Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the α-subunit of cone specific transducin (GNAT2)

M Michaelides, I A Aligianis, G E Holder, M P Simunovic, J D Mollon, E R Maher, D M Hunt, A T Moore

PATIENTS AND METHODS

Five affected members of a three generation, consanguineous Pakistani family with cone dystrophy were assessed after informed consent was obtained (Fig 1).

A full medical history was taken and an ophthalmological examination performed. Examined subjects also underwent colour fundus photography and fundus autofluorescence imaging using the confocal scanning laser ophthalmoscope (cSLO) (Zeiss Prototype; Carl Zeiss Inc, Oberkochen, Germany). Electrophysiological assessment included electro-oculography (EOG), full field electroretinography (ERG) and pattern ERG (PERG), incorporating the protocols recommended by the International Society for Clinical Electrophysiology of Vision.17–19 S-cone ERGs were also recorded using a previously described protocol.20

Colour vision testing included the use of the Hardy, Rand, Rittler (HRR) plates (American Optical Company, New York, NY, USA), Sloan achromatopia plates, enlarged Farnsworth D-15 (PV-16), the enlarged Mollon-Reffin (M-R) minimal test,21 and the Nagel anomaloscope. The PV-16, Sloan achromatopia plates, and the M-R test were all performed under CIE Standard Illuminant C from a MacBeth Easel lamp.

The PV-16 and the enlarged M-R test were used in order to detect any residual colour discrimination that might be present in patients with low vision: the coloured discs of the PV-16 were 33 mm in diameter and those of the enlarged M-R test were 26 mm in diameter (corresponding to visual angles of 3.8 and 3.3 deg at a viewing distance of 500 mm). With the same purpose in mind, we also used a modification of the Cambridge colour test, a computerised test that allows the measurement of colour discrimination along different
directions in colour space. In the modified test, the stimulus array consisted of only four large discs, organised in a diamond pattern. Each disc subtended 4 degrees of visual angle at the viewing distance of 1 metre. On any presentation, one of the discs differed in chromaticity from the remaining three, and the patient’s task was to identify this disc by pressing one of four buttons within 4 seconds. To ensure that the discrimination was on the basis of chromaticity, the luminance of each disc was given a random value chosen from six levels between 4 cd/m2 and 24 cd/m2. To establish the patient’s threshold for a given direction in colour space, the chromatic difference between the target and distractor discs was adjusted by a double staircase procedure.

RESULTS

All five patients had a history of nystagmus from infancy, mild photophobia, defective colour vision, and poor visual acuity (6/60 to CF). They all described improved vision in mesopic conditions. Examination of the anterior segment was unremarkable, except for one individual (VI:3) who had a unilateral congenital cataract. Fundus examination revealed a mildly abnormal foveal appearance but without frank atrophy or pigmentation (Fig 2). Peripheral retinal examination was normal in all subjects. ERG showed absent cone responses to 30 Hz flicker, small responses to short wavelength stimulation, and normal rod specific ERGs, but mildly subnormal maximal response a-wave amplitudes. Autofluorescence imaging was normal in all individuals. Clinical findings are summarised in Table 1.

Two older individuals (V:2 and V:7) described a gradual deterioration of vision. Visual acuity in V:7 was 6/36 in both eyes when he first presented 30 years ago, while his current best corrected acuity is counting fingers. His brother V:2, also showed evidence of deterioration of visual acuity from 6/60 in both eyes documented 10 years ago, to counting fingers at present. Both subjects have more prominent horizontal pendular nystagmus than other affected family members.

All five patients had normal colour vision. At the Nagel anomaloscope all five patients exhibited a scotopic spectral sensitivity. Four patients displayed a scotopic pattern of arrangement on PV-16. One patient, V:7, unlike a typical patient with complete achromatopsia, produced only one major transposition on the PV-16. Rudimentary colour discrimination was also detected in three individuals on testing with the M-R minimal test, with variable ability to identify the most saturated chip along the deutan and/or tritan axes. Further evidence of residual colour vision was provided by the colour discrimination ellipses produced on computerised colour vision testing. The other two individuals, V:2 and V:4, displayed no residual colour vision and showed typical achromatopic matches on Sloan plates.

DISCUSSION

The phenotype in this family with a novel homozygous frameshift mutation in the cone α-transducin gene, GNAT2, is characterised by mild photophobia, nystagmus, abnormal colour vision, and poor visual acuity (6/36 to CF). Electroretinography using the ISCEV protocol revealed absent cone responses, with normal rod specific ERGs, but mild reduction in maximal response a-wave amplitudes. Small photopic responses to short wavelength stimulation were detectable. On detailed colour vision testing, residual colour discrimination was detected in three individuals.

This phenotype is similar therefore to the incomplete form of achromatopsia arising from certain mutations in CNGA3, the gene encoding the α-subunit of the cGMP gated cation channel in cones. Unlike complete achromatopsia, we have been able to record S-cone ERG responses in our patients and, in two older subjects, a worsening of visual acuity with age has been documented, although we have no definite evidence of progressive deterioration in retinal function. In achromatopsia we have found only one case report of progressive retinal degeneration in the form of mid-peripheral retinal pigmentation and concentric constriction of the peripheral visual fields. It was also reported that a few of the younger subjects in that achromatopsia series had small residual cone responses on ERG. Taken together, therefore, these findings may represent evidence that progression in retinal dysfunction may be present in at least some individuals with achromatopsia, but no natural history studies are available to corroborate this.
Retinal dysfunction in our family is predominantly confined to cone photoreceptors. In cone cells, light activated photopigment interacts with transducin, a three subunit guanine nucleotide binding protein, stimulating the exchange of bound GDP for GTP. The cone α-transducin subunit (encoded by GNAT2), which is bound to GTP, is then released from its β and γ subunits and activates cGMP phosphodiesterase by removing the inhibitory γ subunits from the active site of this enzyme. cGMP phosphodiesterase lowers the concentration of cGMP in the photoreceptor which results in closure of cGMP gated cation channels and consequent hyperpolarisation of the photoreceptor. Thus, the finding of a germline GNAT2 mutation in a family with cone dystrophy is consistent with the known function of the GNAT2 product. Furthermore, mutations in human rod specific α-transducin, which is 83% homologous to cone α-transducin,27 28 have been shown to be associated with the Nougaret form of congenital stationary night blindness.29 The frameshift mutation identified in our family results in a truncated protein that lacks 63 amino acids from the carboxy terminal.16 All the GNAT2 mutations identified by Kohl et al would also result in premature translation termination and in protein truncation at the carboxy terminal.15 This region contains important functional domains of α-transducin which have been shown to interact with the rhodopsin30 and phosphodiesterase γ-subunits.31 However, if this mutation were to lead to a complete lack of α-transducin function, it is difficult to explain the residual ERG = counting fingers; M-R = Mollon-Reffin test. The letters give the axis P = protan, D = deutan, and T = tritan. The number in parentheses gives the least saturated chip that could be discriminated from the greys; VI:3 has a right sided congenital cataract.

Table 1 Summary of clinical findings

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>VA</th>
<th>Refraction</th>
<th>Horizontal pendular nystagmus</th>
<th>ERG</th>
<th>Fundus</th>
<th>M-R colour vision test</th>
</tr>
</thead>
<tbody>
<tr>
<td>V:2</td>
<td>35</td>
<td>R CF</td>
<td>−3.5/−3.0×30</td>
<td>Prominent</td>
<td>Absent 30 Hz cone responses; Abnormal foveal appearance</td>
<td>P(no)(D)(T)(no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L CF</td>
<td>−4.0/−3.0×160</td>
<td>Normal rod specific responses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V:4</td>
<td>41</td>
<td>R 6/60</td>
<td>−2.0/−2.0×110</td>
<td>Absent</td>
<td>Absent 30 Hz cone responses; Abnormal foveal appearance</td>
<td>P(no)(D)(T)(no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L 6/60</td>
<td>−2.5/−1.5×70</td>
<td>Normal rod specific responses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V:7</td>
<td>44</td>
<td>R CF</td>
<td>−2.0/−2.0×135</td>
<td>Prominent</td>
<td>Absent 30 Hz cone responses; Abnormal foveal appearance</td>
<td>P(no)(D)(T)(S)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L CF</td>
<td>−1.5/−1.5×45</td>
<td>Normal rod specific responses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI:1</td>
<td>20</td>
<td>R 6/60</td>
<td>+1.5/−1.5×110</td>
<td>Absent</td>
<td>Absent 30 Hz cone responses; Abnormal foveal appearance</td>
<td>P(no)(D)(T)(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L 6/60</td>
<td>+1.0/−1.0×80</td>
<td>Normal rod specific responses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI:3</td>
<td>19</td>
<td>R CF</td>
<td>Balance</td>
<td>Minimal</td>
<td>Absent 30 Hz cone responses; Abnormal foveal appearance</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L 6/60</td>
<td>−2.0/−3.0×75</td>
<td>Normal rod specific responses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERG = counting fingers; M-R = Mollon-Reffin test. The letters give the axis P = protan, D = deutan, and T = tritan. The number in parentheses gives the least saturated chip that could be discriminated from the greys; VI:3 has a right sided congenital cataract.
colour vision along deutan and tritan axes in these individuals, if these are entirely cone mediated mechanisms. It is possible that the mutation results in a protein that, although severely reduced in efficacy, may still show some residual α-transducin function. Alternatively, there may be some redundancy within the cone phototransduction pathway that allows a level of continued function despite suboptimal or absent function of one of the components of the cascade.

The human cone transducin α-subunit (GNAT2) gene was completely characterised by Morris and Fong in 1993, and the evidence that this gene is expressed in all three cone types comes from the immunohistochemical demonstration that an antibody raised against cone α-transducin peptides cross-reacts with all three classes of cone photoreceptor in the human retina. This does not however definitively rule out the possibility that S-cones may express an alternative form of α-transducin since identical epitopes may be present on both forms. It may also be significant that Southern blot analysis of human genomic DNA indicated that there may be more than one cone α-transducin gene. Therefore, although there are no subsequent studies that provide any direct evidence for an S-cone specific cone α-transducin, it remains a possibility that GNAT2 is not expressed in S-cones, and that the residual S-cone function detected in our family arises from the use of this other distinct form of α-transducin. In this case therefore, the residual tritan colour discrimination may be accounted for by a comparison of quantum catches in the remaining functional S-cones and rod photoreceptors, in the manner proposed to underlie colour discrimination detected in blue cone monochromats.

A detailed description of the phenotype associated with mutation in the α-subunit of cone specific transducin has not been previously reported. It is characterised by a cone dystrophy with an infantile onset, a deterioration of visual acuity with time in older individuals, and residual S-cone function.

ACKNOWLEDGEMENTS

The work was supported by grants from the British Retinitis Pigmentosa Society, the Guide Dogs for the Blind Association, and the Wellcome Trust. We are also grateful to the patients who kindly agreed to take part in this study.

Authors’ affiliations

REFERENCES

22 Mallon JD, Reffin JP. A computer-controlled colour vision test that combines the principles of Chichet and of Stilling. J Physiol 1989; 414: 5P.

Heparin therapy in giant cell arteritis

Giant cell arteritis (GCA) is a systemic vasculitis that affects large and medium-sized arteries. Visual loss is one of the most devastating complications of GCA and usually occurs from occlusion of the posterior ciliary arteries (PCA) leading to anterior ischaemic optic neuropathy (AION). Visual loss can also occur from occlusion of other arteries that supply the visual pathway, such as the central retinal and ophthalmic arteries.

Corticosteroid therapy, given orally or intravenously, is the standard treatment for GCA associated visual loss. The optimal route of administration and dosage to prevent further visual loss are not known; however, most clinicians advocate higher doses in patients who already have experienced visual loss. Treatment with corticosteroids usually results in stabilisation of visual loss and some patients may have some degree of visual recovery. However, despite treatment with high dose intravenous corticosteroids, visual loss may progress. The reported use of adjunctive agents under these circumstances has been limited. We report a patient who had progressive visual loss while on high dose intravenous corticosteroids and who markedly improved after treatment with heparin.

Case report

An 85 year old man presented to his optometrist for a routine eye examination. His visual acuity was 20/40 both eyes and his optic discs were normal. Three weeks later (day 1), he lost vision in his right eye. His visual acuity was now 20/100 right eye and 20/40 left eye. On visual field testing with

<table>
<thead>
<tr>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLP RE</td>
<td>HM RE</td>
<td>NLP RE</td>
<td>HM RE</td>
<td>NLP RE</td>
<td>HM RE</td>
</tr>
<tr>
<td>30°</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>MD = -19.63 dB left eye, no light perception (NLP) right eye.</td>
<td>MD = -17.99 dB LE, hand motion (HM) right eye.</td>
<td>MD = -12.30 dB left eye, MD = -24.60 dB right eye.</td>
<td>MD = -5.58 dB left eye, MD = -15.66 dB right eye.</td>
<td>MD = -17.63 dB left eye, MD = -19.66 dB right eye.</td>
<td>MD = -12.80 dB left eye, MD = -26.87 dB right eye.</td>
</tr>
</tbody>
</table>

Figure 1 Photomicrograph of temporal artery biopsy histological section shows a marked proliferation of smooth muscle cells that can be seen as dark reddish/brown concentric rings in the thickened medial and intimal layers (stain, actin which is selective for smooth muscle cells, original magnification, ×250).

Figure 2 Serial automated static perimetry. (A) Day 5: mean deviation (MD) = -19.63 dB left eye, no light perception (NLP) right eye. (B) Day 6: MD = -17.99 dB LE, hand motion (HM) right eye. (C) Day 7: MD = -12.30 dB left eye, MD = -24.60 dB right eye. (D) Day 8: MD = -5.58 dB left eye, MD = -15.66 dB right eye. (E) Day 9: MD = -17.63 dB left eye, MD = -19.66 dB right eye. (F) Week 4: MD = -12.80 dB left eye, MD = -26.87 dB right eye.

POSTSCRIPT

LETTERS

If you have a burning desire to respond to a paper published in *BJO*, why not make use of our “rapid response” option?

Log on to our web site (www.bjophthalmol.com), find the paper that interests you, and send your response via email by clicking on the “eLetters” option in the box at the top right hand corner.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eLetters” on our homepage.

The editors will decide as before whether to also publish it in a future paper issue.
On day 5, his visual acuity decreased to no light perception (NLP) right eye and 20/80 left eye. His right pupil reacted sluggishly and the left pupil reacted sluggishly. Static perimetry now showed an inferior altitudinal defect in the left eye (fig 2A). The right optic disc appearance was unchanged but the superior portion of the left optic disc was now pale and oedematous.

On day 6, the international ratio (INR) was 74 seconds and his heparin was stopped. His visual acuity was 20/200 right eye and 20/50 left eye. Static perimetry was further improved (fig 2D). The ocular blood flow characteristics on orbital CDI (table 1) were unchanged (table 1).

On day 7, while continuing IVMP and heparin, his visual acuity improved to counting fingers (CF) at 1 foot right eye and 20/50 left eye. The pupillary examination was unchanged. Static perimetry was improved (fig 2C). Posterior ciliary artery blood flow was now detectable with orbital CDI (table 1). Warfarin (2.5 mg by mouth four times daily) was started and titrated to maintain the partial thromboplastin time (PTT) within a therapeutic range (46–70 seconds).

By day 8, his visual acuity had improved to 20/400 right eye and 20/50 left eye. Static perimetry was further improved (fig 2D). The ocular blood flow characteristics on orbital CDI likewise improved (table 1). The pulsatility index of the central retinal artery (CRA) was markedly decreased (fig 4). Oral corticosteroid therapy (prednisone 100 mg by mouth daily) and warfarin were stopped.

On day 9, the international ratio (INR) was therapeutic (between 2 and 3) and heparin was stopped. His visual acuity was 20/200 right eye and 20/70 left eye. Static perimetry was unchanged. The patient was discharged from the hospital with oral corticosteroid therapy (prednisone 100 mg by mouth daily) and warfarin.

At the 4 week follow up visit while taking 100 mg of prednisone daily and warfarin, his visual acuity deteriorated to 20/400 right eye and 20/80 left eye. Static perimetry was unchanged. Posterior ciliary artery blood flow was now detectable with orbital CDI (fig 2E). The ocular blood flow characteristics on orbital CDI (fig 3B) were unchanged (table 1).

At the 1 week follow up visit (day 15), his visual acuity improved to 20/80 right eye and 20/40 left eye. Static perimetry was unchanged. Posterior ciliary artery blood flow was now detectable with orbital CDI (fig 2E). The ocular blood flow characteristics on orbital CDI (fig 3B) were unchanged (table 1).

At the 4 week follow up visit while taking 100 mg of prednisone daily and warfarin, his visual acuity deteriorated to 20/400 right eye and 20/80 left eye. Static perimetry was unchanged. Posterior ciliary artery blood flow was now detectable with orbital CDI (fig 2E). The ocular blood flow characteristics on orbital CDI (fig 3B) were unchanged (table 1).

Table 1 Spectral analysis of orbital colour Doppler imaging

<table>
<thead>
<tr>
<th>Normal values (cm/s)</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRA systolic</td>
<td>10.1±1.9</td>
<td>4.1</td>
<td>2.4</td>
<td>5.4</td>
<td>4.7</td>
<td>5.3</td>
</tr>
<tr>
<td>CRA diastolic</td>
<td>2.6±1.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>CRA pulsatility index</td>
<td>1.52</td>
<td>20.0</td>
<td>6.3</td>
<td>49.0</td>
<td>8.2</td>
<td>42.0</td>
</tr>
<tr>
<td>PCA systolic</td>
<td>12.4±2.2</td>
<td>nasal</td>
<td>4.2</td>
<td>nasal</td>
<td>5.1</td>
<td>nasal</td>
</tr>
<tr>
<td>PCA diastolic</td>
<td>4.3±1.2</td>
<td>nasal</td>
<td>0.8</td>
<td>nasal</td>
<td>0.4</td>
<td>nasal</td>
</tr>
<tr>
<td>PCA pulsatility index</td>
<td>1.09</td>
<td>nasal</td>
<td>0.5</td>
<td>nasal</td>
<td>1.3</td>
<td>nasal</td>
</tr>
</tbody>
</table>

CRA = central retinal artery, PCA = posterior ciliary artery, OA = ophthalmic artery, NR = not recordable.
characteristics on orbital CDI remained unchanged. At the 3 month follow up visit while still on the same medications, his visual acuity deteriorated to LP right eye and improved to 20/60 left eye. Static perimetry of the left eye was unchanged and the ocular blood flow characteristics on orbital CDI again remained stable bilaterally. His prednisone dosage was slowly tapered and the warfarin was discontinued.

Comment

Once visual loss occurs in GCA, the goals of treatment with corticosteroid therapy are to prevent further progression and to reverse the visual loss if possible. Table 2 reviews the treatment results of GCA with either oral or intravenous corticosteroid therapy in five large series of patients. After initiation of corticosteroid therapy, most patients experienced visual stabilisation, a small number had improvement of vision, and even fewer patients had a progression of visual loss.

The reason for progression of visual loss despite treatment with corticosteroid therapy is unknown. One possible reason is that the dose of corticosteroids was inadequate. Both the dose and route of administration of corticosteroids varied in the studies in Table 2. Therefore, it is difficult to assess whether the treatment dose was adequate or if intravenous administration is superior to oral administration.

Most clinicians support the use of high dose intravenous corticosteroids for patients who have experienced visual loss from GCA. However, progression of visual loss has been described despite high dose IVMP.1,2

Another possible reason for the progression of visual loss despite treatment is that corticosteroid therapy alone is an inadequate treatment for some patients. A review of our patient’s TAB showed near total luminal stenosis by intimal hyperplasia with proliferation of actin stained smooth muscle cells in the arterial media and intimal layers (fig 1). Complete arterial occlusion can occur with progression of the hyperplastic process or may be the result of superimposed arterial thrombosis. Perhaps with advanced luminal stenosis, corticosteroids are not as effective as they are early in the inflammatory cascade and may not be able to prevent thrombosis.

We found one report of the use of heparin for visual loss in GCA.3 In a review of 174 patients with GCA, Liozon et al reported the use of heparin in most patients with permanent visual loss and some patients with threatening symptoms.4 However, the specific results of this treatment were not reported. The use of heparin has also been described for manifestations of GCA other than visual loss.5,6

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Total number of patients with GCA</th>
<th>Number of patients with visual loss</th>
<th>Number of patients (%) with visual stabilisation</th>
<th>Number of patients (%) with visual recovery</th>
<th>Number of patients (%) with progression of visual loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan et al</td>
<td>2001</td>
<td>73</td>
<td>73</td>
<td>43 (59)</td>
<td>21 (29)</td>
<td>9 (12)</td>
</tr>
<tr>
<td>Liozon et al</td>
<td>2000</td>
<td>147</td>
<td>23</td>
<td>17 (74)</td>
<td>5 (22)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Gonzalez-Gay et al</td>
<td>1998</td>
<td>239</td>
<td>34</td>
<td>22 (65)</td>
<td>8 (23)</td>
<td>4 (12)</td>
</tr>
<tr>
<td>Liu et al</td>
<td>1993</td>
<td>45</td>
<td>41</td>
<td>20 (49)</td>
<td>14 (34)</td>
<td>7 (17)</td>
</tr>
<tr>
<td>Aiello et al</td>
<td>1992</td>
<td>245</td>
<td>34</td>
<td>24 (70)</td>
<td>5 (15)</td>
<td>5 (15)</td>
</tr>
</tbody>
</table>

Table 2 Review of five large series of visual outcome in GCA treated with either oral or intravenous corticosteroid therapy

Heparin has an immediate anticoagulation effect as well as other biological activities of heparin, such as inhibition of smooth muscle cell hypertrophy. The mechanism by which heparin led to improvement of vision in our patient is not known and perhaps its therapeutic effect was unrelated to anticoagulation. None the less, serial orbital CDI showed improvement in ocular blood flow (table 1; fig 3A–C). Colour Doppler imaging is an ultrasonic imaging modality that combines B-mode imaging with Doppler detection of relative velocity.7

Figure 4 Graph of arterial pulsatility index. Blood flow through the posterior ciliary artery (PCA) was detectable on day 7 and central retinal artery (CRA) pulsatility index was nearly normal by day 8.

Initially, the systolic and diastolic pressures of the CRA were well below normal and the pulsatility index was markedly increased. The flow parameters of the CRA were undetectable. After heparinisation (day 5), flow was restored to the PCA circulation (day 7, table 1). The pulsatility index of the CRA also decreased (days 6–8, fig 4). The decrease in pulsatility index represents a decrease in blood flow resistance. The decrease in pulsatility index and restoration of blood flow to the CRA circulation both correspond to an improvement in visual acuity and visual field. The sequence of rapid improvement of orbital CDI haemodynamics, visual acuity, and visual field strongly suggest that the administration of heparin was responsible. Since this occurred rapidly, some of the biochemical activities of heparin, such as inhibition of smooth muscle cell hypertrophy and the others that act on a more chronic time line could not have caused improvement. A more likely candidate might be the control of blood fluidity at the endothelial surface.

In summary, the use of corticosteroid therapy alone for the treatment of GCA may have limited therapeutic success. The pathogenic mechanism of luminal stenosis in GCA is undergoing revision,11 and the emerging model offers possibilities for novel therapeutic intervention. Our patient had a remarkable improvement in visual acuity within 24 hours after starting heparin. Over the ensuing 2 days his visual field and ocular blood flow improved. The improvement with the addition of heparin may have been coincidental, and his vision may have recovered with IVMP alone. However, the continued decline in visual function, despite 3 days of IVMP, and his dramatic improvement after starting heparin, strongly suggests that heparin had a pivotal role in his recovery.

At the 3 month follow up visit, his vision in the right eye deteriorated to LP, even though
his ocular blood flow characteristics were stable. We are uncertain about the reason for his decline in visual function, since at the time of the decline, he was maintained on oral corticosteroid and his serial ESR values were normal. None the less, we suggest that in patients who experience a progression of visual loss from GCA, despite IVMP therapy, may benefit acutely from the addition of heparin therapy.

L M Buono
Neuro-Ophthalmology Service, Duke University Eye Center, Erwin Road, Box 3802, Durham, NC 27710, USA

R Foroozan
The Cullen Eye Institute, Baylor College of Medicine, Department of Ophthalmology, 6565 Fannin Street, NC-205, Houston, TX 77030, USA

M de Virgiliis
Department of Ophthalmology, Hospital Pedro Lagleyze, Buenos Aires, Argentina

P J Savino
Neuro-Ophthalmology Service, Willis Eye Hospital, Thomas Jefferson Medical College, 840 Walnut Street, Philadelphia, PA 19107, USA
Correspondence to: Dr Lawrence M Buono, Duke University Eye Center, Erwin Road, Box 3802, Durham, NC 27710, USA; buono501@med.duke.edu

Accepted for publication 19 March 2003

Retinal migraine: caught in the act

A 22 year old male dancer presented via his optometrist following an episode of transient visual loss in his left eye. He described a slow blurring and darkening of the vision of the left eye with a similarly gradual return to normal, the whole episode lasting 10 minutes. He described similar episodes every 2–3 months for the previous 3 years with no associated migrainous aura or headache, and exercise was not a trigger. Figure 1 shows images taken before, during, and 10 minutes after his presenting episode (see figure legend for description).

Visual acuity was no perception of light when tested during the episode and had recovered to 6/6 in the affected left eye when seen 2 hours later at our ophthalmic emergency department. Aside from congenital anomalies there were no other ocular or systemic abnormalities. On subsequent review his visual acuity had returned to 6/6 bilaterally and his fundus appearance remains normal. There was no visual field abnormality (Goldmann 12e, 14e) and haematological (including thrombophilia screen), carotid, and cardiac investigations were normal.

Comment

Retinal migraine (otherwise known as ophthalmic migraines, anterior visual pathway migraines, or ocular migraines) causes monocular visual loss for 10–20 minutes which can be associated with diffuse or unilateral headache. People experiencing ocular migraines often have a history of one of the more conventional forms of migraine, and exercise may precipitate the attacks. Vasospasm of the retinal circulation or ophthalmic artery is thought to be the cause of the amaurosis of ocular migraine. Ischaemic optic neuropathy and permanent arcuate scotomas may occur after ocular migraine and retinal vascular occlusions have been reported in conjunction with cerebral and ocular migraine. Retinal vasospasm may be associated with underlying systemic diseases such as SLE and antiphospholipid syndrome. In older patients it may be associated with giant cell arteritis, polyarteritis nodosa, and cosinophilic vasculitis. Other associated haematological abnormalities include low protein C and S levels and positive antinuclear antibodies.

A relative afferent pupillary defect can be demonstrated during episodes. Retinal arterioles have been reported to constrict, and the fovea may become more distinct with surrounding macular retinal pallor. The optic discs may be pale and early and hyperaemic later. Early isolated constriction of veins has been reported, which may be segmental, as well as simultaneous constriction of arterioles and veins. Later engorgement of the retinal veins has been observed some hours after an attack. Nerve fibre bundle defects can sometimes be a late finding.

Our case demonstrates photographically the arterial vasoconstriction of retinal migraine (fig 1), which occurred in the absence of a precipitating cause such as...

References

Figure 1
(A) Left eye taken at routine optometrist appointment 1 month before presenting episode; normal appearance of disc, vessels, and macula. (B) During the episode of visual loss, constriction of both arteries and veins is seen with macular pallor and a central cherry red spot and slight disc pallor. (C) 10 minutes after the previous picture when vision according to the patient had returned to normal. Some pallor remains in the macula with a central cherry red spot but the disc and vasculature have returned to normal.
exercise and in the absence of a migrainous aura or headache.

Doppler studies have revealed cessation of retinal arterial flow during an exercise induced retinal migraine episode. A 48 year old cluster headache sufferer who underwent fluorescein angiography during an ocular migraine attack demonstrated narrowing of the retinal veins and delayed retinal artery filling during the episode with normal choroidal filling.10 Most previously published photographs have shown venous, retinal, and disc changes late in the attack, perhaps reflecting that arterial vasoconstriction occurs early during attacks and is not often photographed.10,11 Alternatively, there may be a spectrum of severity of retinal migraine manifestations, which in severe cases may result in a transient pale macular area with cherry red spot.

When considered necessary, effective treatments include propranolol,10 verapamil,1 and nifedipine.

Prophylactic aspirin or nifedipine may be tried to prevent exercise induced attacks, and inhaled amyl nitrate can be used early in an attack to try to induce resolution.1

Acknowledgement
We thank William Templeton, Eyesite Opticians, Brighton who provided photographs.

E Doyle, B J Vote, A G Casswell
Sussex Eye Hospital, Eastern Road, Brighton BN2 5BF, UK

Correspondence to: Mr Eddie Doyle, Sussex Eye Hospital, Eastern Road, Brighton BN2 5BF, UK; EdRachie@btinternet.com

The authors have no commercial interests in any products mentioned in this article.

Accepted for publication 21 March 2003

References

Long term follow up in a case of successfully treated idiopathic retinal vasculitis, aneurysms, and neuroretinitis (IRVAN)

The idiopathic retinal vasculitis, aneurysm, and neuroretinitis (IRVAN) syndrome is a rare clinical entity characterised by peripheral retinal vascular occlusion, retinal vasculitis, and multiple posterior retinal arterial aneurysms.1 In most reported cases, visual acuity was aggravated.1,2 We report a case of successfully treated IRVAN syndrome in which good long term visual acuity has been maintained.

Case report
A 36 year old woman visited the Kansai Medical University Hospital on January 1999, complaining of flies flying in her right eye for the past year. She also had visual disturbance and metamorphopsia for 2 months in her right eye. Her best corrected visual acuity was 20/40 in the right eye and 20/16 in the left eye. Inflammatory cells were noted in both the anterior chamber and vitreous cavity. There was mild ruberosis iridis in the left eye. In the right eye, there was a fibrovascular membrane in the epipapillary area accompanying tractional retinal detachment, thick hard exudates on nasal side of the fovea, and vitreous haemorrhage (Fig 1A). Her optic disc was mildly hyperaemic, and multiple aneurysms surrounded by peripheral exudation were observed at the posterior retinal artery in the left eye (Fig 1B). Extensive arterial and venous vascular occlusion and adjacent anomalous arteriovenous anastomosis were observed at the peripheral retina in both eyes (Fig 2).

Systemic examination and laboratory findings did not suggest systemic abnormality, and the family history was not contributory. Oral prednisolone was initiated at 50 mg/day and decreased gradually. In an attempt to prevent peripheral retinal neovascularisation, panretinal photoagulation (PRP) was carried out on the right eye in October 1999. The right eye (A), and aneurysms shown by FA in the left (D) were improved by February 2003. The left eye (B) observed in the right eye (A), and hard exudates surrounding the optic disc and aneurysms shown by fundus fluorescein angiogram (FA) was observed in the left (B) on January 1999. The right eye (A) and aneurysms shown by FA in the left (D) were improved by February 2003.
ried out to treat the peripheral retinal non-perfusion area. Since vitreous haemorrhage in the right eye did not improve, right eye vitrectomy was performed on March 1999, and tractional retinal detachment and vitreous haemorrhage subsequently improved. The aneurysms disappeared by 5 months and the hard exudates by 12 months. Her corrected visual acuity improved to 20/20 in the right eye and 20/16 in the left eye by February 2003 (Fig 1C and D).

Comment
The disappearance of retinal aneurysm in IRVAN has been reported in two cases. In both of these cases, scattered retinal photocoagulation was performed on the peripheral retinal non-perfusion area. In one case in which scattered retinal photocoagulation was not performed, it has been reported that some aneurysms enlarged, others became small, and new aneurysms appeared. In our case, all retinal arterial aneurysms vanished after PRP (Fig 1B and D). These results strongly suggest that PRP applied to the retinal non-perfusion area is useful and should be performed during the early phase. On the other hand, it has been reported that retinal lesions are unresponsive to oral steroids in most cases of IRVAN. In both cases, systemic oral steroid was given to treat the retinal vasculitis. The effect of oral steroid on the recurrence area is the most important treatment for IRVAN. We think vitrectomy must precede PRP, because PRP cannot be performed when recurrence is not treated, it has been reported that HLA-DR was expressed in proliferative retinopathy. Little is known, however, about the relation between retinopathy with type 2 diabetes and the HLA antigen. Furthermore, most previous studies have not taken into consideration the background of glycaemic control or the treatment of the diabetes. A group of younger onset type 2 diabetes patients with PDR, and a group who had no signs of retinopathy despite a long duration of diabetes were compared. Younger patients were studied to reduce the influence of adult diseases such as hyperlipidaemia and hypertension. In addition, clinical background factors were considered when studying the frequency of HLA types.

METHODS
Following the informed consent of each of the subjects, blood samples were collected. The study was approved by the human studies review board of Tokyo Women’s Medical University and was performed in accordance with the Helsinki Declaration of 1975 and its 1983 revision. The diagnosis of type 2 diabetes was made based on 1985 World Health Organization criteria. We excluded subjects who were GAD antibody positive. The patients had been diagnosed as having type 2 diabetes aged under 30 years (range 12–21 years) and type 2 diabetes duration for more than 10 years. Additionally, the patients whose average HbA1C level over 10 years was from 6% to 10%, were selected in this study. All were receiving treatment at Tokyo Women’s Medical University Diabetes Center.

Further, two groups were selected from above patients, as follows. The PDR group consisted of 44 patients, who had undergone vitreous surgery under the age of 40 (mean 28.8 (SD 4.4) years) where surgery had been carried out at the department of ophthalmology, diabetes centre (as above) during the period 1993–9. The non-DR group consisted of 45 patients who had no signs of retinopathy despite having diabetes for more than 10 years. Consequently, the sex, the diabetes duration, and the blood glucose control have been matched between the two groups on the basis of the selection criteria above (table 1). The control group selected for comparison, consisted of 50 healthy patients. The HbA1C level was determined with resin microcolumn technique (HPLC, Kyoto Chemical) (normal range 4.3–5.8%).

HLA-A, B, C, DR, and DQ typing of blood samples was conducted on all three groups using standard microcytotoxicity methods. For comparisons between the groups, we applied the χ^2 test of independence or Fisher’s exact probability test. The unpaired t test was used for comparing mean values. The level of significance was set at $p<0.05$. All analyses were performed using the Stat View statistical software package (Abacus Concepts, Berkeley, CA, USA).

RESULTS
The frequencies of HLA-A, B, and Cw antigens in the control group, the non-DR group, and the PDR group are shown in table 2, and those of DR, and DQ antigens in table 3, respectively.

There was no significant difference among the three groups in HLA-A, B, and DQ antigens. The non-DR group showed higher frequencies of HLA Cw4 ($\chi^2 = 4.027$, 4.815, 6.068, 4.446, respectively).

Table 1: Clinical profile of the control group, non-DR group, and PDR group

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Control group</th>
<th>Non-DR group</th>
<th>PDR group</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>27.4 (4.0)</td>
<td>27.8 (4.1)</td>
<td>29.2 (4.1)</td>
<td>NS</td>
</tr>
<tr>
<td>Male/female</td>
<td>25/25</td>
<td>25/25</td>
<td>20/25</td>
<td></td>
</tr>
<tr>
<td>Age at the diagnosis of diabetes</td>
<td>16.5 (4.3)</td>
<td>16.7 (3.7)</td>
<td>16.7 (3.7)</td>
<td>NS*</td>
</tr>
<tr>
<td>Age at the diagnosis of diabetic</td>
<td>21.6 (4.5)</td>
<td>21.6 (4.5)</td>
<td>21.6 (4.5)</td>
<td></td>
</tr>
<tr>
<td>Age at the time of vitreous surgery</td>
<td>28.8 (4.4)</td>
<td>28.8 (4.4)</td>
<td>28.8 (4.4)</td>
<td></td>
</tr>
<tr>
<td>HbA1C (%)</td>
<td>7.7 (1.6)</td>
<td>7.9 (1.9)</td>
<td>7.9 (1.9)</td>
<td>NS*</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>NS*</td>
</tr>
<tr>
<td>Renal disease (%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>NS*</td>
</tr>
<tr>
<td>Neuroophthalmological neuropathy</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>NS**</td>
</tr>
<tr>
<td>Positive family history (%)</td>
<td>0 (0.0%)</td>
<td>15 (33.3%)</td>
<td>19 (43.1%)</td>
<td>NS**</td>
</tr>
</tbody>
</table>

NS = not significant.

**Comparisons between the non-DR group and the PDR group by unpaired t test.
**Comparisons between the non-DR group and the PDR group χ^2 test of independence or Fisher’s exact probability test.

**Average value over 10 years.
<table>
<thead>
<tr>
<th>Control group</th>
<th>Non-DR group</th>
<th>PDR group</th>
<th>Control v non-DR</th>
<th>Odds ratios</th>
<th>Control v PDR</th>
<th>Odds ratios</th>
<th>non-DR v PDR</th>
<th>Odds ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>χ^2</td>
<td>p Value</td>
<td>χ^2</td>
<td>p Value</td>
<td>χ^2</td>
<td>p Value</td>
</tr>
<tr>
<td>A1</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>--</td>
<td>--</td>
<td>NS</td>
</tr>
<tr>
<td>A2</td>
<td>19 (38.0)</td>
<td>18 (40.0)</td>
<td>15 (34.1)</td>
<td>0.040</td>
<td>NS</td>
<td>1.088</td>
<td>0.155</td>
<td>NS</td>
</tr>
<tr>
<td>A11</td>
<td>10 (20.0)</td>
<td>8 (17.8)</td>
<td>10 (22.7)</td>
<td>0.076</td>
<td>NS</td>
<td>0.865</td>
<td>1.000</td>
<td>NS</td>
</tr>
<tr>
<td>A24 (9)</td>
<td>29 (58.0)</td>
<td>28 (62.2)</td>
<td>29 (65.9)</td>
<td>0.176</td>
<td>NS</td>
<td>1.193</td>
<td>0.620</td>
<td>NS</td>
</tr>
<tr>
<td>A26 (10)</td>
<td>11 (22.0)</td>
<td>10 (22.2)</td>
<td>11 (25.0)</td>
<td>0.001</td>
<td>NS</td>
<td>1.013</td>
<td>0.118</td>
<td>NS</td>
</tr>
<tr>
<td>A28</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>--</td>
<td>--</td>
<td>NS</td>
</tr>
<tr>
<td>A30 (19)</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>0.889</td>
<td>0.000</td>
<td>NS</td>
</tr>
<tr>
<td>A31 (19)</td>
<td>10 (20.0)</td>
<td>9 (20.0)</td>
<td>8 (18.2)</td>
<td>0.000</td>
<td>NS</td>
<td>1.000</td>
<td>0.264</td>
<td>NS</td>
</tr>
<tr>
<td>A33 (19)</td>
<td>8 (16.0)</td>
<td>7 (15.6)</td>
<td>7 (15.9)</td>
<td>0.101</td>
<td>NS</td>
<td>0.839</td>
<td>0.079</td>
<td>NS</td>
</tr>
<tr>
<td>B7</td>
<td>5 (10.0)</td>
<td>4 (8.9)</td>
<td>4 (9.1)</td>
<td>0.034</td>
<td>NS</td>
<td>0.878</td>
<td>0.022</td>
<td>NS</td>
</tr>
<tr>
<td>B13</td>
<td>1 (2.0)</td>
<td>1 (2.2)</td>
<td>0 (0.0)</td>
<td>0.006</td>
<td>NS</td>
<td>1.114</td>
<td>0.889</td>
<td>NS</td>
</tr>
<tr>
<td>B17</td>
<td>1 (2.0)</td>
<td>2 (4.4)</td>
<td>1 (2.3)</td>
<td>0.463</td>
<td>NS</td>
<td>2.279</td>
<td>0.008</td>
<td>NS</td>
</tr>
<tr>
<td>B22</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>--</td>
<td>--</td>
<td>NS</td>
</tr>
<tr>
<td>B35 (8)</td>
<td>4 (8.0)</td>
<td>3 (6.7)</td>
<td>3 (6.7)</td>
<td>0.114</td>
<td>NS</td>
<td>0.821</td>
<td>0.306</td>
<td>NS</td>
</tr>
<tr>
<td>B37</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td>4 (9.1)</td>
<td>0.910</td>
<td>NS</td>
<td>0.000</td>
<td>2.337</td>
<td>NS</td>
</tr>
<tr>
<td>B39</td>
<td>8 (16.0)</td>
<td>9 (20.0)</td>
<td>7 (15.9)</td>
<td>0.258</td>
<td>NS</td>
<td>1.313</td>
<td>0.000</td>
<td>NS</td>
</tr>
<tr>
<td>B40</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>0.889</td>
<td>0.000</td>
<td>NS</td>
</tr>
<tr>
<td>B44 (12)</td>
<td>8 (16.0)</td>
<td>10 (22.2)</td>
<td>6 (13.6)</td>
<td>0.597</td>
<td>NS</td>
<td>1.500</td>
<td>0.103</td>
<td>NS</td>
</tr>
<tr>
<td>B46</td>
<td>5 (10.0)</td>
<td>5 (11.1)</td>
<td>4 (8.5)</td>
<td>0.031</td>
<td>NS</td>
<td>1.125</td>
<td>0.049</td>
<td>NS</td>
</tr>
<tr>
<td>B48</td>
<td>3 (6.0)</td>
<td>2 (4.4)</td>
<td>4 (9.1)</td>
<td>0.915</td>
<td>NS</td>
<td>0.729</td>
<td>0.324</td>
<td>NS</td>
</tr>
<tr>
<td>B51 (5)</td>
<td>9 (18.0)</td>
<td>8 (17.8)</td>
<td>6 (13.6)</td>
<td>0.001</td>
<td>NS</td>
<td>0.985</td>
<td>0.332</td>
<td>NS</td>
</tr>
<tr>
<td>B52 (5)</td>
<td>11 (22.0)</td>
<td>10 (22.2)</td>
<td>13 (29.5)</td>
<td>0.001</td>
<td>NS</td>
<td>1.013</td>
<td>0.701</td>
<td>NS</td>
</tr>
<tr>
<td>B54 (22)</td>
<td>9 (18.0)</td>
<td>8 (17.8)</td>
<td>6 (13.6)</td>
<td>0.001</td>
<td>NS</td>
<td>0.985</td>
<td>0.332</td>
<td>NS</td>
</tr>
<tr>
<td>B55 (22)</td>
<td>2 (4.0)</td>
<td>1 (2.2)</td>
<td>1 (2.3)</td>
<td>0.245</td>
<td>NS</td>
<td>0.571</td>
<td>0.589</td>
<td>NS</td>
</tr>
<tr>
<td>B56 (22)</td>
<td>2 (4.0)</td>
<td>2 (4.4)</td>
<td>0 (0.0)</td>
<td>0.012</td>
<td>NS</td>
<td>1.116</td>
<td>0.798</td>
<td>NS</td>
</tr>
<tr>
<td>B59</td>
<td>2 (4.0)</td>
<td>2 (4.4)</td>
<td>6 (13.6)</td>
<td>0.012</td>
<td>NS</td>
<td>1.116</td>
<td>0.798</td>
<td>NS</td>
</tr>
<tr>
<td>B60 (40)</td>
<td>5 (10.0)</td>
<td>3 (6.7)</td>
<td>6 (13.6)</td>
<td>0.341</td>
<td>NS</td>
<td>0.643</td>
<td>0.300</td>
<td>NS</td>
</tr>
<tr>
<td>B61 (40)</td>
<td>5 (10.0)</td>
<td>5 (11.1)</td>
<td>2 (4.5)</td>
<td>0.031</td>
<td>NS</td>
<td>1.125</td>
<td>0.049</td>
<td>NS</td>
</tr>
<tr>
<td>B62 (15)</td>
<td>8 (16.0)</td>
<td>8 (17.8)</td>
<td>6 (13.6)</td>
<td>0.053</td>
<td>NS</td>
<td>1.135</td>
<td>0.103</td>
<td>NS</td>
</tr>
<tr>
<td>B67</td>
<td>1 (2.0)</td>
<td>1 (2.2)</td>
<td>0 (0.0)</td>
<td>0.006</td>
<td>NS</td>
<td>1.114</td>
<td>0.889</td>
<td>NS</td>
</tr>
<tr>
<td>B70</td>
<td>1 (2.0)</td>
<td>1 (2.2)</td>
<td>0 (0.0)</td>
<td>0.006</td>
<td>NS</td>
<td>1.114</td>
<td>0.889</td>
<td>NS</td>
</tr>
<tr>
<td>B75</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>0.889</td>
<td>0.000</td>
<td>NS</td>
</tr>
<tr>
<td>Cw1</td>
<td>16 (32.0)</td>
<td>12 (26.7)</td>
<td>12 (27.3)</td>
<td>0.324</td>
<td>NS</td>
<td>0.773</td>
<td>0.250</td>
<td>NS</td>
</tr>
<tr>
<td>Cw3</td>
<td>23 (46.0)</td>
<td>20 (44.4)</td>
<td>22 (50.0)</td>
<td>0.023</td>
<td>NS</td>
<td>0.939</td>
<td>0.150</td>
<td>NS</td>
</tr>
<tr>
<td>Cw4</td>
<td>7 (14.0)</td>
<td>14 (31.1)</td>
<td>9 (20.5)</td>
<td>0.407</td>
<td>NS</td>
<td>0.774</td>
<td>0.690</td>
<td>NS</td>
</tr>
<tr>
<td>Cw5</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>0.890</td>
<td>0.000</td>
<td>NS</td>
</tr>
<tr>
<td>Cw6</td>
<td>1 (2.0)</td>
<td>1 (2.2)</td>
<td>4 (9.1)</td>
<td>0.006</td>
<td>NS</td>
<td>1.114</td>
<td>2.337</td>
<td>NS</td>
</tr>
<tr>
<td>Cw7</td>
<td>11 (22.0)</td>
<td>7 (15.6)</td>
<td>7 (15.9)</td>
<td>0.640</td>
<td>NS</td>
<td>0.563</td>
<td>0.671</td>
<td>NS</td>
</tr>
<tr>
<td>Cw8</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0.000</td>
<td>NS</td>
<td>--</td>
<td>--</td>
<td>NS</td>
</tr>
<tr>
<td>Cw9</td>
<td>6 (12.0)</td>
<td>2 (4.4)</td>
<td>1 (2.3)</td>
<td>1.753</td>
<td>NS</td>
<td>0.341</td>
<td>3.213</td>
<td>NS</td>
</tr>
<tr>
<td>Cw10</td>
<td>7 (14.0)</td>
<td>2 (4.4)</td>
<td>2 (4.5)</td>
<td>2.522</td>
<td>NS</td>
<td>0.286</td>
<td>2.416</td>
<td>NS</td>
</tr>
</tbody>
</table>

Numbers in parentheses are percentages. NS = not significant. All p values were not significant other than Cw4 with p = 0.045 in the control v non DR test.
The PDR between non-DR group and PDR group in type 1 diabetes is aetiologically different from that in type 2 diabetes. Type 1 diabetes is caused by a failure in the autoimmune system, clearly associated with specific HLA antigens. Type 2 diabetes is not autoimmune and has less association or linkage with genes in the HLA region than type 1 diabetes. The type 2 diabetic patients in this study showed a typical HLA pattern. Other research has reported that DR3, DR4, and CW4 increased in patients with type 2 diabetes mellitus. These findings are consistent with our present results. Additionally, an increase in DR4, which is in linkage disequilibrium with the DQB1*0302 allele, has previously been reported in patients with type 2 diabetes. This increase was mainly reported in patients with relative insulin deficiency or antibodies to islet cells or to glutamic acid decarboxylase.

DR4 was detected in 59.1% of the PDR group, but this was not significantly different from the frequency in the non-DR group (51.1%). DR4 may, therefore, be related to the onset of type 2 diabetes, but not to the development of retinopathy. The HLA-DR4 levels reflected the antibody levels in the pancreatic Langerhans island but not the parameter of diabetic change in the retina.

In summary, our research suggests that HLA antigen investigations may be useful for predicting the prognosis of younger onset type 2 diabetes, but not for retinopathy in these patients. Finally, we must precisely define the alleles or combination of alleles which cause increased susceptibility to PDR.

Acknowledgements

The authors gratefully acknowledge the assistance of Ms Jayne Simons for critically reviewing the manuscript.

T Murata, S Amano, S Kato, M Arai
Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Tokyo, Japan

T Murata, H Funatsu, S Kito, E Shimizu
Department of Ophthalmology, Tokyo Women's Medical University, Tokyo, Japan

H Noma
Department of Ophthalmology, Hiroshima University School of Medicine, Hiroshima, Japan

O Yoshiro
Department of Obstetrics and Gynecology, University of Tokyo School of Medicine, Tokyo, Japan

S Hori
Department of Ophthalmology, Tokyo Women's Medical University, Tokyo, Japan

Correspondence to: Tatsuya Murata, MD, Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan, murata@mbq.ocn.ne.jp

The authors have no commercial or proprietary interest in the product or company described in this letter.

Accepted for publication 21 April 2003

References

Effect of docosahexaenoic acid supplementation on retinal function in a patient with autosomal dominant Stargardt-like retinal dystrophy

The gene, ELOVL4, is mutated in Stargardt-like macular dystrophy, a juvenile onset disorder. ELOVL4 is homologous to a fatty acid elongase presumably involved in the biosynthesis of docosahexaenoic acid, DHA.
Humans can synthesize DHA from precursors in small amounts, which may not be sufficient for normal retinal function if intake is minimal.

Case report

A 15 year old girl with Stargardt-like macular dystrophy and a mutation in *ELOVL4* was given a dietary supplement of DHA on two occasions. A 7 day dietary history, prior to starting DHA supplementation, estimated her daily intake of DHA as 20 mg, in a diet of 1602 kcal. Beginning in April 2001, she was supplemented with 20 mg/kg body weight per day of DHA in capsules (Martek BioSciences, Columbia, MD, USA). Her functional response was determined by a VF-14 questionnaire, visual acuity testing, multifocal electroretinography (mfERG), and plasma phospholipid analysis.

At baseline, fundus photography showed minimal macular changes (fig 1); however, the mfERG revealed significant macular dysfunction. A full field ERG performed in March 2000 revealed a reduction of approximately 30–40% in rod and cone responses, with the predominant effect on the b-wave amplitude in comparison with normative data (DTL electrode, diluted pupils, recorded according to ISCEV standards). No anomaly of latency was observed in either the mfERG or full field ERG recordings.

Peripheral blood samples were taken in a non-fasting state at the beginning of the study. Her baseline plasma DHA level was at the low end of the median for a North American diet, 24 µg/ml; whereas her omega-6 arachidonic acid was 76 µg/ml. Her plasma DHA level increased after 2 months of supplementation to 86 µg/ml (fig 2). She reported progressive subjective improvement in vision on the VF-14 questionnaire. Analysis of the mfERG tracings revealed that an improvement had occurred in amplitudes from the foveal and parafeovial regions of the macula (fig 2). For this study, we accepted the group average response of rings 1–2 (0–5°), and rings 3–5 (5–25°), derived from a 63 hexagon stimulus (Veris, San Mateo, CA, USA), as simulating the foveal and parafeovial responses respectively. Visual acuity improved from 20/200 to 20/100 only in her left eye with the DHA supplementation.

Unfortunately, she lost interest in the study, became non-compliant despite our encouragement, and was lost to follow up from August 2001 to the end of March 2002. She returned after perceiving that her vision had declined since halting the DHA supplementation. Repeat plasma DHA testing confirmed that her plasma DHA had dropped to levels approaching those from the beginning of the study (35 µg/ml, fig 2). Supplementation was once again initiated. After 4 months (July 2002), she showed the same improvements in visual function both subjectively (VF-14 score) and objectively (mfERG amplitudes, fig 2), coincident with an increase in plasma DHA.

The patient’s visual acuity again improved only in the left eye from 20/200 to 20/100. Another full field ERG was conducted in July 2002 to compare with the diagnostic series from March 2000. The amplitudes of the photopic b-wave and the scotopic b-wave both improved by 30%, averaging both eyes. The scotopic mixed rod-cone response showed increased amplitude of the a-wave by 85%, and b-wave by 46%, when responses from both eyes were averaged. These results could not be explained by intervisit variability and suggest the effect of DHA supplementation occurs beyond the macula, over the entire retina.

Comment

The patient’s young age, low dietary intake of DHA, and a mutation in *ELOVL4* may have particularly predisposed her to an early macular degeneration. A longer experience with DHA supplementation in young patients with Stargardt-like macular dystrophy could determine if DHA supplementation can alter the natural history.

Acknowledgements

The technical assistance of Peggy Kaminski, OMT, YK Goh, PhD, and Ezekiel Weis, MD, is gratefully acknowledged.

I M MacDonald, M Hibert, R J Yau, S Flynn, J Jumpsen, M Suh, M T Clandinin

Departments of Ophthalmology and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; and the Department of Ophthalmology (MH), Medical Research Centre, CHUQ, Laval University, Quebec City, Quebec, Canada

Correspondence to: Dr Ian M MacDonald, Department of Ophthalmology, Royal Alexandra Hospital, 10240 Kingsway Ave., Edmonton, Alberta, Canada T5H 3V9, macdonald@ualberta.ca

Grant support: MSI Foundation, Alberta, Canada; University of Alberta Hospitals Foundation, Olive Young Fund; Royal Alexandra Hospital Foundation; Canadian Institutes for Health Research (MH Fellowship support).

Ethics: The health research ethics board of the University of Alberta approved this study and written consent was obtained before participation in the study.

Conflict of interest: There are no financial agreements between any of the authors and Martek Biosciences, Columbia, MD, USA

Severe retinopathy of prematurity (ROP) in a premature baby treated with sildenafil acetate (Viagra) for pulmonary hypertension

Sildenafil is used as a selective pulmonary vasodilator in children with primary pulmonary hypertension and severe lung fibrosis. It improves gas exchange, increasing life expectancy and exercise tolerance. Recent animal models of neonatal pulmonary hypertension have also shown that sildenafil reduces vascular resistance. This has encouraged its use in units treating premature infants. We report a case of severe retinopathy of prematurity in a preterm infant who was treated with intravenous sildenafil for severe respiratory failure.

Case report

The patient was born at 26 weeks gestation weighing 525 g. He was ventilated from birth for respiratory insufficiency, secondary to respiratory distress syndrome. He required high flow oxygen ventilation and received surfactant at delivery and 16 hours later. His oxygen requirements then stabilised at 30–50%.

At 29 weeks his oxygen requirements increased to 100% due to coagulase negative *Staphylococcus aureus* and candida sepsis. He was treated with amphotericin and 5-flucytosine. However, he was only able to maintain oxygen saturations of 70–80% while receiving positive pressure ventilation on 80–90% oxy-

References

Figure 2 Effect of DHA on retinal function in patient with *ELOVL4* mutation.
gen. At 31 weeks +2 days post-conception he was commenced on inhaled nitric oxide (NO) 5–40 ppm. There was no demonstrable improvement in oxygenation with the NO, and therefore it was decided to start sildenafil 3 days later in addition to the NO. During the period of treatment with sildenafil, there was an improvement in his clinical condition, with his oxygen requirements falling to 30–40% by the 33 weeks. A subphrenic collection was discovered at 33 weeks, and ciprofloxacine and metronidazole were started. The sildenafil was discontinued at 34 weeks of life, after 16 days of treatment, because of a rising alanine aminotransferase level. There was no rebound hypoxia observed. Other than intrauterine growth retardation, no further risk factors for ROP such as intraventricular haemorrhage were identified.

The patient was examined by an ophthalmologist weekly from 31 weeks. No ROP was seen up to and including the 33 week check. At 34 weeks he was found to dilate poorly, to have bilateral peripheral retinal vasculatization, hazy media, and diluted and tortuous fundal vessels. Peripherally he had developed 7 contiguous clock hours of stage III ROP in zone II in the right eye, and 5 clock hours in the left. He was treated the following day with bilateral peripheral laser photoagulation to ischaemic retina. The ROP regressed over the ensuing weeks and he remains under review.

Comment

Sildenafil relaxes arteriolar smooth muscle in the presence of nitric oxide by inhibiting phosphodiesterase type 5 (PDE5). PDE5 is found in high concentrations in the smooth muscle of the corpus cavernosum, and in lower concentrations in other tissues such as vascular smooth muscle. NO may control retinal blood flow. Measurement of ocular blood flow changes following sildenafil have shown conflicting results, with some groups showing a significant increase and others showing no increase in choroidal blood flow.

In ROP, the initial constriction of retinal vessels by the high levels of oxygen induces a neovascular drive through the release of growth factors such as vascular endothelial growth factor. Subsequent retinal hypoperfusion has been linked to progression of other neovascular disease such as diabetic retinopathy, by the local release of growth factors and free radical production. In addition, NO and cGMP accumulation caused by PDE5 inhibition has been proposed to exert a proliferative effect on retinal post-capillary venules.

Although sildenafil seems to have a unique place in the treatment of preterm infants in respiratory failure, this case may link its use to the development of aggressive ROP. We have observed a recent increase in treatable ROP in our unit, coinciding with the use of sildenafil. Further work on the retinal effects of sildenafil may be of use in determining whether it truly is a risk factor in the pathogenesis of ROP.

C S Marsh, B Marden, R Newson
Southampton Eye Unit, Southampton, UK

Correspondence to: Catherine Marsh, Southampton Eye Unit, Southampton, UK; cathmarsh@doctors.org.uk

Declaration: The authors have no financial interest in the products discussed in this paper

Accepted for publication 28 April 2003

References

Indocyanine green localisation in surgically excised choroidal neovascular membrane in age related macular degeneration

Clinical indocyanine green (ICG) angiography has gained an established role in the diagnosis of choroidal neovascularisation (CNV) in age related macular degeneration (AMD). It is potentially able to localise CNV with greater accuracy compared with fluorescein angiography because it fluoresces in the infrared range, allowing imaging of choroidal pathology through blood and pigment. Additionally ICG angiography may better define CNV because of its high protein binding affinity in serum, resulting in reduced leak from the CNV. This allows ICG angiography to clearly delineate the feeding vascular supply to the CNV allowing direct ablative thermal laser to precisely target this supply.

Treatments for CNV, including thermal laser, photodynamic therapy, and macula translocation are all reliant on the ability of the clinician to diagnose accurately the location and nature of CNV. Few clinicopathological data exist to correlate the ICG angiographic appearance of CNV with its histology. The presence of CNV was shown pathologically in an eye with a plaque like hyperfluorescence on ICG angiography shown years previously. Lafaut reported the pathology of surgically removed recurrent CNV in two eyes that were preoperatively imaged with ICG angiography. The hyperfluorescence of drusen on ICG angiography in the monkey model has been correlated with ICG dye that has been found histologically on infrared fluorescence microscopy.

In this case report we hope to correlate ICG angiographic findings in a patient with exudative AMD with the histological localisation of ICG to the surgically excised CNV. This will verify that ICG angiographic findings are an accurate representation of the location and nature of the CNV.

Figure 1 Clinical angiography. (A) Preoperative fluorescein angiography shows that the lesion is well defined and extends into the fovea. (B) Preoperative mid-phase ICG angiogram shows the feeding vascular network that is originating from a peripapillary site. (C) Postoperative fluorescein angiography shows the removal of the CNV. (D) Postoperative ICG angiogram confirms the removal of the CNV.

www.bjophthalmol.com
Case report
A 71 year old patient with classic subfoveal CNV was recruited into this study to histologically localise ICG dye to excised CNV in AMD. The study was granted institutional research approval by the Sydney Eye Hospital Ethics Committee.

Angiographic evaluation
The patient underwent preoperative imaging with fluorescein and ICG angiography to define the nature and location of the CNV. The angiographic studies were performed on the Heidelberg Scanning Laser Ophthalmoscope (Heidelberg, Germany). Diagnostic studies were performed using 5 ml of 10% fluorescein dye and 25 mg of ICG dye (Pulsion Medical Suppliers, Munich, Germany).

Follow up angiographic studies were performed one month following surgical removal of the new vessel using standardised methods as outlined above. This was done to confirm the removal of the new vessel.

Surgical procedure
The patient underwent surgical removal of the CNV under assisted peribulbar regional anaesthesia 72 hours later. A three port trans pars plana vitrectomy and removal of the posterior vitreous hyaloid was performed. A small retinotomy adjacent to the CNV was made through which a localised retina detachment was created. The CNV was extracted with subretinal forces through the retinotomy. Haemostasis was achieved by raising the height of the infusion bottle, increasing intraocular pressure. A fluid-air exchange was carried out after checking the retina peripherally for tears.

Histologic localisation of ICG dye
Fifteen minutes before excising the CNV, 50 mg of ICG dye were administered as an intravenous bolus to allow the ICG to bind to the CNV. The excised specimen was taken immediately to be fixed in 20% dimethyl sulphoxide (Sigma, NSW, Australia) plus 80% adult fixative containing 2% paraformaldehyde in 0.1 M phosphate buffered saline (PBS) (pH 7.4) for 20 minutes.

The tissue was embedded in a small tissue embedding mold with Tissue-Tek OCT 4583 compound embedding medium (Bayer, NSW, Australia) and then rapidly frozen in liquid nitrogen. The frozen tissue block was mounted onto Cryostat Micromere (Leitz, Kryostat (720, Australia) and 20 µm sections were cut. Sections were collected with gelatin-chrom-Alum coated slides and air dried. Sections were then examined for ICG fluorescence or stained with cresyl violet for histologic examination.

Infrared fluorescence microscopy
The technique of infrared fluorescence microscopy to identify ICG fluorescence has been previously described by the authors.

A Nikon Eclipse fluorescence microscope with a custom 860 nm barrier filter (Chroma Technologies, Vermont, USA) was used to detect the emitted ICG fluorescence. Paired bright field images with the corresponding infrared fluorescence image were used for orientation of the infrared fluorescence image and recorded digitally.

For histological studies, tissue sections were stained with cresyl violet for 30 seconds, rinsed and dehydrated in graded ethanol, cleared in xylene, and mounted in DPX (BDH, Melbourne, Australia). The sections were examined and photographed under light microscopy.

Histologic localisation of ICG
Figure 2A shows the light microscopic image of the surgical specimen stained with cresyl violet. The CNV has a fibrovascular structure. There are associated patchy islands of intact retinal pigment epithelium (RPE) monolayer which are indicated by the arrowheads. Figure 2B is a bright field microscopic image of the surgical specimen. Figure 2C is the corresponding fluorescence microscopic image which shows ICG localised to the excised CNV. Note that the small islands of intact RPE cells indicated by arrows are intensely fluorescent.

Comment
This report provides a direct clinicopathological correlation of CNV defined on ICG angiography, with ICG localised to the excised surgical membrane by infrared fluorescence microscopy. This is unique in that the ICG itself is detected within the excised CNV. This report confirms that hyperfluorescence defined on fluorescein and ICG angiography is consistent with CNV. The hyperfluorescent lesion shown preoperatively is absent following surgical removal of the specimen.

Indocyanine green was histologically localised to the fibrovascular structure of the CNV. It is proposed that ICG enters rapidly into the neovascular complex through its feeding vascular network. The ICG within the feeding vascular network is able to be imaged on the early phase clinical ICG angiography. Subsequently, it is likely that the ICG extravasates through the leaky vessels to bind to the supportive stromal tissues. In this later phase, clinical ICG angiography does not show the feeding vasculature.

Histologically, the CNV was associated with an incomplete layer of RPE cells which were removed with the CNV. This suggests that the CNV in the case studied appeared to be sub-RPE in location. This is consistent with the histopathology of specimens from the Submacular Surgery Trial which would indicate that the CNV in AMD tends to grow under the RPE.

This report provides information regarding the interaction of ICG with the RPE. The intact RPE that were removed with the CNV were intensely fluorescent on infrared fluorescence microscopy. The fluorescence of the RPE was more intense than the fibrovascular tissue. This suggests that that RPE cells accumulate ICG. This finding corroborates the previous histologic localisation studies in the monkey and human model which showed ICG localisation to the RPE.

The frozen section technique was employed because it allows the water soluble ICG to remain within its in vivo location. Conventional histological processing would cause the ICG to leak through the tissue planes misrepresenting its true position. Previous histological localisation studies in the rat model have been performed using frozen section techniques. Preservation of tissue architecture in this study was limited by crush artefact by the subretinal forces and subsequent extraction from the subretinal space. Additionally, the frozen section processing technique results in tissue expansion and disruption.

This clinicopathological correlation provides the clinician with greater confidence in diagnosing CNV based on ICG angiography.

Acknowledgement
The study was granted institutional research approval by the Sydney Eye Hospital Ethics Committee.

A A Chang, M Zhu, F A Billson
Department of Clinical Ophthalmology & Save Sight Institute, University of Sydney, Sydney, Australia

A A Chang
Sydney Eye Hospital, Sydney, Australia

A A Chang, N L Kumar, P E Beaumont
Sydney Retina Clinic, Sydney, Australia
Correspondence to: Dr Andrew Chang, Department of Clinical Ophthalmology & Save Sight Institute, The University of Sydney, Sydney Eye Hospital, GPO BOX 4337, Sydney, NSW 2001, Australia; achang@sydneyretina.com.au

Accepted for publication 4 May 2003

References

Correction of pseudophakic anisometropia in a patient with pseudoexfoliation using an implantable contact lens

Pseudophakic anisometropia may cause significant patient dissatisfaction with marked visual problems. Correction methods include contact lenses, intraocular lens (IOL) exchange, piggybacking a supplementary IOL, and corneal refractive surgery. The Staar surgical implantable contact lens (ICL) was first used to correct myopia and hyperopia in phakic patients. It is now being used to correct pseudophakic anisometropia. 1,2

The following case describes the successful management of pseudophakic anisometropia using an ICL in a patient with high myopia and pseudoxefoliation.

Case report

An 80-year-old woman was referred to us for correction of pseudophakic anisometropia. She had bilateral pseudoexfoliation and was highly myopic, her original refraction being –14.00 DS right eye, –13.50–1.75×20 left eye.

In 1989 she underwent left cataract extraction with posterior chamber IOL, keeping her highly myopic (–13.00/–2.00×105 left eye). She subsequently developed cataract in her right eye so underwent uncomplicated right phacoemulsification with posterior chamber lens implantation, leaving her +1.00/–1.00×45 in her right eye.

Because of her marked anisometropia she experienced visual difficulties unresolled with spectacles or contact lenses, so she requested permanent correction of this.

Refractive, keratometry, corneal thickness (using pachymetry), axial length (using ultrasound), anterior chamber depth, and horizontal white to white distance (using Orbscan), were measured and sent to Staar Surgical who calculated the ICL power. A –19.0 Dioptre Staar Collamer ICL was inserted via an injector into the left sulcus, anterior to her posterior chamber IOL, through a corneal tunnel. Two iridotomies were made. Antibiotic and steroid drops were used postoperatively.

Postoperative refraction was right eye +1.00/–1.00×45 6/12, left eye +3.00/–1.00×105 6/12+. Her symptoms resolved and she was extremely pleased.

Comment

Insertion of a Staar Collamer ICL seems to be a viable alternative method for correcting anisometropia in pseudophakic patients. All surgical options have their risks and complications.

Corneal refractive surgery is irreversible and complications include flap related problems, corneal scarring, 3 variable refractive outcome, and regression. 4

Dampia is an indicator but not an independent risk factor for grade 3 retinopathy of prematurity in extreme low birthweight infants

Retinopathy of prematurity (ROP) is a multifactorial disease with numerous risk factors. Indicators besides birth weight or gestational age might be used to further discriminate the relative risk of developing ROP associated with a given gestational age or birth weight. Dampia might be such an indicator since Mizoguchi et al reported on the association of dampia and the risk of developing ROP in survivors (n = 41) with a birth weight below 1000 g and suggested that this association might be causal.

To determine whether dampia is an indicator or an independent risk factor for developing ROP, a retrospective chart review in extreme low birthweight (ELBW—that is, below 1000 g) infants in a single neonatal intensive care unit during a 2 year period (2000–2001) was performed. Neonatal characteristics collected were birth weight, gestational...
age, and Appgar score. Respiratory character-
istics were either markers of duration of respira-
tory disease (day at first extubation, last day of
support, last day of supplemental oxygen) or markers of severity
of respiratory disease in the first 72 hours of
life: maximal mean airway pressure (MAP)
and oxygenation index (MAP × 100 ×
fractional oxygen/arterial oxygen mm Hg) at
maximal MAP. In addition, data on CRIB
(Clinical Risk Index for Babies, a disease
severity scoring system) were collected.
The CRIB score was originally developed to
document risk for neonatal mortality but has
the same effects on its association with
morbidity characteristics.1,4 Finally, prescrip-
tion characteristics of dopamine (prescribed or
not, maximal dose, and total hours of
administration in the first week of life) were
recorded.

Ophthalmological screening was initiated
at the postnatal age of 4 weeks by indirect
funduscopic examination. Screening was
continued until full vascularisation or until
diopter laser therapy for threshold disease was
provided. Findings were classified according to
the International Classification of
Retinopathy of Prematurity.5 Clinical charac-
teristics in infants who developed grade 3
ROP were compared with infants who did not
(Mann-Whitney U or χ² tests). Characteristics of dopamine administration
were entered in a multiple regression model
(MedCalc) with other significant risk factors
were entered in a multiple regression model
with either max-
imal dose on the risk of developing grade 3
ROP. Of 90 infants admitted with a birth weight
below 1000 g, 69 survived until discharge.

Retinopathy (any grade) was documented
in 45/69 (65%) survivors. Twenty-seven (39%)
survivors developed grade 3 ROP and 15
(22%) of these infants developed threshold
ROP. In survivors (n = 69), gestational age
(p < 0.001) and birth weight (p < 0.003) were
significantly lower in infants who developed
grade 3 ROP while CRIB (p < 0.002), oxyge-
nation index (p < 0.02) but not MAP were
significantly higher in grade 3 ROP cases. All
markers of duration of respiratory disease
(ventilation days (p < 0.02), respiratory support
(p < 0.001), supplemental oxygen (p < 0.005))
were significantly higher in survivors who
developed grade 3 ROP.

Forty-seven (68%) survivors received dopa-
mine. Incidence of any retinopathy, grade 3
ROP, and threshold ROP was higher in
infants who received dopamine during the first
week of life (table 1). Maximal dose
(p < 0.05) was significantly higher and dura-
tion (hours) (p < 0.03) in the first week of life
was significantly longer in infants who
developed grade 3 ROP. When the strongest
marker of cardiovascular instability—that is,
duration (hours) of dopamine administration
in the first week of life was entered in a
multiple regression model with either max-
imal oxygenation index or maximal MAP or
CRIB score, dopamine was no longer an
independent risk factor to develop threshold
ROP.

Comment
In line with Mizoguchi, an association of
dopamine with an increased risk to develop
ROP was found.1 In addition, dopamine was
no longer an independent risk factor of
developing grade 3 ROP after correction for
the CRIB score or oxygenation index in a
multiple regression model.

Although it is hypothesised that a syner-
gistic effect of hypoxia and dopamine
might induce retinal vascular constriction in
early neonatal life,1,7 it is more likely that
this risk factor is merely an indicator of
cardiovascular instability and not an aetio-
lological factor involved in the pathogenesis
of ROP.

K Allegaert, V Cosseyn, G Naulaers, C Vanhole,
H Devlieger
Department of Paediatrics, University Hospitals,
Leuven, Belgium

I Casteels
Department of Ophthalmology, University Hospitals,
Leuven, Belgium

Correspondence to: Karel Allegaert, MD, Department
of Paediatrics, University Hospitals, Gasthuisberg,
Herestraat 49, 3000 Leuven, Belgium; karel.
allegaert@uz.kuleuven.ac.be

G Naulaers is supported by the Fund for Scientific
Research, Flanders (Belgium) by the Clinical Doctoral
Grant A6/5 CM. D 11.354

Accepted for publication 12 May 2003

References
1 Weatherly CM, Dickinson JL, Mackey DA, et al.
Retinopathy of prematurity: recent advances in
our understanding. Br J Ophthalmol 2002;86:
696–700.

2 Mizoguchi MB, Chu TG, Murphy FM, et al.
Dopamine use is an indicator for the develop-
ment of threshold retinopathy of prematurity.

3 The International Neonatal Network. The CRIB
(Clinical Risk Index for Babies) score: a tool for
assessing initial neonatal risk and comparing
performance of neonatal intensive care units.

4 Buhrer C, Gimper I, Metax B, et al. The CRIB
score and neurodevelopmental impairment at one
year corrected age in very low birth weight
infants. Intensive Care Med 2000;26:325–9,
(owal ref biology neonate).

5 International Committee for the Classification
of Retinopathy of Prematurity. An international
classification of retinopathy of prematurity. Arch

6 Chen Z, Jia W, Kaufman PL, et al.
Immunohistochemical localization of dopamine-
hydroxylase in human and monkey eyes.

7 Wu DM, Kawamura H, Li Q, et al. Dopamine
activates ATP-sensitive K+ currents in rat retinal

Consent of the blind and visually
impaired: a time to change
practice
It is a general legal and ethical principle that
correct consent must be obtained before start-
ing treatment or physical investigation of a
patient. The validity of consent does not
depend on the form in which it is given
(verbal or written), rather it depends on it
being given voluntarily by an appropriately
informed person who has the capacity to
consent to the intervention in question.
Written consent merely serves as evidence
of consent. There is no English statute setting
out the general principles of consent, rather it
is set by precedent or case law (“common law”)
which set out rules concerning such consent.

Firstly, health professionals are required to
take all reasonable steps to facilitate commu-
nication with the patient, using interpreters
or communication aids as appropriate. The
Department of Health has issued guidance on
communication with patients who have
sensory disabilities.2 For those who cannot
see, RAC would be more in line with these
guidelines and recommendations than writ-
ten consent.

Secondly, the problems with vision are
frequently compounded by poor hand-eye
coordination and manual dexterity especially
as most VIPs (2.4 million in England and
Wales) are over 65 years old.3 RAC would
overcome the problems in these circum-
stances. Further, as many procedures VIPs
have are not eye related and the consenting
practitioner non-eye trained (therefore not
used to dealing with VIPs and their difficul-
ties), non-ophthalmic units would also ben-
efit from this technique.

Thirdly, we speak faster than we write and
in an event the whole process needs to be
undertaken verbally in the first instance. RAC
would be a time saving exercise.

Fourthly, ever advancing current technol-
ogies allow for large volumes of audio
recording in a more space efficient manner
than cumbersome written consent. These
devices (digital recorders, dictaphones, and
others) are now available on the mass market
at relatively low cost or already present
within the health services.

Fifthly, section 21 of the Disability Discri-
mination Act states that service providers are
obliged to take reasonable steps to change
practices, policies, or procedures which make
it impossible or unreasonably difficult for a
disabled person to use a service. And people
steps will have to be taken to remove
difficulties altogether. RAC works strongly
in conjunction with this act.

Finally, a practitioner trying to convince an
opposing party that a blind person had been
able to read the form they signed, thus
providing evidence of informed consent,

Table 1 Dopamine use in survivors (n = 69) and its association with the incidence and severity of retinopathy in extreme low birthweight infants (p value calculated using χ² test)

<table>
<thead>
<tr>
<th>#</th>
<th>No dopamine</th>
<th>Dopamine</th>
<th>χ² value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>47</td>
<td>22</td>
<td>0.001</td>
</tr>
<tr>
<td>No ROP</td>
<td>29%</td>
<td>45%</td>
<td>NS</td>
</tr>
<tr>
<td>Any ROP</td>
<td>70%</td>
<td>54%</td>
<td>NS</td>
</tr>
<tr>
<td>Grade 3 ROP</td>
<td>44%</td>
<td>27%</td>
<td><0.04</td>
</tr>
<tr>
<td>Threshold ROP</td>
<td>30%</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>

www.bjophthalmol.com
would certainly find it more difficult to prove than if the whole consent process had been recorded with RAC.

RAC would Thus benefit patients and practitioners alike, facilitating consent and making it a more robust process in the United Kingdom and other countries alike.

G M Saleh
Essex County Hospital, Lexden Road, Colchester CO3 3NB, UK, dgmsaleh@yahoo.co.uk
Accepted for publication 12 May 2003

References
3 The Royal College of Ophthalmology. Epidemiology of eye disease in the older population. 2.2.1 Visual Impairment and its causes. London: RCO.

Magnetic resonance angiography source images in carotid cavernous fistulas

Several investigations, including magnetic resonance imaging (MRI), computed tomography (CT), and orbital ultrasound are used to non-invasively screen for carotid cavernous fistula (CCF), with variable results. Examination of magnetic resonance angiography (MRA) source images, in addition to the conventional MRA reconstructions, is also now recognised as a useful method of detecting CCF. The finding of a hyperintense signal in the cavernous sinus on MRA source imaging provides additional, and sometimes the only, neuroradiographic CCF evidence. We present this patient to familiarise the ophthalmologist with the typical CCF appearance on MRA source images.

Case report
A 59 year old woman with a left eye pressure sensation and a four year history of left ear pulse-synchronous “buzzing” was found to have elevated left intraocular pressure (26 mmHg) on routine examination. She denied diplopia, visual blurring, or pain. Visual acuity was 20/25 OD and 20/20 OS. Colour vision, visual fields, and pupils were normal. There was left proptosis, ptosis, and dilated episcleral vessels. Optic discs were normal and there was mild left retinal venous engorgement. There was a left supraborbital pulse-synchronous bruit. Carotid cavernous fistula was suspected. TI-weighted brain MRI showed left superior ophthalmic vein (SOV) enlargement (Fig 1). The cavernous sinuses were symmetric and normal in size, with slightly increased flow voids in the left cavernous sinus. Conventional reconstructed MRA did not reveal a fistula. However, MRA source images showed an enlarged, hyperintense left cavernous sinus (Fig 2), supporting the presence of a CCF. Cerebral angiography confirmed a left dural CCF. Following endovascular therapy with transvenous and transarterial embolisation of the fistula, all abnormal findings resolved.

Discussion
Carotid cavernous fistulas are abnormal communications between the carotid artery and the cavernous sinus, either directly or via intradural branches of the internal or external carotid arteries. Direct fistulas are high flow, frequently follow trauma, and tend to have a dramatic clinical presentation. In contrast, indirect fistulas are low flow, often spontaneous, and may have a subtle clinical presentation. Symptoms and signs common to both types of fistulas include proptosis, chemosis, diplopia, visual loss, pulse-synchronous tinnitus, orbital bruit, elevated intraocular pressure, dilated episcleral veins, and retinal venous congestion. The pattern of venous drainage, either anterior into the ophthalmic veins or posterior into the petrosal sinuses, often dictates the clinical findings and radiographic appearance. Anterior drainage typically leads to the most dramatic ocular findings and enlargement of the superior orbital vein, the latter often detectable with CT or MRI. However, superior orbital vein enlargement is not specific to CCF. Additional radiographic findings with variable prevalence include lateral bulging of the cavernous sinus wall and enlargement of extraocular muscles on the affected side. Abnormal cavernous sinus flow voids on MRI. Conventional MRA reconstructed images rarely provide additional useful information. Direct visualisation of flow related hyperintensity on the source images of three dimensional time-of-flight MRA can be extremely helpful in CCF detection, with 83% sensitivity and 100% specificity, far superior to standard MRA. Examination of MRA source images is particularly useful in the absence of anterior drainage and superior orbital vein enlargement. Gadolinium-enhanced MRA source images do not increase diagnostic accuracy. In our patient, superior orbital vein enlargement and slightly increased flow voids in the region of the CCF were present on MRI, but MRA source images provided the most striking and direct evidence of CCF. Similar to other non-invasive techniques, MRA source images cannot delineate CCF arterial feeders or detect cortical venous drainage. Hence, conventional angiography remains necessary for definitive management. However, non-invasive techniques such as MRA source images have an important role in pre-angiographic diagnostic decisions.

Acknowledgements
This manuscript was supported in part by a departmental grant (Department of Ophthalmology) from Research to Prevent Blindness, Inc, New York, New York, and by core grant P30-EY06360 (Department of Ophthalmology) from the National Institute of Health, Bethesda, Maryland. Dr Newman is a recipient of a Research to Prevent Blindness Lew R Wasserman Merit Award.

J C Bucker
Departments of Neurology and Ophthalmology, Case Western Reserve School of Medicine, Cleveland, OH, USA

V Biousse
Departments of Ophthalmology and Neurology, Emory University School of Medicine, Atlanta, GA, USA

N J Newman
Departments of Ophthalmology, Neurology, and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA

Correspondence to: Dr Newman, Neuro-ophthalmology Unit, Emory Eye Center, 1365-B Clifton Rd, NE Atlanta, GA 30322, USA, ophhjn@emory.edu
Accepted for publication 1 June 2003

References
MAILBOX

Response to allegations and some considerations on interferon treatment in Behçet’s disease

Kotter et al refer to some problems, such as fabrication of authorship, possibly data, and ethical transgressions, in our article published in the Lancet. However, they do so without knowing the current facts about an ongoing process. They cite accusations that rely on an unfinalised investigation from the year 2000. As we are now in 2003, I do feel that I have to present updated correct information.

Before I do that, however, I would like to note that there is strong scientific evidence against fabrication of the results is its reproducibility by other groups. The results of Kotter et al show the beneficial effect of interferon in Behçet’s disease just as our results did, and our results are being increasingly reproduced.

The fact that the accusations were made on the basis of an unfinalised investigation was clear in the editorial and letter written about our article at the time. The editor of the Lancet stated that further investigations are in progress” and the Dean of our medical school stated that “... the issue will be finalised ... in a court of law.” I would like to report on the decisions made by courts of law during the 3 year period since then.

First of all, during ongoing inquiries about the article, it was established without doubt by an investigating commission that all my coauthors had already known that their names were included as coauthors before the article was published. None of the coauthors had objected to the inclusion of his/her name at the time. It was not until 2 months after the publication that some of the coauthors claimed that they were unaware of inclusion of their names. It is noteworthy that they did so only after an ethical inquiry was embarked upon. The issue of fabricated authorship was brought to a court, accusing me of forging signatures. The court unambiguously declared my innocence at its first session on the matter on 3 April 2003, concluding that there was no forging of signatures and that it cannot be imagined that the coauthors had been unaware of the total given the totality of the circumstances surrounding the issue. This conclusion is supported independently. As attested by those court decisions, there is no fabrication of authorship.

I was also accused of possible fabrication of many of the patients. However, in a declaratory action taken by another court, it was definitely established that all 135 patients mentioned in the Lancet article were officially registered at the Hacettepe University Medical School.

At the same time, the highest administrative court, the State Council of Turkey (Danistay) issued a stay order against any administrative act due to the claimed ethical transgressions, in favour of me. This decision was further approved at a plenary session held at the State Council of Turkey with the participation of members from all administrative chambers of the court.

Kotter et al are unintentionally perpetuating incorrect accusations about me in the BJÖ. I am hoping the impropriety of those accusations is clear in light of all the independent court decisions I describe above. Judicial decisions should be respected by everyone who believes in upholding the supremacy of law. It is my natural right to respond and the readers of the BJÖ deserve to be informed by updated correct information. There is no indication that either authorship or the results reported in the Lancet article were fabricated. Besides judicial decisions, the best scientific evidence that the data are not fabricated is their reproducibility by other groups, as I mentioned at the beginning. It is well shown in the literature that our results are increasingly reproduced, and I am happy to see that. In our clinic, we have been using interferon in Behçet’s disease since the early 1990s and we are among the first groups to use it in this disease. We published our preliminary results previously. The main problem in Behçet’s disease is to prevent serious complications such as vascular thrombotic attacks, ocular involvement, and their recurrences. Conventional drugs and corticosteroids have very little, if any, effect on the course of such complications. The first 2 years of the disease is the most critical period and the disease generally runs a more severe course in patients in whom the disease is diagnosed at an age less than 30 months. I believe that as interferon use is increased, ocular complications of Behçet’s disease will be minimised as well as extraocular manifestations. I suggest that the earlier we begin interferon, the better.

ADDENDUM

In the action of annulment, until a final decision was reached, the highest administrative court, the State Council of Turkey (Danistay) had issued a stay order against any administrative act due to the claimed ethical transgression, in favour of me, stating that “...the administrative act would result in damages which are difficult or impossible to compensate, and at the same time the act is clearly unlawful...” On 5 November 2003, the 12th Chamber of the State Council of Turkey arranged a trial (file no 2002/883), this time for a final decision. At the end of the session, the prosecutor of the State Council of Turkey read his opinion which argued with the unlawfulness of the act and suggested cancellation of any administrative act, after which the court gave its final decision.

Haluk Demiröglu
Hacettepe University Medical School, Department of Internal Medicine, Ankara, Turkey
Correspondence to: H Demiröglu, Selimiye Cad, 1 Sok 5/21, Yukari Ayrancı, Ankara, Turkey; halukdemiroglu@yahoo.com and halukd@hacettepe.edu.tr
Accepted for publication 13 May 2003

References
8. Turkish Republic, Ankara 2nd Civil Court of First Instance; file no: 2002/66 different work.

Are we overlooking the side effects of the drugs in our zeal to conquer ARMD?

First of all let me congratulate the authors for their work on exudative ARMD. But there are still some issues which need to be brought into account:

1. Some published studies show that even 4.0 mg of intravitreal triamcinolone has significant side effects in terms of increased IOP and more so for eyes which needed the second dose of the triamcinolone, with a few of them even needing a filtration surgery. In this particular study however 25mg of Triamcinolone has been used which may cause even more increased elevation of IOP. This issue is an important one as many of our ARMD patients have co-existing chronic open angle glaucoma with a compromised blood supply of the optic nerve head. With the intravitreal steroids induced rise in IOP, we may tilt the balance on the wrong side thereby taking their peripheral vision along with the central loss due to the ARMD.

2. The effect of intravitreal steroids in the progression of cataract is not emphasised much in various studies. If earlier cataract surgery in treated ARMD patients is required, this has theoretical implications in terms of ultraviolet light exposure – one of the environmental factors implicated in ARMD. If there is no long term benefit for preventing the progression of ARMD with the steroids then why should we increase the chances of cataract in these patients thereby rendering their retina more vulnerable to damage caused by the UV radiation.

3. Various in vitro studies suggest that down-regulation of inflammatory markers and changes in the endothelial cell permeability are probably the modes of action of triamcinolone in exudative ARMD, but all these actions are probably counteracted by the duration when the steroids are in high concentration in the vicinity. To maintain high concentrations triamcinolone should be injected repeatedly and probably that is the reason the improvement fades with time in many patients. Moreover none of the studies published so far have been long enough to actually give a fair idea about the long term
outcome. The longest duration for which the follow up has been done is 18 months. We need data from multicenter, placebo-controlled trials on a much larger population with long-term follow-up to establish the efficacy of the drug and assess possible side effects and complications. Until then we should probably reserve this therapy for those cases where there is recurrence after laser treatment.

U Bhatt
Wrexham Maelor Hospital, Croesnewydd Road, Wrexham LL13 7TX, UK, bhattuday@yahoo.com

References

BOOK REVIEWS

Genetics for Ophthalmologists: the Molecular Genetic Basis of Ophthalmic Disorders

This is Remedia’s latest addition to its Genetics for… series. Ophthalmologists can now join cardiologists, dermatologists, haematologists, oncologists, orthopaedic surgeons, chest physicians and rheumatologists in having their very own “genetics bible.” The fact is that no self respecting ophthalmologist, paediatrician, or clinical geneticist should be without a copy.

Imagine, you are in the clinic and the patient sitting in front of you has what looks like a macular dystrophy. The age of the patient and the family history helps to some extent with the diagnosis but you can’t quite remember what associations you should be looking for or which genes may be involved. Should you be taking blood for DNA analysis or is genetic testing still part of the distant future in the NHS? You find a reason why your patient needs to leave the room—refraction, visual fields, colour vision—anything will do—you reach for your handy “bible” and flip straight to page 88. There you find 20 useful pages on macular dystrophies with fabulous illustrations to impress your patient. No need to go home feeling inadequate and wishing you had listened more in your genetics lectures (if you were lucky enough to have them). You can counsel your patient appropriately and feel great! Thanks to Graeme Black.

Genetics is on the television, on the internet, and in the outpatient clinic. Patients come armed with questions and are often very well informed about their condition.

As clinicians we have to keep abreast of the rapid changes that are occurring in genetics. Over the past 20 years there has been a revolution in molecular medicine.

Advances in laboratory techniques have enabled diagnoses and even predictions of disease inheritance that were previously only given as risk estimates. How and where does the ophthalmologist find this information without spending hours on the internet or poring through journals? Black has provided the answer in his book Genetics for Ophthalmologists.

In the introduction there is a list of useful websites that provide up to date information on inherited eye disease. The preface covers concepts, updates and revisions that arise in counselling, such as whether it is ethical to perform predictive testing in children before the age of consent. Then you come to the meat of the book… Black has provided the reader with a comprehensive coverage of inherited eye diseases starting at the cornea and working back towards the optic nerve. The format of the book is easy to follow with lots of colour photographs and useful summaries of the clinical and diagnostic criteria for each condition. Information about inheritance patterns, penetrance, the effect of mutations and whether genetic screening is currently possible will be invaluable to those involved in counselling families. There is also a very helpful glossary at the back for those less used to genetic terminology.

This is the type of book that should be in every outpatient clinic consulting room with a spare copy in the departmental library. Genetics for Ophthalmologists will appeal to paediatricians, clinical geneticists, and all those with an interest in inherited eye disease. While the author could doubt the busy reader, the busy reader can sit back in the confidence that an extensive literature review has already been done allowing more time to be spent with the patient discussing the impact of this wealth of information.

Amanda Churchill

Oculoplastic surgery: review 1

This is a wonderfully detailed book by an experienced oculoplastic and orbital surgeon. It is remarkable, as most mortal oculoplastic surgeons would have struggled over 10 years to write such a book, but Brian Leatherbarrow has succeeded in concentrating his encyclopaedic knowledge into a comprehensive tome in only two years. The result is a first class book, consisting of 26 chapters, 364 pages, and over 1200 original colour drawings, clinical photographs, and black and white diagrams.

The book is logically organised with an introductory chapter, which outlines basic principles and distils these into simple oculoplastic aphorisms. This leads nicely into 10 chapters on common oculoplastic conditions: the eyelid malpositions (ptosis, entropion, and ectropion), facial palsy, and periocular tumour management/ reconstruction. The book then gradually develops the link between oculoplastics and orbital surgery with five chapters on trauma: of the eyelid, simple orbital fractures, zygomatic fractures, and more complex orbital fractures. Even if you are not going to perform this type of surgery, it is worthwhile having an idea of what is involved.

There are then three very sound chapters on oculoplastic surgery: assessment and principles, the options for surgical approaches to the orbit and the management of thyroid eye disease. Again there is this effortless, but essential, link between orbit and eyelid, with thyroid eyelid retraction correctly being covered here.

The lacrimal surgery chapter is comprehensive and is well illustrated. Interestingly, blepharoplasty and eyebrow ptosis are placed quite late in the book, which initially seemed a little unusual. In fact, it is sensible, as both of these require the surgeon to have a deeper knowledge of brow and orbit anatomy, not least to manage potential complications. The illustrations of brow anatomy and the various approaches to brow ptosis are fabulous, and include up to date endoscopic techniques.

The chapters on enucleation, exenteration, and socket work are very sound, as is the final chapter on autogenous grafts, which should be read frequently.

Who is this book aimed at? Perhaps not the beginner, though if I were starting out now I would find this book, particularly with its fresh colour drawings, extremely helpful and inspirational. It is definitely a must as a reference for difficult cases and is also very practical to dip into, particularly before doing an operation that perhaps the surgeon has not performed for a few weeks or months.

Every ophthalmologist interested in oculoplastic surgery should seriously consider obtaining a copy of this book. The book has so many tips in it, each time I open it I learn something new, even something as simple as using a piece of Steri-drape to mark the template for a skin graft.

The pictures and text are precise, clear, and uncluttered. I could hardly find any errors, perhaps figure 1.35 A and B should have been reversed (publisher’s error?) and I am not sure I entirely agree about starving patients for 24 hours after a lateral orbitotomy, but I’ll think about it.

I look forward to future editions.

Jane Olver
Western Eye Hospital and Eye Department Charing Cross Hospital, London

Oculoplastic Surgery: review 2

A useful new text had been added to the compendium of the oculoplastics library with the publication of this volume. The author’s intent, as stated in the preface, was to provide a pragmatic approach to diagnosis and management of patients with a myriad of oculoplastic, orbital, and lacrimal conditions. This book accomplishes the goal of broadly covering many salient topics within the field of oculoplastics.

The author divides the book into sections on oculoplastic operative principles, eyelids, orbit issues including fractures, orbital disorders, and surgical approaches to the orbit.
The extensive coverage of orbital and mid-facial fractures is particularly comprehensive. A thorough review of thyroid ophthalmology is organised separately and provides a comprehensive approach to the many issues surrounding this disease process. Epiphora, blepharoplasty, eyebrow ptosis, enucleation, evisceration, exenteration, socket reconstruction are also covered in separate sections which contain many photographs and illustrations. Complications of various surgical procedures add to the topics, but are not ubiquitously covered in equal detail in all of the sections. A section on autogenous grafts in ophthalmic plastic surgery is well presented, and of interest in that infectious concerns are causing a return to popularity of autogenous grafts.

Many surgical photographs are accompanied by adjacent photographs of skulls nicely showing anatomy, or endoscopic photographs, which are also very illustrative. Less useful are the accompanying line drawings, many of which do not greatly clarify their accompanying surgical photographs, which are taken from some distance. At the end of each section is a reference for further reading, which would lead the reader to more in-depth information about the topics and surgical techniques discussed.

Although this book is very thorough in covering functional oculoplastics, it does not concentrate on the many cosmetic issues in oculoplastics. Botox, use of filler material, fat reposeitioning, laser resurfacing, and use of the carbon dioxide laser in surgery are not covered in this text.

Overall, this is a well thought out and nicely presented basic text on functional oculoplastics. It would complement the knowledge of residents, fellows, and the general ophthalmologist. Those beyond this level of training might find they want for more depth of information than this text offers.

L Dragan
Yale University, USA; ldragan@hotmail.com

In the article by Michaeles et al in the November issue (Br J Ophthalmol 2003;87:1317–20) the legend to table 1 contained an error. The legend to table 1 on p 1319 should have read “ERG = electroretinography; CF = counting fingers; M-R = Mollon-Reffin test”. It should not have read “ERG = counting fingers; M-R = Mollon-Reffin test”. The journal aplogises for the error.

NOTICES

HIV/AIDS and the eye

The latest issue of Community Eye Health (No 47) discusses the impact of the HIV/AIDS epidemic on prevention of blindness programmes. For further information please contact: Journal of Community Eye Health, International Resource Centre, International Centre for Eye Health, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK (tel: +44 (0)20 7612 7964; email: Anita.Shah@lshtm.ac.uk; website: www.jceh.co.uk). Annual subscription (4 issues) UK£28/US$45. Free to developing country applicants.

Second sight

Second Sight, a UK based charity whose aims are to eliminate the backlog of cataract blind in India by the year 2020 and to establish strong links between Indian and British ophthalmologists, is regularly sending volunteer surgeons to India. Details can be found at the charity’s website (www.secondsight.org.uk) or by contacting Dr Lucy Mathen (lucymathen@yahoo.com).

Specific Eye Conditions (SPECS)

Specific Eye Conditions (SPECS) is a not for profit organisation which acts as an umbrella organisation for support groups of any conditions or syndrome with an integral eye disorder. SPECS represents over 50 different organisations related to eye disorders ranging from conditions that are relatively common to very rare syndromes. The website acts as a portal giving direct access to support groups’ own websites. The website is a valuable resource for professionals and may also be of interest to people with a visual impairment or who are blind. For further details about SPECS, contact: Kay Parkinson, SPECS Development Officer, tel: +44 (0)1805 524238; email: k@eyeconditions.org.uk; website: www.eyeconditions.org.uk.

The British Retinitis Pigmentosa Society

The British Retinitis Pigmentosa Society (BRPS) was established in 1975 to bring together people with retinitis pigmentosa and their families. The principle aims of BRPS are to raise funds to support the programme of medical research into an eventual cure for this hereditary disease, and through the BRPS welfare service, help members and their families cope with the everyday concerns caused by retinitis pigmentosa. Part of the welfare service is the telephone help line (+44 (0)1280 860 932) which is available for any queries relating to retinitis pigmentosa, especially for those recently diagnosed with retinitis pigmentosa (tel: +44 (0)1280 821 334; email: lynda@brps.demon.co.uk; website: www.brps.demon.co.uk).

Surgical Eye Expeditions International

Volunteer ophthalmologists in active surgical practice are needed to participate in short term, sight restoring eye surgery clinics around the world. Contact: Harry S Brown, Surgical Eye Expeditions International, 27 East De La Guerra, C-2, Santa Barbara, CA 93101-9858, USA (tel: +805 963 3303; fax: +805 963 3564; email: hsbrown.md@cox.net or seeintl@seeintl.org; website: www.seeintl.org).

Rise in organ transplant numbers

According to UK Transplant, the UK has seen the highest number of organ transplants in six years. Last year (1 April 2002 to 31 March 2003), 2777 patients had their lives saved or dramatically improved through the generosity of 1064 donors. This equates to a 6% increase compared to the previous 12 months (1 April 2001 to 31 March 2002). Furthermore, during 2003, the highest number of people benefited from a cornea transplant for five years (1997–98) and 240 more people had their sight restored than the previous year. For further information see UK Transplant’s website (www.uktransplant.org.uk).

Elmination of avoidable blindness

The 56th World Health Assembly (WHA) considered the report on the elimination of avoidable blindness (doc A56/26) and urged Member States to: (1) Commit themselves to supporting the Global Initiative for the Elimination of Avoidable Blindness by setting up a national Vision 2020 plan by 2005; (2) Establish a national coordinating committee for Vision 2020, or a national blindness prevention committee to help implement the plan; (3) Implement the plan by 2007; (4) Include effective monitoring and evaluation of the plan with the aim of showing a reduction in the magnitude of avoidable blindness by 2010; (5) To support the mobilisation of resources for eliminating avoidable blindness.

The WHA also urged the Director-General to maintain and strengthen WHO’s collaboration with Member States and the partners of the Global Initiative for the Elimination of Avoidable Blindness as well as aid in the coordination and support of national capability.

5th International Symposium on Ocular Pharmacology and Therapeutics (ISOPT)

The 5th International Symposium on Ocular Pharmacology and Therapeutics (ISOPT) will take place 11–14 March 2004, in Monte Carlo, Monaco. Please visit our website for details of the scientific programme, registration, and accommodation. To enter the Call for Abstracts and registration procedure, please submit your full mailing details to http://www.kenes.com/isopt/interest.htm. Further details: ISOPT Secretariat (website: www.kenes.com/isopt).

XVth Meeting of the International Neuro-Ophthalmology Society

The XVth Meeting of the International Neuro-Ophthalmology Society will take place 18-22 July 2004, in Geneva, Switzerland. Further details: Prof. A Safran, University Hospital Geneva, c/o SYMPORGA SA, Geneva (fax: +41 22 839 8484; email: info@sympor.org; website: www.sympor.org).

4th International Congress on Autoimmunity

The 4th International Congress on Autoimmunity will take place 3–7 November 2004 in Budapest, Hungary. The deadline for the receipt of abstracts is 20 June 2004. Further details: Knes International Global Congress Organisers and Association Management Services, 17 Rue du Cendrier, PO Box 1726, CH-1211 Geneva 1, Switzerland (tel: +41 22 908 0488; fax: +41 22 732 2850; email: autoim04@knes.com; website: www.knes.com/autoim04). The 4th International Congress on Autoimmunity will take place 3–7 November 2004 in Budapest, Hungary. Further details: Knes International Global Congress Organisers and Association Management Services, 17 Rue du Cendrier, PO Box 1726, CH-1211 Geneva 1, Switzerland (tel: +41 22 908 0488; fax: +41 22 732 2850; email: autoim04@knes.com; website: www.knes.com/autoim04).

14th Meeting of the EASD Eye Complication study group

The 14th Meeting of the EASD Eye Complication (EASDEC) study group will take place on the 21–23 May 2004. There will be key lecture notes on the following topics: Peter Saede (Denmark) – Regional and Steno 2 study, Hans Peter Hammes (Germany) – Animal models of diabetic retinopathy.
Massimo Porta (Italy)–Screening with the London protocols: 12 years after, and Anselm Kampik (Germany)–Surgical options in diabetic retinopathy. There will also be case presentations and oral and poster presentations. The EASDEC board comprises F Bandello (President), PJ Guillausseau (Vice President), C-D Agardh (Past President), P Massin (Secretary), M Porta (Treasurer). The Scientific and Organizing Committee includes: F Bandello, PJ Guillausseau, P Massin, C-D Agardh, M Porta, A Kampik, M Ulbig, and G Lang. There are three travel grants available, at 1000 Euro each, for young scientists (less than 35 years at the time of the meeting). Application for the grant should be made together with the submission of the abstract. For further information, contact: Department of Ophthalmology, Ingrid Mannl, Ludwig-Maximilians-University, Mathildenstr. 8, 80336 MUNICH, Germany (tel: +49–89–5160–3800; fax: +49–89–5160–4778; e-mail: easdec@ak-i.med.uni-muenchen.de. The deadline for abstracts is 2 March 2004.

A revolution in healthcare diagnostics

Mr Roger Armour, an Honorary Consultant Surgeon from Hitchin in Hertfordshire, will receive £10,000 in prize money and his idea will be fast tracked through NESTA’s Invention & Innovation programme, the largest source of early stage seed funding in the UK, for possible further funding of up to £100,000 to take the technology to the next stage of development.

Ophthalmoscopes are used by physicians to examine the retina at the back of the eye. It is a powerful and useful clinical skill that is completely painless for the patient but essential in diagnosing diseases such as glaucoma and cataracts as well as a host of unsuspected diseases of other parts of the body affecting the eye. These include: high blood pressure, diabetes, leukaemia, brain tumours, hardening of the carotid arteries, cerebral malaria and the tragic shaken baby syndrome, which may be revealed to the trained observer.

With 30 lenses to manipulate and a dozen settings, current ophthalmoscopes are complicated to use, expensive and difficult to carry. As a result, most medical students cannot afford to buy them and many doctors never learn how to use this potentially life-saving instrument properly.

Roger’s simple new design can be made significantly cheaper than standard ophthalmoscopes using basic materials and weighs only 30g so is easy to carry in a pocket or purse. It provides a service as good as current instruments but has no complicated settings or lenses to trouble the user.

It has also been successfully tried by over 300 doctors, nurses and non-medical people and won an award at the 2003 Oxford Ophthalmological Congress. NESTA Chairman Chris Powell, who presented the award, said:

“Roger’s idea is a wonderful example of a simple innovation that could make a huge impact and I am delighted to present him with the NESTA award at this year’s Medical Futures. His ophthalmoscope could revolutionise education and training in medicine, giving students an inexpensive and easy to use tool that they can carry everywhere with them. This will give them the chance to practice and perfect their technique in this essential skill without having to be confined to a clinic and could benefit doctors and patients for years to come.”

International Strabismological Association (ISA) Fellowship

The International Strabismological Association (ISA) has established one fellowship for either basic or advanced training in strabismus/paediatric ophthalmology supported by the amount of US $10,000. Applications may be obtained from the Secretary/Treasurer or the ISA, Derek T. Sprunger, MD, at Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indiana 46202 or by e-mail at isa.lms@juno.com. The deadline for this application is 15 March, 2004.