratitis. The incidence of recurrent VZV stromal keratitis has not been well characterised, nor have recurrent VZV associated anterior stromal keratitis.

TPM is the recipient of a Research to Prevent Blindness (NY, NY) LeW Wasserman Award.

AYMAN NASERI
TODD P MARGOLIS
The Francis I Proctor Foundation and the Department of Ophthalmology, UCSF, Medical Center, San Francisco, USA

Correspondence to: Dr Todd P Margolis, The Francis I Proctor Foundation, UCSF, Medical Center, San Francisco, CA, 94143-0944, USA

tpms@itsa.ucsf.edu

Accepted for publication 15 June 2001

Figure 1 Subconjunctival infestation with Dipetalonema reconditum (arrows).

This report describes a case of Dipetalonema reconditum (usually associated with canine filariasis) in the human eye. It is noteworthy that this worm has morphological similarities to the canine heartworm Dirofilaria immitis, which in the past has been described in the human eye but not satisfactorily identified.1

CASE REPORT
A 62 year old white resident of suburban Victoria, Australia, presented with a red and irritated right eye of 2 weeks’ duration. This was exacerbated after a rural walking trip and did not improve with topical lubrication. He also noted mild diplopia on extreme right gaze. On examination, the visual acuity was 6/6 in the right eye and 6/4 in the left. There was mild limitation of right eye abduction. Localised bulbar conjunctival erythema and chemosis were noted inferotemporally in the right eye near the insertion of the lateral rectus. Slit lamp biomicroscopy revealed a slithering, clear, thread-like mobile organism in the subconjunctival space of the inflected area (Fig 1 and video report (see BJ Ophthalmology website)). Intraocular pressure and the rest of the ocular examination, including anterior and posterior segments, were unremarkable. Previous history included pyrexia of unknown origin (PUO) and lancinating headaches 5 months previously. Investigations results then of note included erythrocyte sedimentation rate (ESR) 96 mm in the first hour, C reactive protein (CRP) 411 mg/l, and trace proteinuria. He improved on intravenous ceftriaxone, metronidazole, and oral roxithromycin. He had also had another period of PUO and suffered with chronic Guardia infection.

The worm was removed following localised pterygium under topical local anaesthesia using lignocaine 2%, phenylephrine 10%, and phos- pholine iodide 12.5% (in an attempt to paralyse the worm). The specimen was removed alive and intact and sent in normal saline for identification. Laboratory examination revealed a worm measuring 32 mm in length with morphological features consistent with an unfertilised adult female D reconditum. Patient investigations including thick and thin blood film, full blood count, ESR, CRP electrolytes, liver function tests, and chest x ray were all within normal limits. His pet dogs were found to be serologically negative for Dipetalonema.

He was treated with oral mebendazole, topical prednisolone acetate 1%, and chlorpheniramine before the worm’s identification. Two weeks following removal of the worm the diplopia had resolved and residual fibrosis of the conjunctiva at the site of removal was noted.

COMMENT
Dipetalonema reconditum is a nematode that is commonly found to be endemic in dogs’ subcutaneous tissues. Worldwide distribution...
includes the United States, Italy, and Africa. Its infestation in dogs, the only definitive host, is not clinically significant, although they may manifest an elevated eosinophil and leukocyte count. This manifestation may result in false positives in test for circulating *Dirofilaria immitis* microfilariae, also known as the dog heartworm. The differentiation of these two worms is important as *Dirofilaria* is pathogenic to canines. *Knott’s test* is used to detect these microfilariae serologically. Identification of these two adult worms is by their staining patterns with acid phosphatase: *Dipetalonema* stains evenly while *Dirofilaria* concentrates the acid phosphatase in two regions.

Dipetalonema reconditum microfilariae averages about 250–270 μm in length and 4.4–5.4 μm in width with a round curved body, a distinguishing cephalic hook, and a blunt anterior end. Adult males average 13 mm in length and females 17–32 mm. *Dipetalonema* has an indirect life cycle with development of infective larvae that are carried by fleas (genus *Ctenocephalides, Pulex*), ticks (*Rhipicephalus sanguineus*), and lice (canines). *Linognathus* is used to detect these microfilariae serologically. Identification of these two adult worms is by their staining patterns with acid phosphatase: *Dipetalonema* stains evenly while *Dirofilaria* concentrates the acid phosphatase in two regions.

Dipetalonema reconditum microfilariae in all layers of epithelium was found in all pterygia examined in this study (mean 88.1) (Fig 1B, Table 1). Ki-67 immunoreactivity was confined in nuclei of scattered cells, located mostly in the basal layers of epithelium, in normal conjunctival epithelium (mean 5.2) as well as in pterygium (mean 9.4) (Table 1). No staining of *Hsp27* and/or Ki-67 was observed in substantia propria in normal conjunctiva and pterygia but in pterygia, *Hsp27* strong immunoreactivity was observed in endothelial cells and smooth muscle cells of vessels. There was a statistically significant difference in the expression of *Hsp27* and/or Ki-67 in pterygia. *Dipetalonema reconditum* remains mobile immediately before removal following localised pterygium.

Table 1 Immunohistochemical staining of epithelial cells for *Hsp27* and Ki-67 in pterygium

<table>
<thead>
<tr>
<th>Pterygia</th>
<th>Hsp27 (mean immunoreactivity % positive cells)</th>
<th>Ki-67 (mean immunoreactivity % positive cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>97</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

Mean: 88.1 (SD 14.84) | **Mean:** 9.4 (SD 7.75)

d) Overexpression of *Hsp27* in all pterygia.

Table 2 Immunohistochemical staining of epithelial cells for *Hsp27* and *Ki-67* in pterygia and normal conjunctiva

<table>
<thead>
<tr>
<th>Normal conjunctiva</th>
<th>Pterygia</th>
<th>Hsp27 (mean immunoreactivity % positive cells)</th>
<th>Ki-67 (mean immunoreactivity % positive cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>36.7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Mean: 36.7 (SD 29.72) | **Mean:** 5.2 (SD 3.54)

Website extra

A video report on the BJO website. It shows the undulating appearance of the right bulbar conjunctiva of a 52 year old male.

www.bjophthalmol.com

Immunohistochemical detection of heat shock protein 27 and Ki-67 in human pterygium

Exon— Pterygium, a disorder of the ocular surface, consists of atrophic conjunctival epithelium and a highly vascularised hypertrophic and elastic degenerated connective tissue. Ultraviolet irradiation is considered to be the principal environmental factor through an effect on the basal stem cells on the nasal limbus and activation of the fibroblasts.13 Previous studies have detected chromosomal allelic loss in slightly over 50% of pterygia and Ki-67 negatively correlated with microsatellite instability.11 However, no differences in cellular proliferation between pterygial and normal conjunctival tissue have been detected with flow cytometry.10 On the other hand, a recent report suggests that pterygium may be the result of a failure of appropriate cellular apoptosis.5 We studied 17 pterygia and 12 normal conjunctival tissues from the nasal conjunctiva for the expression of heat shock protein 27 (Hsp27) and cell proliferation associated nuclear antigen Ki-67. *Hsp27* was upregulated in all 17 pterygia and Ki-67 in all cases. The immunohistochemical staining of epithelial cells for *Hsp27* and Ki-67 in pterygium and normal conjunctiva.

Table 1 Immunohistochemical staining of epithelial cells for *Hsp27* and Ki-67 in pterygium and normal conjunctiva

<table>
<thead>
<tr>
<th>Pterygia</th>
<th>Hsp27 (mean immunoreactivity % positive cells)</th>
<th>Ki-67 (mean immunoreactivity % positive cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>97</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

Mean: 88.1 (SD 14.84) | **Mean:** 9.4 (SD 7.75)

Table 2 Immunohistochemical staining of epithelial cells for *Hsp27* and Ki-67 in pterygium and normal conjunctiva

<table>
<thead>
<tr>
<th>Normal conjunctiva</th>
<th>Pterygia</th>
<th>Hsp27 (mean immunoreactivity % positive cells)</th>
<th>Ki-67 (mean immunoreactivity % positive cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>36.7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Mean: 36.7 (SD 29.72) | **Mean:** 5.2 (SD 3.54)

References

pterygia is interesting because this protein is known to be related to differentiation when expressed in other epithelial tissues—for example, skin,” and in view of the recent report that Hsp27 transient expression seems essential for preventing embryonic stem cells from undergoing apoptosis. Furthermore, Tan et al recently proposed that pterygium may be related to faulty apoptosis. The role of Hsp27 in pterygium remains to be elucidated since Hsp27 is expressed in basal epithelial cells of normal conjunctiva, where the cells are mainly differentiating stem cells and in all layers of epithelium in pterygia. Further studies would provide valuable information regarding the possible role of Hsp27, and the involvement of heat shock proteins generally in the pathogenesis of pterygium.

NIKOLAOS PHARMAKAKIS
Department of Ophthalmology, School of Medicine, University of Patras, Patras 26500, Greece

MARTHA ASSIMAKOPOULOU
Department of Anatomy, School of Medicine, University of Patras

Correspondence to: Nikolaos Pharmakakis, MD, Department of Ophthalmology, School of Medicine, University of Patras, 26500 Greece
npharmak@med.upatras.gr

Accepted for publication 14 March 2001