 Histopathological findings in filtering blebs with recurrent blebitis

We report clinical courses and histopathological findings of excised blebs from two patients with recurrent blebitis.

Case reports

Case 1

A 79 year old man with a past history of lung cancer and diabetes mellitus underwent trabeculectomy with 5-fluorouracil in his right eye for a diagnosis of primary open angle glaucoma (POAG) in 1989. In January 1994, bleb leakage from an avascular bleb was confirmed for the first time and prophylactic topical erythromycin had been applied. In September 1994, he experienced ocular pain and hyperaemia in his right eye and blebitis was diagnosed. Culture of aqueous humour was positive for enterococcus. He was treated with topical ofloxacin, micromycin, and a subconjunctival injection of amikacin and the infection resolved. After then, bleb leak was not observed at any regular visit. In March 1998, blebitis occurred with a bleb leak in the same position. Although infection was controlled with almost same medication as before, the leak did not stop after any conservative therapies. In October 1998, the bleb was resected and the free conjunctival flap was transplanted. Histology of the excised bleb from case 1 shows a one to two layered thin epithelium with goblet cell depletion and a poor inflammatory response (Fig 1). Because the bleb leak persisted, the bleb was resected to prevent reinfection and anterior advancement of the conjunctiva was performed in February 2001. Histological examination of the bleb specimen revealed an attenuated epithelium with goblet cell depletion and hyaline change with a loss of inflammatory responses in the lamina propria.

Comment

According to previous reports, the epithelia of leaking blebs following adjunctive use of antimetabolites shows focal or general thinning. In cases of leaking bleb after filtering surgery without the use of antimetabolites, Sinnerreich et al. reported similar epithelial thinning, while Addicks et al. reported normal epithelium. Both of our cases were similar to the former. Moreover, there was goblet cell depletion in both of our cases. Mucin is a highly adhesive substance secreted from goblet cells and mostly forms as surface mucin over the cornea or conjunctiva, which has an important function as a physical, biological barrier on the ocular surface, such as elimination of foreign bodies or control of micro-organisms. Thus, histological findings of these two cases of recurrent blebitis infection are compatible with dysfunction against bacterial infection.

Inflammatory reaction in the stroma of the bleb is decreased with the use of mitomycin C, while cases of leaking blebs without antimetabolites reportedly show moderate subconjunctival inflammation. Case 2 in the present study, without the use of antimetabolites, had a low inflammatory reaction. Poor immune response may be related to the poor blood supply in these ischaemic blebs and compatible with the poor immune response to bacterial infection.

Waheed and his colleagues reported clinical characteristics of 12 eyes with recurrent bleb related infections and they concluded that eyes that have been successfully treated for bleb related infection remain at risk for recurrent infection. Histopathological findings showing thinning and breakdown of epithelial structures in the present study may explain this findings.

H Matsuo, G Tomita, M Araie, Y Suzuki, Y Kaji
Department of Ophthalmology, The University of Tokyo School of Medicine, Tokyo, Japan
H Obata
Department of Ophthalmology, Jichi Medical School, Tochigi, Japan
S Tanaka
Department of Ophthalmology, Teikyo University School of Medicine Ichihara Hospital, Chiba, Japan

Correspondence to: Hirosi Matsuo, MD, Department of Ophthalmology, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan; hmatso6k@umin.ac.jp

The authors have no proprietary interest in the development and marketing of any products mentioned in this article.

Accepted for publication 18 January 2002

References

Retinal detachment surgery in district general hospitals: an audit of changing practice

Despite advances in the techniques of vitreoretinal surgery, rhegmatogenous retinal detachment (RBD) continues to pose a serious...
A threat to vision. In the past, general ophthalmologists in the United Kingdom undertook most RRD surgery, with only the more complex cases being referred to retinal specialists. The recent trend towards subspecialisation has led to increasing numbers of primary RRD being managed by vitreoretinal surgeons in tertiary referral centres.

We conducted an audit to determine the current success rate of primary RRD surgery in our subregion (south west subregion, SWSR). SWSR consists of the catchments of four district general hospitals (DGH) in Devon and Somerset (population 1.2 million). A previous subregional audit in 1991 showed that all consultant ophthalmologists undertook primary RRD repair, achieving a success rate of 71% with one operation. Since then, retinal subspecialisation has meant that all RRDs are managed by three retinal specialists (CJ, PS, RG) in their individual DGHs, providing a subregional surgical retinal service. An informal cross cover arrangement exists between the three DGHs, with the result that patients are very rarely referred out of the subregion.

Case notes of all patients who underwent surgery for primary RRD from January to December 1999 were retrospectively reviewed. Case ascertainment was achieved by reviewing theatre logbooks and identifying all vitreoretinal procedures that took place during that time period. A single investigator (RL) collected details of all the patients; 1999 was chosen so that there was a minimum of 1 year follow up.

Retinal reattachment was assumed to be stable in the absence of any history of further retinal surgery in the notes.

The main outcome measures were (1) primary success: retinal reattachment with or without further intervention during follow up, and (3) visual acuity outcome.

The retrieval rate for case notes was 99%. A total of 127 cases (DGH A 36%, DGH B 41%, DGH C 23%) were treated in 1999, with a mean age of 59.6 years (range 14–95).

Table 1 shows the characteristics of the retinal detachments at presentation. There was no significant difference in any of the characteristics listed in Table 1 between the three DGHs (χ² test, p>0.05). A total of 102 (80%) patients were operated on within 48 hours of presentation. Detachment subtypes in the 20% of operations delayed for more than 48 hours included chronic macula-off detachments (13), chronic inferior detachments with atrophic holes (eight), chronic dialeys (three), and inferior combined schisis detachment (one). No patients with macula-on detachment developed macular detachment before surgery.

The primary success rate, although significantly improved, was not 100%. Improvement on our “early” failures, mostly due to “technical” errors, can be achieved by appropriate choice of surgical technique. For the “late” failures, all consequence of PVR, improvement may depend on the identification of “at-risk” cases, and the selective use of an “anti-PVR” cocktail.

To conclude, we have shown that the primary success rate of RRD surgery has improved following a change in practice towards retinal subspecialisation in our subregion. The anatomical success and functional outcome were comparable to results from other VRUs in the United Kingdom.

Table 1 Characteristics of primary RRD in the south west subregion during 1999

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No (%) of retinal detachments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macula attached</td>
<td>60 (47)</td>
</tr>
<tr>
<td>Phagic</td>
<td>97 (76)</td>
</tr>
<tr>
<td>>5 dioptres myopia</td>
<td>33 (26)</td>
</tr>
<tr>
<td>Single retinal break</td>
<td>72 (57)</td>
</tr>
<tr>
<td>Inferior retinal breaks*</td>
<td>29 (23)</td>
</tr>
<tr>
<td>PVR (grade C or worse)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Total retinal detachment</td>
<td>11 (9)</td>
</tr>
<tr>
<td>Types of retinal breaks:</td>
<td></td>
</tr>
<tr>
<td>Horseshoe tears</td>
<td>83 (65)</td>
</tr>
<tr>
<td>Round holes</td>
<td>22 (17)</td>
</tr>
<tr>
<td>Dialysis</td>
<td>8 (6)</td>
</tr>
<tr>
<td>Combined schisis detachment</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Giant tear</td>
<td>3 (2)</td>
</tr>
</tbody>
</table>

PVR = proliferative vitreoretinopathy.

*p<0.05, Wilcoxon test.

Table 2 Preoperative and postoperative logMAR visual acuity

<table>
<thead>
<tr>
<th>Group</th>
<th>Preop Median (SD)</th>
<th>Postop Median (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (n=127)</td>
<td>0.78 (0.88)</td>
<td>0.18 (0.65)*</td>
</tr>
<tr>
<td>Macula attached (n=60)</td>
<td>0.21 (0.62)</td>
<td>0.16 (0.35)*</td>
</tr>
<tr>
<td>Macula detached (n=67)</td>
<td>1.83 (0.90)</td>
<td>0.85 (0.65)*</td>
</tr>
<tr>
<td>Primary success (n=108)</td>
<td>0.60 (0.88)</td>
<td>0.18 (0.54)*</td>
</tr>
<tr>
<td>Primary failures following successful reintervention (n=13)</td>
<td>0.78 (0.90)</td>
<td>0.60 (0.99)</td>
</tr>
</tbody>
</table>

*p<0.05, Wilcoxon test.

At presentation, cases that had not undergone oil removal at their primary success rate of RRD surgery has significantly improved compared with tertiary referral centres.

Initially, there would appear to be significant differences in the primary success rate between the four studies (Cambridge VRU 90%, SWSR 85%, St Thomas's 84%, Moorfields 80%, p<0.05, χ² test). However, it is debatable whether retinal reattachment achieved with silicon oil in situ can be considered “stable.” After excluding eyes with silicon oil still in situ, the “oil-out primary success rate” was comparable (Cambridge VRU 80%; SWSR 83%, p>0.05, χ² test).

The primary success rate, although significantly improved, was not 100%. Improvement on our “early” failures, mostly due to “technical” errors, can be achieved by appropriate choice of surgical technique. For the “late” failures, all consequence of PVR, improvement may depend on the identification of “at-risk” cases, and the selective use of an “anti-PVR” cocktail.

To conclude, we have shown that the primary success rate of RRD surgery has improved following a change in practice towards retinal subspecialisation in our subregion. The anatomical success and functional outcome were comparable to results from other VRUs in the United Kingdom.

The benefits of providing a local vitreoretinal service, in contrast to referring patients to a VRU in a tertiary centre, include prompt on-site surgical access, and the availability of support from family and friends locally to aid visual rehabilitation in the postoperative period.
Do climatic variables influence the development of posterior vitreous detachment?

Posterior vitreous detachment (PVD) is a common condition after the fifth decade of life. Synchiae of the vitreous progresses in proportion to age, creating holes in the posterior hyaloid membrane and allowing PVD to occur. The incidence of rhegmatogenous retinal detachment is generally accepted to be season dependent, with a higher incidence in the colder months (April to September) compared to the colder months (October to March). Even though there were more visitors in the warmer months compared to the colder months, this difference was not significant. We also found a strong association with increasing weekly temperatures. However, we postulate that increasing physical activity and dehydration associated with increasing temperatures may have a role to play.

Further work is necessary in order to investigate the effect of increasing temperatures and dehydration on the biochemical structure of the vitreous.

References

Ocular and systemic poseconazole (SCH-56592) treatment of invasive Fusarium solani keratitis and endophthalmitis

An immunocompetent woman with 66 vision developed left eye pain while wearing cosmetic soft contact lenses. She presented on 28 July 2000 to her ophthalmologist, who noted deep stromal infiltration accompanying a 2 × 3 mm pericentral corneal ulcer. Cultures yielded Staphylococcus aureus, Streptococcus viridans, and...
Fusarium solani. Initial therapy with tobramycin was followed by high dose topical hydroquinolones, whereafter the infection, continuing unabated, was construed to be fungal keratitis. High doses of amphotericin B both topical and intravenously, natamycin, and ketoconazole were administered, along with topical fortified cephalon, neosporin, and atropine. Despite these, the lesion spread to involve much of the corneal periphery (Fig 1), and repeat corneal cultures confirmed the presence of amphotericin B resistant *Fusarium* sp resistant *Fusarium* (MIC 24–48 hours in presence of amphotericin B resistant *Fusarium* spp). Seven days later, amphotericin B was partially cleared. Diagnostic vitrectomy yielded positive surgical histology, >90% of the fibrin clot had inflammatory clot, the anterior descemetocele anteriorly and central iris posteriorly. Descemetocele anteriorly revealed its attachment to the same daily, there was significant clearing of posaconazole.

Fusarium, Fusarium solani species, was confirmed on separate occasions by *Fusarium solani* with invasive *Fusarium* keratitis, recovered with good retinal function and 360 degree peripheral visual function. The visual axis was clear, with two small clear operculi in the otherwise opaque residual posterior capsule (Fig 2). Visual acuity was 6/50 using aphakic correction, with no afferent pupil defect. Prognosis for eventual lens replacement, posterior capsulotomy, and visual rehabilitation of this eye now appeared very good. This excellent outcome is not anticipated for invasive *Fusarium* of the eye."

In summary, a healthy woman with amphotericin and natamycin resistant *Fusarium* sp keratitis, progressing to invasive endophthalmitis, recovered with good retinal function via an apparently rapid response of the *Fusarium* to systemic and/or topical posaconazole. The ocular penetration of posaconazole was confirmed on separate occasions by aqueous and vitreous analysis.

Acknowledgements

The authors gratefully acknowledge the assistance of Gilbert Vipraio in coordinating this study, and Schering-Plough for providing the study drug and funding for Mr. Vipraio.

Supported in part by an unrestricted grant from Research to Prevent Blindness, New York, USA.

The authors have no proprietary interest in any products used in this assessment.

References

TABLE 1 Uncorrected visual acuity at discharge

<table>
<thead>
<tr>
<th>Acuity</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6–6/18</td>
<td>1054</td>
<td>49.9</td>
</tr>
<tr>
<td><6/18–6/60</td>
<td>997</td>
<td>47.1</td>
</tr>
<tr>
<td><6/60</td>
<td>64</td>
<td>3.0</td>
</tr>
</tbody>
</table>

TABLE 2 Reasons for poor visual outcome at discharge (<6/60)

<table>
<thead>
<tr>
<th>Cause</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-existing eye disease</td>
<td>34</td>
<td>1.6</td>
</tr>
<tr>
<td>Surgical complication</td>
<td>25</td>
<td>1.2</td>
</tr>
<tr>
<td>Retractive error</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td><0.1</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>3.0</td>
</tr>
</tbody>
</table>

通过自我密封圆锥性通道。生物材料被安装并计算ICOL插入在374（18%）的病例；剩余的1741（82%）的患者加上+2.00 PCOL。之后排除了23个白内障手术，儿童，21例白内障手术，以及八个内源性白内障手术，使得手术结果在剩余的2115个白内障手术中被评估。

未纠正的视觉结果（94%在首次准入日）为6/6–6/18，介于49.9%和3.0%之间。在所有情况下，原因在实现结果时被意识到。作者们非常清楚地意识到，对于急性期的管理，尤其是白内障和黑内障手术，在急性阶段引起的炎症，必须通过现代技术来减少并发症。

在一些作者中，有人指出在首次手术中使用AMT的行为是合理和必要的，尽管有人不同意这种观点。一项重要的策略是通过自我密封技术来减少对眼外伤的黏连。

推荐原因

<table>
<thead>
<tr>
<th>原因</th>
<th>数量</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>预存性眼疾</td>
<td>34</td>
<td>1.6%</td>
</tr>
<tr>
<td>手术并发症</td>
<td>25</td>
<td>1.2%</td>
</tr>
<tr>
<td>退行性错误</td>
<td>4</td>
<td>0.2%</td>
</tr>
<tr>
<td>未知原因</td>
<td>1</td>
<td><0.1%</td>
</tr>
<tr>
<td>总数</td>
<td>64</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

MACULAR

失败的修复膜移植

我们与感兴趣的文章的作者Joseph et al.合作。他们承担责任地收集相关研究结果，并且报告了其无法划分的分类等级。化学性眼烧伤的作者必须被特别地进行分组，并且在Tamil语中使用了充分的科学解释。

新方法的描述中，许多作者暗示与此有关的一个重要的原因，是通过加强手术的连续性，即考虑其后果。

在使用技术的过程中，作者们非常清楚地意识到，管理化学性眼烧伤和黑内障手术的急性阶段是减少并发症和需要对重度急性期的管理的重要策略。

Table 1

<table>
<thead>
<tr>
<th>Acuity</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6–6/18</td>
<td>1054</td>
<td>49.9</td>
</tr>
<tr>
<td><6/18–6/60</td>
<td>997</td>
<td>47.1</td>
</tr>
<tr>
<td><6/60</td>
<td>64</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>原因</th>
<th>数量</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>预存性眼疾</td>
<td>34</td>
<td>1.6%</td>
</tr>
<tr>
<td>手术并发症</td>
<td>25</td>
<td>1.2%</td>
</tr>
<tr>
<td>退行性错误</td>
<td>4</td>
<td>0.2%</td>
</tr>
<tr>
<td>未知原因</td>
<td>1</td>
<td><0.1%</td>
</tr>
<tr>
<td>总数</td>
<td>64</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Trachoma and recurrent trichiasis

It was with great interest that I read the recent article by Al Arab and co-workers. This work clearly shows that endemic blinding trachoma continues to be a major health problem in this area of the Nile Delta, quite close to Cairo.

My attention was particularly drawn to the high rate of recurrence among those who had had trichiasis surgery. Overall, 44% of cases who had had surgery had recurrent trichiasis. It would be most interesting to look at the time that had elapsed between surgery and the time of examination. Some have argued that the recurrence rate from trichiasis reflects poor or inadequate surgery. Others have alluded to the fact that the tarsal conjunctiva is of progressive nature, and that trichiasis is likely to recur because of ongoing scarring, even after otherwise successful surgery. Information of the elapsed time would help explore the scenario.

H R Taylor AC
Centre for Eye Research Australia, University of Melbourne, 32 Grange Street, East Melbourne 3002, Australia; h.taylor@unimelb.edu.au

References

“No-needle” sub-Tenon’s anaesthesia

We read with interest the letter from Amin et al suggesting a modification of the sub-Tenon local anaesthetic injection procedure. They advocate the use of a Venflon needle to penetrate the conjunctiva, with subsequent advancement of the cannula before anaesthetic injection. We are concerned that the use of a sharp needle should be recommended so close to the eye. Amin et al point out that the needle tip is clearly visible at all times and therefore “minimal risk” of puncturing the eye. However, once under the conjunctiva, the needle is not necessarily “clearly” visible, and if subconjunctival haemorrhage should occur then it will quickly become obscured. We do not think it sensible to place a sharp needle this close to the eye when an effective and well-proven alternative delivery system has already stood the test of time.

In his editorial on local anaesthetic injection techniques for cataract surgery, Smerdon rightly emphasises the risk of ocular penetration for all techniques involving needles, and highlights the Royal College of Ophthalmologists’ local anaesthesia survey which demonstrated the relative safety of sub-Tenon’s and topical anaesthesia. We agree with him that when discussing an anaesthetic technique with a potential for high volume, it is not the expert anaesthetist/ophthalmologist who should be borne in mind, but rather the less skilled person, possibly not familiar with anaesthetic techniques, or in training, who may be required to administer a block. It is in this setting that the use of a needle very close to the eye is, in our opinion, an unwarranted risk. Surely the “no needle” sub-Tenon’s technique is just as effective, and safer.
A re-analysis of astigmatism correction

In a recent perspective by Morlet et al. there are a number of omissions and fundamental errors of content that lead to erroneous conclusions. These significant inaccuracies overlooked in the review process compromise the article's broad contribution.

In Morlet et al.'s attempt to detail “the use and limitation of vectors...for the analysis of change in astigmatism” (p 1127) they display an incomplete understanding of the subject. They have made a valiant attempt to assemble both the theoretical and contemporary references on a subject of significant interest, but key material has been omitted or misquoted. This has resulted in leading statements in the article, in both the text and even the conclusion, that require re-evaluation and substantial revision.

The most obvious omission is the paper's absence of any discussion of the difference vector, a precise measure of surgical outcomes described in reference 70. When the difference vector is related to the treatment (that is, TIA or target induced astigmatism vector) one has an extremely useful relative value of surgical astigmatism treatment. Morlet et al. have overlooked this key vectorial entity and struggle to find any useful alternative. In sharp contrast Dr Doug Koch, editor of the Journal of Cataract and Refractive Surgery, in his editorial of March 2001 on the analysing astigmatism issue of January 2001 described the difference vector and the index of success as “remarkably useful and intuitive means of understanding the effects of the surgery.”

The authors state more than once for their principal foundation of the article that “Vector analysis alone does not provide any indication of the relative value of the surgical procedure” (p 1132). These statements are erroneous, and the authors’ failure to discuss or dispute the value of the difference vector and index of success leaves the assertion unsupported and lacking credibility. If the surgical induced astigmatism vector (SIA) (one of surgical outcomes described in reference 70) was the only product of vector analysis, indeed vector analysis would be a limited tool. This seems to be Morlet et al.'s contention. This is far from the truth and as a result the restatement in the conclusion that “vector analysis does not give a measure of outcome” (p 1134) is factually inaccurate.

In addition, their interpretation that the off-axis effects of treatment at 45° to the surgical plane are deemed to be rotation, would more accurately be termed “torque,” the component of the SIA that has been ineffective in reducing astigmatism. The relevant reference describing flattening, steepening, torque, and effect of off-axis treatments has been omitted from the attempt at a comprehensive list of relevant published material. The phenomena of rotation and torque are fundamentally different physical processes. The polar value at 45° to the “surgical plane” (p 1131) quantifies the torque which causes an increase in the existing astigmatism associated with its change in orientation. It does not properly gauge the cylindrical component which occurs if no concurrent change in the amount of existing astigmatism occurs. Rotation includes some associated flattening (or steepening) effect occurring as a result of the SIA. The article's conclusion that “a better evaluation of the effect of astigmatism axis requires the use of the ‘by the rule’ or mirror equivalent axis notation, or by a manual scoring method to produce an outcome summary measure” (p 1134) is convoluted and unworkable. If implemented this would adversely affect the comprehension of astigmatism outcome analysis by the average general ophthalmic or refractive surgeon.

It is unfortunate the reviewers of this paper did not detect all the factual fallacies that merited revision. The statement “vector analysis is only valid in the early post-operative period” because “the healing process has modified the induced astigmatism” (p 1131) shows the authors’ failure to understand that the healing response cannot be divorced from the surgical process. It is part of it. The amount of astigmatism correction (that is TIA) achieved is a function of the trends over time when examining aggregate data, and this phenomenon requires surgeons to examine outcomes facilitating adjustment of nomograms based on long term (at least 6 months) and not immediate outcomes. The later statement “the use of vector analysis over time is conceptually invalid, because unlike the initial surgical event, the wound healing process is continuous” (p 1132) is seriously flawed. Vector analysis is an essential component of this refinement process. In fact, vector analysis could be used to determine the astigmatic effect of the healing process itself by comparison of data at various stages in the postoperative period.

The recommendations promoted by Morlet et al. introduce greater complexity than the already complicated subject. For example, mixing negative and positive cylinder notation is unnecessary. The technique put forward (p 1131 and equation 20) does not address the changes that occur in corneal shape as measured by keratometry and topography, and cannot be readily applied when targeting non-zero goals associated with incomplete or off-axis refractive astigmatism treatment.

It is probable that the authors are careless in raising phantom “problems” (p 1128) for planning techniques based on incorrect quoting of information (such as reference 33). The merits of this customised treatment technique are that refractive as well as keratometric data are employed (contrary to its misrepresentation that the technique “only uses keratometric data for the planning of refractive surgery” (p 1128)).

Morlet et al.’s unfortunate statement of opinion that “a lack of critical evaluation” has resulted in “the surgical vector” adoption of the de facto standard used in most reports concerning the surgical management of astigmatism (p 1132) is not shared by many experienced investigative surgeons in the field. This has been shown by its admitted prevalence by the authors, and the uselessness of vectorial analysis in understanding the surgical process. Indeed, many of the erroneous statements and omissions in the perspective article might lead one to ask where the “lack of critical evaluation” actually lies.

A re-analysis of astigmatism correction

References

N Mukerji, R Sinha, R B Vajpayee

Rajendra Prasad Centre for Ophthalmic Sciences,
All India Institute of Medical Sciences,
New Delhi, India

Correspondence to: Rasik B Vajpayee, RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi -110029, India; rasikvajpayee@rediffmail.com

References

N Alpins

7 Chesterville Road, Cheltenham 3192, Australia

References

www.bjophthalmol.com
The Hole In My Vision: An Artist's View of His Own Macular Degeneration.

This text provides an illuminating and unique insight into the entoptic phenomena induced by the development of age related macular degeneration. Written primarily by a distinguished ophthalmic artist and photographer, it records his visual impressions of the development of age related macular degeneration in his own retina during a 10 year period. His method of inducing and illustrating his entoptic phenomena is fascinating and the correlation with the clinical fundus findings of his attending ophthalmologists quite remarkable. The effect of laser photocoagulation is clearly described from a patient's perspective.

This book is written in large print for the lay sufferer and ophthalmic professional alike. It is an easy read with plentiful illustrations and should occupy the bookshelf of all concerned with this potentially blinding disorder. Profits derived from the sale of this book will be used to support age related macular degeneration research.

R McFadzean
Department of Neuro-ophthalmology, Institute of Neurological Sciences, Glasgow, UK

International Centre for Eye Health

The International Centre for Eye Health has published a new edition of the Standard List of Medicines, Equipment, Instruments and Optical Supplies (2001) for eye care services in developing countries. It is compiled by the Task Force of the International Agency for the Prevention of Blindness. Further details: Sue Stevens, International Centre for Eye Health, 11–43 Bath Street, London EC1V 9EL, UK (tel: +44 (0)20 7608 6910; email: eyeresource@ucl.ac.uk).

Second Sight

Second Sight, a UK based charity whose aims are to eliminate the backlog of cataract blind in India by the year 2020 and to establish strong links between Indian and British ophthalmologists, is regularly sending volunteer surgeons to India. Details can be found at the charity website (www.secondsight.org.uk) or by contacting Dr Lucy Mathen (lucymathen@yahoo.com).

Specific Eye Conditions (SPECS)

Specific Eye Conditions (SPECS) is a not for profit organisation which acts as an umbrella organisation for support groups of any conditions or syndrome with an integral eye disorder. SPECS represents over fifty different organisations related to eye disorders ranging from conditions that are relatively common to very rare syndromes. We also include groups who offer support of a more general nature to people with retinitis pigmentosa. Part of the welfare network and the BRPS branches in developing countries. It is compiled by the Task Force of the International Agency for the Prevention of Blindness. Further details: Sue Stevens, International Centre for Eye Health, 11–43 Bath Street, London EC1V 9EL, UK (tel: +44 (0)20 7608 6910; email: eyeresource@ucl.ac.uk).

The British Retinitis Pigmentosa Society

The British Retinitis Pigmentosa Society (BRPS) was formed in 1979 to bring together people with retinitis pigmentosa and their families. The principle aims of BRPS are to raise funds to support the programme of medical research into an eventual cure for this hereditary disease, and through the BRPS welfare service, help members and their families cope with the everyday concerns caused by retinitis pigmentosa. Part of the welfare service is the telephone helpline (+44 (0)1280 860 363), which is a useful resource for any queries or worries relating to the problems retinitis pigmentosa can bring. This service is especially valuable for those recently diagnosed with retinitis pigmentosa, and all calls are taken in the strictest confidence. Many people with retinitis pigmentosa have found the Society helpful, providing encouragement, and support through the Helpline, the welfare network and the BRPS branches throughout the UK. (tel: +44 (0)1280 821 334; email: lynda@brps.demon.co.uk; web site: www.brps.demon.co.uk)

Singapore National Eye Centre 5th International Meeting

The Singapore National Eye Centre 5th International Meeting will be held on 3–5 August 2002 in Singapore. Further details: Ms Amy Lim, Organising Secretariat, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751 (tel: (+65) 322 8374; fax: (+65) 227 7290; email: Amy_Lim@s nec.com.sg).

Ophthalmic Anesthesia Society (OAS) 16th Scientific Meeting

The 16th Scientific Meeting of the OAS will be held on 4–6 October 2002 in The Westin, Michigan Avenue, 909 North Michigan Avenue, Chicago, USA (reservations +1 800 228 3000). Further details: OAS, 793-A Foothill Blvd, PMB 110, San Luis Obispo, CA 93405, USA (tel: +1 805 771 8300; web site: www.eyeanaesthesia.org).

BEAVRS Meeting

The next BEAVRS meeting will be held in the Dalmahoy Hotel near Edinburgh on 31 October to 1 November 2002. Further details: Susan Campbell, Medical Secretary, Gartnavel General Hospital (email: susan.j.campbell.wg@northglasgow.scot.nhs.uk)