Intravitreal injection of triamcinolone acetonide as treatment for chronic uveitis

Chronic intraocular inflammation such as chronic idiopathic uveitis can lead to cystoid macular oedema, papilloedema, and vitreous opacities temporarily or permanently reducing visual acuity. Chronic uveitis has usually been treated by topical or systemic application of steroids. Topical treatment, however, often has not been sufficiently effective to suppress intraocular inflammation and to reduce cystoid macular oedema. Systemic treatment with steroids inevitably leads to secondary side effects and systemic suppression of the whole immune system and Cushing's syn- drome. Taking into account that the eye comprises only 0.01% of the whole body volume, and considering that for achieving high concentrations, a drug at its site of action is best to apply it directly into the region of required action, we describe the clinical outcome in a patient receiving an intravitreal injection of a crystalline cortisone.

Case report

A 17 year old woman suffering from chronic idiopathic uveitis in both eyes for 5 years had been treated topically, peribulbarly, and systematically with corticosteroids. As a steroid responder, she had developed secondary ocular hypertension. Steroid induced cataract in her right eye was operated on by phacoaspiration, transpupillary anterior vitrectomy, and posterior chamber lens implantation. To reduce the systemic side effects of steroid treatment, systemic cyclosporin A had been added to the treatment scheme since January 1999. In February 2000, she presented again with a severe uveitis with papilloedema and cystoid macular oedema. Despite intensive topical treatment with steroids given hourly, and systemic acetazolamide, visual acuity remained in the range 0.10–0.16. To avoid the side effects of systemic steroid treatment and to achieve high and longstanding concentrations of steroids in the eye, we injected 20 mg crystalline triamcinolone acetonide into the vitreous cavity of the right eye in July 2000 with topical anaesthesia.

Within the next 5 weeks, visual acuity increased to 0.5. Intracocular pressure increased to a maximum of 38 mm Hg, and was reduced to the normal range with topical antiglaucomatous medication. Four months after the injection, the steroid crystals were resorbed, visual acuity returned to the preoperative level of 0.1, and with topical steroids given, intracocular pressure decreased to values of less than 23 mm Hg without further antiglaucomatous medication.

Comment

In ophthalmology, corticosteroids applied topically or systemically are well known and have widely been used to suppress intraocular inflammation. Based on experimental studies performed by Machemer, Peyman and others, as well as on clinical observations, intravitreal injections of triamcinolone acetonide have increasingly been reported as treatment for intraocular neovascular, oedematous, or inflammatory diseases. These include diffuse diabetic macular oedema, proliferative diabetic retinopathy, neovascular glaucoma, exudative age related macular degeneration, and uveitis. In agreement with these previous studies, the results of the present report suggest that the intravitreal injection of triamcinolone acetonide may be an additional option in the treatment of chronic uveitis. Future studies may address the types of uveitis and intravitreal steroid injection are best for, and whether the use of intravitreally implanted slow release devices can decrease the recurrence rate of uveitis for a longer period than a single intravitreal injection dose.

Proprietary interest: none.

R F Degenring, J B Jonas
Department of Ophthalmology, Faculty for Clinical Medicine Mannheim, Ruprecht-Karls-University Heidelberg, Germany
Correspondence to: Dr R Degenring, Universitäts-Augenklinik, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany; robert.degenring@augen.ma.uni-heidelberg.de
Accepted for publication 17 June 2002

References

Ophthalmdynometric estimation of cerebrospinal fluid pressure in pseudotumour cerebri

Measurement of the cerebrospinal fluid pressure usually requires a lumbar puncture or crianiotomy to get direct access to the cerebrospinal fluid space. These techniques, however, are invasive and so carry the risk of complications such as infections and damage to the neural structures. Furthermore, owing to the leakage of cerebrospinal fluid during the puncture, the cerebrospinal fluid pressure will be altered in the moment the measurement is performed. It is therefore desirable to have a non-invasive method allowing the estimation of the intracerebral pressure without requiring a direct access to the brain or spinal cord. We describe a patient in whom ophthalmodynamometry strongly suggested an increased intracerebral pressure which was confirmed by eventual direct measurement.

Case report

A 12 year old female patient presented with acute vomiting, massive headache, and bilateral abducens nerve palsy. Visual acuity was 20/20 in both eyes, and visual fields were unremarkable, except for an enlarged blind spot. Both optic discs showed a prominence of 0.5 mm (right eye) and 0.6 mm (left eye) as measured by confocal laser scanning tomography. Intraocular pressure measured 18 mm Hg. With topical anaesthesia, a Goldmann contact lens fitted with a pressure sensor mounted into its holding ring was put onto the cornea (Fig 1). Pressure was asserted onto the globe by slightly pressing the contact lens, and the pressure value at the time when the central retinal vein started pulsating was noted. The measurements of this new technique of ophthalmodynamometry were repeated nine times in both eyes.

The central retinal vein collapse pressure as the sum of the ophthalmodynamometric value plus the intraocular pressure, measured 103 relative units right eye and 98 relative units left eye. These values were significantly higher than normal values (6.1 (SD 8.4) relative units) determined previously in normal subjects (own data). Direct measurement of cerebrospinal fluid pressure by lumbar puncture performed about 5 hours later revealed a value of 107 cm water column (equivalent to 82.3 mm Hg). In combination with other clinical findings, the diagnosis of pseudotumour cerebri was made.

Comment

The central retinal vein is the only structure whose appearance depends on its inner pressure, and which runs through the cerebrospinal fluid space and which is accessible from outside the body without any invasive procedure being performed. After exiting the eye through the optic disc, the central retinal vein goes through the retrobulbar part of the optic nerve before it traverses the subarachnoidal and subdural spaces of the optic nerve and pierces the optic nerve meninges. The pressure in the central retinal vein is thus at least as high as the cerebrospinal fluid pressure. The central retinal vein collapse pressure may be measurable by ophthalmodynamometry since the vein will start to pulse, if the sum...
of intraocular pressure plus an external pressure exerted onto the eye equals the diastolic pressure of the central retinal vein. 14–17 The intraocular pressure can be determined by applanation tonometry, and the additional pressure exerted onto the globe can be measured by an ophthalmodynamometer. In the ophthalmodynamometers used in the 1960s and 1970s, determinations of the central retinal vein pressure were often difficult or almost impossible so that the central retinal vein pressure has usually not been measured. 18 The new ophthalmodynamometer used in the present study (Fig 1) may overcome some of the problems associated with the old ophthalmodynamometers. In a previous study on the reproducibility of the new technique, the variation of the central retinal vein collapse pressure was 15.9% (SD 11.9%). The present study suggests that, in patients with markedly increased intraocular pressure, the new, Goldmann lens associated, ophthalmodynamometer may provide information about the intraocular pressure by estimating the central retinal vein collapse pressure. It may be helpful for the neuro-ophthalmological diagnosis of diseases associated with increased intraocular pressure.

Proprietary interest: none.

References

Treatment of atopic blepharitis by controlling eyelid skin water retention ability with ceramide gel application

Atopic blepharitis is one of the major ocular complications of atopic dermatitis (AD). 3–4 It has been pointed out that atopic patients have dry skin accompanied by barrier disruption and water deficiency. Previously, we assessed the water retention ability of eyelid skin by measuring the water content and water evaporation rate from the eyelid in patients with atopic blepharitis. The water content positively correlated and water evaporation from the eyelid negatively correlated with the severity of blepharitis. 4 Ceramide comprises about 30% of stratum corneum lipids, which have an important role in both the water retention and barrier function of the skin. 19 Ceramide abnormalities in several skin disorders, such as AD, have been reported. 20 Decreased levels of ceramides may be attributable to the insufficient water retention of the skin in AD. Apoget Gel (Zenyaku Kogyo, Tokyo, Japan) is a product containing galactosyl ceramides extracted from horses as a major moisturising ingredient. In this study, we assessed the efficacy and safety of this gel product in patients with mild atopic blepharitis by measuring the water retention ability of the eyelid skin before and after prescription.

Methods and results

Sixteen lids of eight patients (five males and three females, 7–35 years old, average age 16.0 (SEM 8.4) years) diagnosed as having AD by dermatologists, according to Hanifin and Rajka’s criteria, 21 were examined. Because ceramide gel has no anti-inflammatory effect, cases with severe inflammation were excluded from this investigation. After informed consent was obtained, patients were instructed to place Apoget Gel on their eyelids two to five times a day after washing their faces. Assessment of clinical findings using measurement of water retention ability were performed as previously described 20 before and 4 weeks after the beginning of application. Statistical analysis was carried out by non-parametric tests (Wilcoxon test). A p value of 0.05 or less was considered statistically significant.

Water content of eyelid skin was significantly increased after treatment (30.6% (6.0%) before treatment, 41.2% (8.5%) after treatment; p<0.05) (Fig 1). Water evaporation values were significantly decreased after treatment (4.5 (1.4) × 10−7 g/cm2/s before treatment, 3.5 (0.9) × 10−7 g/cm2/s after treatment; p<0.05) (Fig 2). No slit lamp findings indicating toxicity were observed during the course of the study.

Comment

As the eyelid is a borderline lesion between dermatology and ophthalmology with influences on ocular homeostasis, dermatologists often hesitate in prescribing sufficient medication to the eyelids. The assessment and treatment of atopic blepharitis is therefore an important aspect of ophthalmological examination in atopic patients.

Ceramide gel treatment for 4 weeks significantly improved the water retention ability of eyelid skin of patients with mild atopic blepharitis. Among various moisturising products, the application of the ceramide gel is reasonable, because ceramide deficiency has been reported in the skin of atopic patients. Ceramide gel alleviates dryness without stickiness, and patients experience little discomfort. Comfort during application is thought to be one of the important factors for the compliance of patients. Some patients interrupt application of ointments, such as petrolatum (Vaseline), to the eyelid because of stickiness or because the shiny appearance around the eyes is cosmetically conspicuous. Although strong anti-inflammatory drugs are necessary in acute exacerbations of atopic blepharitis, moisturising of the skin using ceramide gel application represents a useful supplementary therapy during periods of relatively light inflammation.

Acknowledgement

The authors wish to thank Ms Misaki Sasaki and Ms Saori Nishijama for their assistance in taking measurements of water evaporation from eyelid skin.

Financial support: none.

Proprietary interest: none.

References
An unusual tumour of the lacrimal gland

Lacrimal gland swelling is usually due to an inflammatory or neoplastic process. We report an oncocytoma as the cause of lacrimal gland swelling and review the literature. Oncocytoma of the lacrimal gland is extremely rare and has been described only three times before.

Case report

A 72 year old man experienced periodic swelling of his right eyelid over a period of 9 months. For 2 months he complained of vertical diplopia. He had a past medical history of chronic obstructive airways disease and a past ocular history of cataract, and was prescribed topical lubricating agents. On examination visual acuity of both eyes was 0.50. External examination showed a right hypertrophi. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination showed cup-disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extraocular solid mass occupying the lacrimal fossa. The tumour displaced the right eye inferomedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytic cells. The tumour was removed in toto via a lateral orbitotomy. The operation and the postoperative period were uneventful.

Histological macroscopic description yielded a spherical shaped, partially encapsulated tissue (measuring 2.8 × 3.0 × 1.9 cm). After preparation it had a homogeneous brownish tuberiform aspect. Microscopic examination (Fig 2) showed fibrous tissue with focally pre-existing remnants of lacrimal gland tissue. There was a sharply demarcated capsule. Small nuclei and nucleoli. No evidence of malignancy or neoplastic process. We report an oncocytoma as the cause of lacrimal gland swelling and review the literature. Oncocytoma of the lacrimal gland is extremely rare and has been described only three times before.

Comment

Oncocytoma (synonyms: oxyphilic adenoma or oncocytic adenomas) are benign, epithelial tumours arising in the ductal cell lining of apocrine glandular structures. In an oncocytoma the oncocyes form nests, cords, and tubules. Oncocytes can be found among the epithelial cells of various normal organs. Oncocytomas occur frequently and have been described in salivary, thyroid, parathyroid, buccal mucosa, breast, kidney, pharynx, and larynx. If they occur near the eye, they are generally located in caruncle, lacrimal sac, accessory lacrimal glands of the conjunctiva and rarely in the lacrimal gland. For unknown reasons oncocytic lesions begin to appear in early adulthood and proliferate with age.

Most lacrimal gland masses represent inflammatory disease, either responding to antibiotics or anti-inflammatory medication. Various malignant tumours of the lacrimal gland have been described varied from lymphoproliferative disorders to epithelial neoplasms. Approximately 50% of epithelial tumours are benign mixed tumours (pleomorphic adenomas) and about 50% are carcinomas. In rare cases a lacrimal gland mass is found to be an oncocytoma as described in our case and in three other cases in the literature, or as an oncocytic carcinoma. Beskid and Zarzeka described a 39 year old woman with an oncocytoma of the lacrimal gland. Riedel et al described a 1.5 year old African girl with an oncocytoma of the lacrimal gland. This is the only case in the literature that reported on an oncocytoma in childhood. Riedel et al also reported a 15 year old woman with an oncocytoma of her lacrimal gland, that presented with a 2 month period of swelling of her lacrimal fossa without proptosis. After excision there was no regrowth during a follow up period of 3.5 years. Proliferations of oncocytic cells can also show malignant features and become malignant oncocytomas. A 58 year old man reported by Riedel had a malignant oncocytoma (synonym: oxyphilic adenocarcinoma) of the lacrimal gland. He had a 3 month history of proptosis of his eye and diplopia. On presentation the tumour had intracranial extension. Despite radical resection and postoperative radiation therapy, he died 6 months later from liver metastases. Dorello et al described a similar case of a 59 year old patient with an oncocytic carcinoma of the lacrimal gland with intracranial extension. The patient died approximately 2 years after development of his clinical symptoms (exophtalmos and diplopia), despite orbital exenteration and radiation therapy. A 81 year old woman reported by Biggs had a 6 month history of proptosis due to an oncocytic adenocarcinoma of the lacrimal gland. No follow up information was given.

In summary, a 72 year old man was found to have an oncocytoma of the lacrimal gland. Oncocytoma has to be added to the differential diagnosis of lacrimal gland swelling.

References

Morning glory disc anomaly: an atypical case

When optic disc elevation is encountered on funduscopic examination, the first concern is whether it represents true disc oedema. We present a patient who was urgently referred to us by a retinal specialist because of unilateral “disc swelling.” Further evaluation suggested that the patient had a congenital optic disc anomaly that was atypical in appearance, but most likely a variant of the morning glory disc anomaly (MGDA).

Case report

A 40 year old African-American woman with no visual complaints went to her local optometrist for a routine eye examination. At the optometrist’s office she was told that “in the back of her right eye she had a dark spot with a ring around it” and was referred to a retinal specialist. The retinal specialist found a mildly decreased visual acuity and a “swollen disc” in the right eye and the patient was referred for neuro-ophthalmic consultation. To her knowledge, she previously had never had a dilated funduscopic examination.

Best corrected visual acuity was 20/20 distance and J1 near in the right eye and 20/20 distance and J1 near in the left eye. There was a 0.9 log unit right relative afferent pupillary defect. Her colour vision, external...
examination, slit lamp biomicroscopy, intraocular pressures, and motility were all normal in both eyes. Funduscopic examination was normal in the left eye with an optic nerve cup to disc ratio of 0.4. The appearance of her right optic nerve (Fig 1) was that of an elevated ring around the centre of the disc, interrupted from about 7 o’clock to 9 o’clock by an area of pigmentation. The vasculature was mildly obscured as it crossed the elevation. There was no venous engorgement, haemorrhage, cotton wool spots, or exudate. Funduscopic examination gave the appearance of a peripapillary excavation of retina and retinal pigment epithelium surrounding the elevated ring from about 12 o’clock to 7 o’clock. The macula and periphery were normal. Automated perimetry showed an enlarged blind spot and a relative superior altitudinal defect on the right and a full field on the left.

Fluorescein angiography showed staining of optic nerve tissue but no leakage of fluorescein outside the disc margin, confirming the absence of true disc swelling (Fig 2). Magnetic resonance imaging of the brain and orbits with gadolinium showed no pathology. B-scan ultrasonography excluded optic disc drusen. With gadolinium showed no pathology. B-scan resonance imaging of the brain and orbits of optic nerve tissue but no visible pigment. This finding is not unexpected, as the visible peripapillary pigment in MGDA dissipates over time. This decrease in peripapillary pigment over time is believed to be secondary to a metaplasia of hamartomatous RPE into fibroglial tissue and hyperplasia of the fibrogial tissue. Our patient was 40 years old at diagnosis of MGDA and it is possible that she had more peripapillary pigment when younger. It is also possible that the peripapillary excavation of this patient was larger when she was younger, as the glial hyperplasia tends to progressively elevate the disc over time.2

There is controversy regarding the aetiology of MGDA. Some believe it is a form of optic disc coloboma.11 This theory is supported by evidence that MGDA is seen along a continuum of other optic disc anomalies including coloboma in the renal coloboma syndrome.4 Based on the findings of a scleral defect, vascular anomalies, central glial tuft, and adipose and smooth muscle tissue in histopathological specimens, it has been hypothesised that MGDA may be a primary mesenchymal disorder or an abnormality in the relative growth between the mesoderm and ependyma.5 Another theory proposes that an abnormal enlargement of the distal optic stalk during eye development allows the inner layer of the optic cup to enter, causing an excavation at the entry site.6 One problem with determining the aetiology has been the lack of clinical confirmation (primarily a lack of fundus photography) in previous histopathological reports.7–10 In this report we present OCT data that confirm these pathological findings in MGDA. Common to all of the histopathological reports is a layer of RPE that lines the peripapillary excavation. This histological feature is confirmed in the present case with OCT, which shows RPE extending posteriorly within the peripapillary scleral excavation as it approaches the optic nerve (Fig 3). We are currently evaluating, and will report shortly, the use of OCT and comparing these findings with the OCT appearances of other optic nerve anomalies, including optic disc coloboma.

MGDA is sometimes associated with a basal encephalocele11–14 and up to a third of patients with MGDA will develop a retinal detachment.15–17 Hence, the first step in the management of MGDA is recognising these associated conditions. Our patient did not have the characteristic facial features (flattened nasal bridge or cleft lip) nor did she have any neurological, endocrine, or respiratory symptoms to suggest she had a basal encephalocele and an magnetic resonance imaging confirmed its absence. Funduscopic examination showed no evidence of retinal detachment, and she will be followed carefully for this potential complication.

Although this is an atypical case, with no central fibrous tuft and little peripapillary pigment, this patient demonstrates the peripapillary excavation characteristic of MGDA. To our knowledge this is the first report of OCT of an eye with MGDA and confirms previous histopathological reports of MGDA showing RPE lining the central peripapillary excavation. Ongoing studies are using OCT to quantify the changes that occur with MGDA over time and to compare the features of MGDA with those of other optic nerve anomalies, including optic disc coloboma.
Acknowledgements
This manuscript was supported in part by a departmental grant (Department of Ophthalmology) from Research to Prevent Blindness, Inc, New York, New York, and by core grant P30-EY06360 (Department of Ophthalmology) from the National Institute of Health, Bethesda, Maryland. N.JN is a recipient of a Research to Prevent Blindness Lew R Wasserman Merit Award.

Some of the data in this paper have been previously published in abstract form at the Association for Research in Vision and Ophthalmology (ARVO) annual conference in 2002.

C A Baer, T M Aaberg Sr
Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA

N J Newman
Departments of Ophthalmology, Neurology, and Neurosurgical Surgery

Correspondence to: Nancy J Newman, MD, Neuro-ophthalmology Unit, Emory Eye Center, 13658 Clifton Road, NE, Atlanta, GA 30322, USA; ophtnjn@emory.edu

Accepted for publication 5 July 2002

References

Idiopathic anterior hyaloid vessels
Anterior hyaloid fibrovascular proliferation (AHFP), the growth of vessels across the anterior hyaloid face from an origin in anterior retina,1 was first described in phakic eyes after diabetic vitrectomy surgery; however, it also has been reported following cataract surgery in diabetics.2 Complications include cataracts, vitreous haemorrhage, tractional retinal detachment, ciliary body detachment, and phthisis bulbi.3 We present the first report of this entity occurring in a non-diabetic patient without previous ophthalmic surgery.

Case report
A 20 year old Asian man presented with acute right sided visual loss. There was a history of ocular trauma or family history of note. He was systemically well. Visual acuity was 6/12 right eye, 6/9 left. Vessels were visible on the right posterior lens capsule, associated with localised cataract and anterior vitreous opacity (Fig 1A). Clinical examination revealed no other ocular abnormality, but the temporal periphery of the right retina was obscured. Anterior segment fluorescein angiography confirmed perfusion of the vessels (Fig 1B). Posterior segment fluorescein angiography was of poor quality in the right eye and revealed no fundus or peripheral abnormality in the left eye. Fluorescein angiography of the patient’s only surviving parent was normal. Fasting blood glucose, Toxocara/Toxoplasma serology, haemoglobin electrophoresis, and skull/chest radiographs were normal. Doppler studies indicated a probable feeder vessel derived from anterior retina but no evidence of tumour or other pathology (Fig 2).

Progressive cataract reduced visual acuity to 6/24 within 2 weeks of presentation. Phacoemulsification surgery was performed, followed by closure of the abnormal vessels with kryopan laser (568 nm). Nd:YAG capsulotomy was performed 6 weeks after surgery. Two weeks later, fibrous anterior uveitis and vitritis developed which resolved with topical steroid medication. A 1 year later, vessels persisted in the rolled capsular edge, and opacification of the anterior hyaloid necessitated Nd:YAG laser discission. Two and a half years after presentation, he is asymptomatic with 6/9 visual acuity in the right eye.

Comment
In the recent cases of retinal neovascularisation, an angiogenic stimulus, such as capillary non-perfusion or inflammation, can be identified.4 In this case, no evidence was found of capillary non-perfusion, or any, other than postoperative, inflammation. A specific number of diagnoses were considered. No temporal traction on vascular arcades or optic disc was seen in the affected eye, and peripheral retinal vasculature was normal, where seen in the affected eye, and in the fellow eye. There was no history of low birth weight or prematurity as in retinopathy of prematurity. There was no family history, and the retinal peripheries of the parent were normal, which makes dominant exudative vitreoretinopathy unlikely. No inflammation, other than post-surgical, was identified in anterior or posterior segment, and visible pars plana appeared normal. Toxocara and Toxoplasma serology was negative. There was no visible peripheral retinal vasculitis or systemic evidence of sarcoidosis or multiple sclerosis. No evidence of ocular trauma was found, and no foreign body was identified radiographically. The patient is not diabetic, screening for haemoglobinopathy was negative, and there were no ophthalmoscopically or angiographic signs of retinal vascular occlusion. No evidence of a hyperviscosity syndrome was found.

The patient’s age, sex, and race are typical of patients suffering from idiopathic peripheral vascular-retinopathy (Eales’ disease), but the absence of retinal vasculitis, vitreous and retinal haemorrhage, and the unilateral nature of disease, are less characteristic. No sign of tumour was apparent on ultrasonography and no evidence of arteriovenous malformation was found in the eye or body. He had...
Iris pigment epithelial cyst induced by topical administration of latanoprost

Latanoprost is an ester produg analogue of prostaglandin Falpha that enhances uveoscleral outflow and reduces intraocular pressure.1 Several adverse side effects associated with topical administration of latanoprost have been described.2 Iris cyst can be primary or secondary; the secondary iris cysts are usually caused by trauma, intraocular surgery, inflammation, and prolonged use of strong miotic agents, etc.3 We report one female patient, with advanced chronic angle closure glaucoma, who developed an iris cyst in her left eye 9 months after topical administration of latanoprost in both her eyes.

Case report

A 67 year old female patient initially presented with advanced chronic angle closure glaucoma in 1994. Laser iridotomy was performed on both her eyes in April 1994. After then, both eyes were treated with 2% pilocarpine and β blocker to maintain her intraocular pressures in the low teens. Because she preferred to use monotherapy, latanoprost had been used once a day at bedtime because she preferred to use monotherapy, latanoprost and pilocarpine and dorzolamide and her antiglaucomatous medication was changed to dorzolamide and β blocker twice a day in both eyes. The iris cyst gradually decreased in size and completely disappeared from the pupil margin in February 2002 (Fig 2). During the follow up period of 4 months, there have been no visual complications or signs of recurring cyst.

Comment

Our report demonstrates another case of rare adverse side effects of latanoprost involving the iris. Although no ultrasonic biomicroscopy was used to follow up this case, the slit lamp biomicroscopy strongly suggested that the patient had a secondary pigment epithelial cyst arising from the posterior surface of the iris. The iris cyst developed in her left eye about 9 months after topical administration of latanoprost in her both eyes, and it progressively decreased in size and completely disappeared 5 months after topical latanoprost was discontinued. The iris cyst in our case took more time to develop and a longer time to disappear than previously reported.4 We propose that if it took more time to develop an iris cyst after topical administration of latanoprost, it would need more time for the iris cyst to regress.

The topical latanoprost was administered to both her eyes, but only her left eye developed the iris cyst. We propose that both her eyes might have different sensitivity to the development of an iris cyst when exposed to topical latanoprost. If her right eye was exposed to latanoprost for a longer time, an iris cyst might occur later. Although cysts of uveal tissue might occur after uveitis,5 no definite symptoms and signs of uveitis were noticed in our patient during the follow up period. The most likely cause of this adverse side effect may be the increasing uveoscleral outflow on topical use of latanoprost; increasing uveoscleral outflow leads to an enhanced aqueous flow through the ciliary muscle and the intraepithelial space of the posterior iris. The iris cyst can occur at anytime during topical administration of latanoprost. Ophthalmologists should be aware of this possible rare side effect of topical administration of latanoprost.

References

Paravertebral primitive neuroectodermal tumour presenting with Horner’s syndrome

We describe a peripheral primitive neuroectodermal tumour (PPNET) arising from the cervical paravertebral region of a 34 year old woman, who presented with Horner’s syndrome, and a cervical radiolucent, PPNETs are rare malignant small round cell tumours. This appears to be the first documented case of localised PPNET with Horner’s syndrome at initial presentation.

Case report

A 34 year old woman presented with acute left scalpua pain, numbness of her left forearm, a left upper lid ptosis, and left hemifacial anhydrosis. Her symptoms disappeared spontaneously within a fortnight, but returned 2 months later with greater intensity. Examination then revealed wasting of the small muscles of her left hand with reduced power in the distribution of C8 and T1; there was loss of light touch and pinprick in the C8 dermatome. The presence of left 1 mm upper lid ptosis, miosis, hemifacial anhydrosis, and 1 mm upper lid (“upside down”) ptosis was highly suggestive of a preganglionic left Horner’s syndrome (Fig 1A). Magnetic resonance imaging (MRI) of the neck showed a large mass arising from the T1, T2 intervertebral foramen extending to the root of the left side of the neck and the region of the apex of the left lung (Fig 1B). A diagnostic biopsy was performed through a posterolateral approach, exciting the extraocular component of the tumour within the
nerve root canal. Histology revealed a malignant round cell tumour consistent with a peripheral primitive neuroectodermal tumour (PPNET, Fig 2). Immunohistochemical studies demonstrated positivity for focal vimentin, cytokeratins, synaptophysin, and MIC-2, but were negative for GFAP (glial fibrillary acidic protein). S100, desmin, and the lymphoid markers LCA, CD3, and CD20. Staging investigations showed no evidence of metastatic disease and therefore the diagnosis of localised PPNET was made.

The patient received chemotherapy as primary treatment followed by radiotherapy and has been in remission since. A year later she was referred to our unit for correction of her left ptosis, and underwent left anterior levator resection with a satisfactory result. Four years following her initial diagnosis she remains free of recurrent disease.

Comment

Horner’s syndrome is caused by an oculosympathetic deficit to the pupillodilator and superior and inferior tarsal retractor muscles. It is manifest by upper lid ptosis, ipsilateral miosis, apparent enophthalmos due to lower lid (“upside down”) ptosis, and often facial anhidrosis. The presence of all these features in our patient, together with the left facial anhidrosis, was indicative of a preganglionic lesion, since the sympathetic facial sweat anhydrosis, was indicative of a preganglionic pathetic deficit to the pupillodilator and superior cervical sympathetic ganglion and central neurofibres branch distal to the superior cervical plexus. The presentation of PPNET with Pancoast’s syndrome, which had previously presented an insuperable challenge to clinical diagnosis, now clearly demonstrates the distinct phenotypes. We report a rare case of bilateral keratoconus in association with Avellino corneal dystrophy diagnosed by molecular genetic analysis.

Association of keratoconus and Avellino corneal dystrophy

Keratoconus is an idiopathic, progressive, non-inflammatory ectasia of the axial cornea. Its association with other systemic disorders or ocular disease have been reported, but its specific origin remains unknown. Recently, Munier and associates detected that four types of autosomal dominant corneal dystrophy result from mutation in the human transforming growth factor β induced gene (BIGH3), the product of which has shown to be the protein keratocytokin (R553W for granular corneal dystrophy, R553G mutation for Reis-Bückler’s corneal dystrophy, R1246C mutation for central corneal dystrophy type I, and R124H mutation for Avellino corneal dystrophy). Molecular genetic analysis of various corneal dystrophies which had previously presented an insuperable challenge to clinical diagnosis, now clearly demonstrates the distinct phenotypes. We report a rare case of bilateral keratoconus in association with Avellino corneal dystrophy diagnosed by molecular genetic analysis.

Case report

A 35 year old man had complained blurred vision in both eyes for several years. His general health was good and there was no history of atopic disease, connective tissue disease, or ocular trauma. His familial history was unknown. His best corrected visual acuity was RE 20/50 and LE 20/100. Slit lamp examination revealed bilateral non-inflammatory corneal thinning with protrusion of the central thinning areas. Fleischer ring was found in both corneas. Central corneal thickness was 482 µm on the right and 421 µm on the left measured by ultrasonic pachymetry. There was also clinical evidence of granular corneal dystrophy in both eyes. Discrete grey-white opacities and star-shaped spicular opacities

References

www.bjophthalmol.com
Figure 1 Slit lamp photographs RE (top left) and LE (top right) show discrete grey-white opacities and star-shaped spicular opacities in anterior stroma. (Bottom left and right) Computed corneal topography shows inferior steepening resulting in the diagnosis of keratoconus.

There is only one case report in the literature of a patient with keratoconus associated with Avellino corneal dystrophy. Sassani and associates reported the bilateral association of keratoconus and Avellino corneal dystrophy. There is only one case report in the literature of a patient with keratoconus associated with granular corneal dystrophy. There is only one case report in the literature of a patient with keratoconus associated with granular corneal dystrophy.

Comment
To our knowledge, this is the first molecular genetic report of a bilateral association of keratoconus with Avellino corneal dystrophy.

Presence of vitronectin in neovascularised cornea of patient with gelatinous drop-like dystrophy

Gelatinous drop-like corneal dystrophy (GDLD) is a rare autosomal recessive disorder that is most often seen in Japan. This bilateral dystrophy usually presents in the first decade of life and is associated with a decrease of visual acuity. Typically, a mulberry-like opacity is present with protruberant subepithelial mounds that grow with age. Corneal neovascularisation (NV) also accompanies advanced cases. Corneal transplantation is the major therapeutic option for GDLD, but because NV can significantly increase the risk of graft rejection, a better understanding of the mechanism(s) for the corneal NV would be valuable.

Case report
A 39 year old Japanese man with GDLD was studied. His right eye had band-shaped corneal opacities in the interpalpebral area with a number of gelatinous prominences, and vascular invasions from the superior limbus into the clear cornea (Fig 1A). Because the visual acuity of the right eye had decreased to 20/800, penetrating keratoplasty was performed, and the diagnosis of GDLD was confirmed by characteristic histopathological findings of amyloid deposits beneath the corneal epithelium and mutation of the M151 gene.1
Potential of vitronectin using an in vivo approach. Vitronectin in the GDLD cornea may also have a role in the aetiologies of other age-related diseases. It was recently reported that vitronectin, a multifunctional extracellular matrix adhesion molecule, is often a component of the abnormal extracellular deposits in various age-related human diseases such as age-related macular degeneration and amyloidosis. This suggested that similar pathways may be involved in the aetiologies of other age-related diseases. Because the disease state of GDLD deteriorates with age, we hypothesised that similar vitronectin-related pathways may also be associated with GDLD, and we therefore investigated whether vitronectin was expressed in the GDLD cornea by immunohistochemistry.

An antibody directed against vitronectin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) exhibited intense reactivity with the GDLD cornea by immunohistochemistry. An antibody directed against vitronectin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) exhibited intense reactivity with the GDLD cornea by immunohistochemistry. An antibody directed against vitronectin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) exhibited intense reactivity with the GDLD cornea by immunohistochemistry. An antibody directed against vitronectin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) exhibited intense reactivity with the GDLD cornea by immunohistochemistry.

Comment
These results provide the first evidence for the expression of vitronectin in the cornea with GDLD, and for the in vivo induction of angiogenesis by vitronectin. The results indicate that vitronectin may have a role in corneal NV in patients with GDLD. Therefore, further studies exploring mechanisms of corneal NV mediated by vitronectin-integrin system, and how mutation of MISO leads to accumulation of vitronectin with more samples, may eventually offer a novel insight in understanding the aetiologies of corneal NV associated with GDLD.

Acknowledgements
This work was supported in part by grants from Sumitomo Life Social Welfare Services Foundation (SV), Japan National Society for the Prevention of Blindness (AV), and Japan Eye Bank Association (AV).

References

Factor XII deficiency and recurrent sixth nerve palsy
Factor XII deficiency is associated with thrombosis. Severe deficiency increases an individual’s prothrombotic tendency but with a mild reduction in levels there is less certainty. We present a case of recurrent sixth cranial nerve palsy due to severe factor XII deficiency. To our knowledge, this is the first reported case of a recurrent cranial nerve palsy associated with factor XII deficiency.

Case report
A 58 year old white male presented with an acquired constant incomitant horizontal diplopia. He had had a previous episode of horizontal diplopia of 3 weeks’ duration 6 months previously with spontaneous resolution and a further similar episode 18 years before that had been otherwise well. He was not hypertensive or diabetic, of normal weight and a non-smoker, and without any cardiovascular disease. There was no family or personal history of venous or arterial thrombosis. On examination he was found to have bilateral sixth nerve palsies without any associated headache or papilloedema. Detailed magnetic resonance imaging with contrast and lumbar puncture opening pressure and investigation was normal.

Owing to the recurrent nature of the nerve palsy and the initial young age of presentation, a further prothrombotic examination was undertaken. Laboratory investigations showed a normal full blood count, plasma viscosity, liver function tests, glucose, homocysteine, prothrombin time, and fibrinogen assay. There was a significantly prolonged activated partial thromboplastin time of 74.7 seconds (normal range 24–32), which was still abnormal on repeat testing (90 seconds). Further laboratory studies demonstrated severe factor XII deficiency which was consistent on repeated testing (<1% of normal levels) but otherwise normal levels of protein S, protein C, antiphospholipid antibodies, factor VIII, von Willebrand factor, and the factor V Leiden mutation or prothrombin G20210A allele were not found.

Correspondence to: Shigeo Yoshida, MD, PhD, Department of Ophthalmology, Kyushu University Graduate School of Medicine, Fukuoka, 812–582, Japan; usyoshi@yahoo.com

Accepted for publication 12 August 2002

S Yoshida, A Yoshida, T Ishibashi
Department of Ophthalmology, Kyushu University Graduate School of Medicine, Fukuoka, 812–8852, Japan

Y Kuma, T Matsu
Ohshima Hospital of Ophthalmology, Fukuoka, 812–0036, Japan
Unilateral proptosis: the role of medical history

The most common cause of bilateral and unilateral exophthalmos among adults is Graves' disease. Unilateral exophthalmos, although frequently seen in connection with thyroid diseases, has a much larger differential diagnosis than bilateral exophthalmos. With unilateral presentation one should think of orbital pseudotumor, orbital cellulitis, cavernous sinus thrombosis, or intraorbital neoplasms.1

Graves' ophthalmopathy (GO) usually is associated with Graves' hyperthyroidism (GH) although the temporal relation to thyroid disease is not consistent. It has been estimated that 77% of GO patients are hyperthyroid, 21% euthyroid, and 2% hypothyroid.2 Only one retrospective study showed a significant interval between GH and GO is 3.3 years in men and 3.6 years in women. Two thirds of patients present with orbital symptoms within 18 months of diagnosis of thyroid disease.3 The following cases of Graves' ophthalmopathy are described because of their unusual presentation; a long interval between thyroid disease and the development of predominantly unilateral Graves' ophthalmopathy. Both cases were assessed at the department of ophthalmology of the University Hospital Groningen, Netherlands.

Case 1

A female patient born in 1922 became hyperthyroid with minimal eye signs with possibly some lid retraction in 1948. She was treated by thyroidectomy and became clinically euthyroid. In 1980 a diplopia was noted and an eye examination showed no function abnormalities. The patient had no eye complaints and vision was good. The CT scan showed enlargement of all eye muscles, more marked on the right side. He was treated with 60 mg prednisone daily.

Case 2

A male patient born in 1944 was diagnosed with hypothyroidism in 1979. Thyroid hormones were abnormal. FT4 was decreased, TSH was increased, antibodies against colloid were abnormal. FT4 was decreased, and TSH was increased. Patients with hypothyroidism in 1979. Thyroid hormone levels were again within normal ranges. He was admitted and methylprednisolone 250 mg four times a day intravenously and radiotherapy (10 x 2 Gy) were started.

Comment

Unilateral proptosis as a result of Graves' disease cannot be rejected as a diagnosis, even 20 or 30 years after the onset of thyroid disease. Only one retrospective study among 557 patients mentioned intervals up to 25 years without giving exact numbers and underlying thyroid disease.3 For hypothyroidism and GO one study suggests intervals exceeding 15 years.4

Thyroid hormone testing should be performed to rule out abnormalities in thyroid hormone levels although thyroid status does not seem important as the active phase of ophthalmopathy can occur during hyperthyroidism, hypothyroidism, and euthyroidism.5 Thyroid antibody testing may be supportive for the diagnosis. A CT scan can be essential in further analysis showing enlargement of extraocular muscles with sparing of the tendons.6 It is also known that a CT scan can demonstrate contralateral eye muscle involvement in 50-90% of patients with clinically unilaterial eye involvement.7

Our two patients illustrate that the medical history is important in evaluating proptosis. One should always think of Graves' disease as a possible cause of unilateral exophthalmos even though a patient may have had thyroid disease more than 20 years earlier.

References

A 30 year old homosexual HIV+ man was referred to the uveitis department complaining of blurred vision in the left eye. He was taking zidovudine, lamivudine, ritonavir, and saquinavir. His last CD4+ count was 128 cells mm⁻³.

References

Unusual presentation of cat scratch disease in HIV+ patient

Intraocular cat scratch disease may present with different clinical features including neuroretinitis, retinitis, retinal infiltrates, arterial and vein occlusions. Most of the cases show spontaneous recovery without therapy.

There are only few reports of intraocular cat scratch disease in HIV+ patients. We report an unusual case of cat scratch disease presenting as helioid unilateral choroiditis in an HIV+ patient that showed good response to systemic therapy.

Case report

A 30 year old homosexual HIV+ man was referred to the uveitis department complaining of blurred vision in the left eye. He was taking zidovudine, lamivudine, ritonavir, and saquinavir. His last CD4+ count was 128 cells mm⁻³ and viral load 1 300 000.

His visual acuities were 6/6 in the right eye and counting fingers in the left. There was no inflammation in the anterior chambers or in the vitreous. Ophthalmoscopy revealed a yellowish choroidal lesion surrounded by fluid and haemorrhages in the macula of the left eye (Fig 1). Fluorescein angiography showed an angiomatic lesion corresponding to those seen clinically. Blood tests were ordered including VDRL, toxoplasmosis serology, Lyme disease serology, ELISA for toxocariasis and were all negative. Computed tomography (CT) scan and serum studies were unremarkable. Blood sample was sent to CDC Atlanta for Bartonella serology. Since clinical diagnosis was cat scratch disease and most patients show good recovery without treatment we decided not to treat before results of blood tests. We kept examining the patient every week with ophthalmoscopy and fluorescein angiography (Fig 2A, B). The lesion progressively increased in size but he did not show visual acuity deterioration.

A month after presentation the lesion had increased and four small lesions appeared in the right eye. His visual acuity dropped to hand movements. Although we did not have the results of Bartonella serology, we decided to give him ciprofloxacin. Bartonella henselae serology was positive for IgG, 1:256, and IgM negative.

Fifteen days after treatment was started the lesions in the right eye disappeared and the macular lesion in the left eye resolved completely.

Comment

There is a well established association between neuroretinitis and cat scratch disease although many different clinical presentations have been described.1 Ormerod et al described two patients with small areas of retinitis and arterial occlusions. Pollock and Kristinsson2 described one patient with cat scratch disease and helioid unilateral choroiditis. Hong et al3 first described this syndrome when they reported six young patients with a solitary round yellow choriretinal lesion associated with subretinal fluid. There was no association with inflammatory or infectious diseases. Fish et al4 reported a case of peripapillary angiomatosis associated with neuroretinitis. Our patient presented with clinical features of helioid unilateral choroiditis but after angiogram we could see an angiomatous-like lesion.

The treatment of ocular cat scratch disease remains controversial. Pollock and Kristinsson5 reported a case that improve- ment in visual acuity from 6/12 to 6/6 occurred after 3 weeks without treatment. One of the cases described by Ormerod showed some benefit after treatment although his recovery was very slow. The second patient showed improvement without treatment. Warren et al6 reported an HIV+ patient with cat scratch disease whose lesion enlarged without treatment. Once the diagnosis of Bartonella was confirmed by polymerase chain reaction of the retina sample, the patient was started on systemic antibiotics with good results. Considering that spontaneous recovery could occur we decided not to treat until our patient showed deterioration in the left eye and involvement in the fellow eye.

Ophthalmologists should be aware of this unusual presentation of cat scratch disease with helioid unilateral choroiditis and angiomatous-like lesions. Although larger series and control studies are needed, HIV+ patients with intraocular manifestations of cat scratch disease may benefit from systemic treatment with antibiotics.

A L L Curi, W R Campos, L Barbosa, M A Lana-Peixoto, F Orfèce

Federal Fluminense University/Federal University of Minas Gerais, Brazil

Correspondence to: Dr Andre Luiz Land Curi, R Francisco Dutra, 163/701 Icaraí Niterói, RJ, 24220-150, Brazil; curiall@yahoo.com

Accepted for publication 18 August 2002

References

Simultaneous translocation of the macula and underlying retinal pigment epithelium during macular translocation surgery in a patient with long standing myopic neovascular maculopathy

Limited macular translocation has been reported to be a promising treatment for some patients with choroidal neovascularisation.7 Although this technique has the advantage of being less invasive, there is documentation of

www.bjophthalmol.com
In many eyes with choroidal neovascularisation, the macula can easily be separated from the subjacent fibrovascular tissue. In some eyes with long standing choroidal neovascularisation, however, the outer portion of neurosensory retina may adhere firmly to the subjacent tissue. In such cases, an inner portion of fibrovascular tissue may be torn off and translocated with overlying neurosensory retina during macular translocation. The underlying healthy retinal pigment epithelium covered with the translocated abnormal tissue may not be able to fulfil its physiological roles on the overlying neurosensory retina, and good functional recovery of the translocated macula is unlikely to be achieved. As documented here, simultaneous translocation of the underlying abnormal retinal pigment epithelium associated with long standing choroidal neovascularisation can occur during limited macular translocation and result in an unsatisfactory visual outcome. When patients are deciding whether to consent to surgical intervention with limited macular translocation in such cases, they should be informed of the benefits and risks of the treatment, with due consideration of this complication.

Various complications that have been experienced with its use in this report, we describe an unusual complication associated with limited macular translocation in a patient with long standing choroidal neovascularisation.

Case report
A 35 year old woman was referred to our department because of a gradual decrease in visual acuity in her right eye. At the first visit, her best corrected visual acuity was right eye, 20/40, with a refractive error of −17.5 dioptres in the spherical equivalent. Clinical and angiographic examinations showed a juxtapfoveal choroidal neovascularisation. During the subsequent follow up period, choroidal neovascularisation and surrounding retinal pigment epithelial atrophy gradually expanded and involved the subfoveal region (Fig 1A). We gave the patient detailed information on the available therapeutic options, including macular translocation, but she chose conservative follow up rather than surgical intervention. Three years after her first visit, the visual acuity in her right eye worsened to 20/100. At that time, the patient decided to have surgical treatment. With her consent, limited macular translocation was performed on her right eye, as described previously.

Postoperatively, fluorescein angiography showed an extrafoveal neovascular membrane with a foveal shift of 0.7 disc diameter (Fig 1B). Sharply demarcated hypofluorescence in the macular area was also demonstrated. Biomicroscopic examination revealed a slightly hyperpigmented lesion underneath the translocated macula, which corresponded to the area of hypofluorescence. A horizontal optical coherence tomography (Humphrey Systems, San Leandro, CA, USA) section taken through the translocated macula displayed highly reflective double layers (Fig 2A). These findings may indicate that the abnormal subfoveal retinal pigment epithelium, which adhered tightly to the overlying neurosensory retina, probably because of the long history of neovascular maculopathy, was translocated with the macula during surgery. Two reflective bands observed on an optical coherence tomography image may have corresponded to the native retinal pigment epithelium and abnormal retinal pigment epithelium translocated with the macula. Indocyanine green angiography findings supported this speculation (Fig 2B).

Despite sufficient foveal displacement, the patient’s visual acuity has not improved. During a follow up period of 15 months, it has remained at the same level as her preoperative vision.

References

Figure 2 [A] A horizontal optical coherence tomography section taken through the translocated macula displays highly reflective double layers underneath the fovea that probably correspond to the native retinal pigment epithelium and simultaneously translocated retinal pigment epithelium. (B) A postoperative indocyanine green angiogram shows well visualised larger choroidal vessels in the original macular area probably caused by the absence of the retinal pigment epithelium-choriocapillaris complex (black arrow). The relative hypofluorescence in the translocated macular area may represent blockage of choroidal fluorescence by the translocated retinal pigment epithelium (white arrow).

Fungal and bacterial chronic endophthalmitis following cataract surgery
Endophthalmitis, although rare, is one of the most vision threatening complication of cataract surgery. The majority of these infections
The eye showed no improvement during the ciprofloxacin, piperillin, and topical fortified eratively, the patient was given intravenous mycin and amikacin were performed. Postoperative infection and fungi. Intravitreal injections of vanco-
pected.
chronic infectious endophthalmitis was sus-
tion of the right eye was normal except for a number of patients with local or systemic immunosuppression could explain the develop-
ment of such infections which are frequent in post-traumatic endophthalmitis but ex-
remely rare after cataract surgery. However, cross contamination by hospital personnel may also account for increase in yeast infections in certain environments. A recent survey of hospital personnel revealed that 70% of nurses and non-nursing hospital personnel carried yeasts on their hands, particularly subungual spaces, with Candida parapsilosis being those most frequently recovered. This case demonstrates the atypical presen-
tation and the poor prognosis of polymicrobial endophthalmitis. Identification of all the organisms is essential before the onset of therapy, emphasising the need for complete microbiological evaluation of any postopera-
tive endophthalmitis.

T Bourcier, S Scheer, C Chaumeil, C Morel, Y Bordierie, L Laroche Quinze-Vingts National Center of Ophthalmology, Paris, France Correspondence to: Tristan Bourcier; bourcier@quinze-vingts.fr Accepted for publication 28 August 2002

References

If you have a burning desire to respond to a paper published in the BJO, why not make use of our “rapid response” option? Log on to our website (www.bjophthalmol.com), find the paper that interests you, and send your response via email by clicking on the “letters” option in the box at the top right hand corner. Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read letters” on our homepage.

The editors will decide as before whether to also publish it in a future paper issue.

Surgical performance for specialties undertaking temporal artery biopsies: who should perform them?

We read with interest the paper by Galloway and colleagues which suggests that ophthal-
mologists are best suited to perform temporal artery biopsies. We recently completed a retrospective study of all the temporal artery biopsies performed at four teaching hospitals (Hammersmith Hospital, Charring Cross Hos-
pital, St Mary’s Hospital and The Western Eye Hospital) in north London between January 1998 and January 2002. Ninety one patients underwent 92 biopsies. Of these, 15 were positive for temporal arteritis implying a 16% positive biopsy rate which is compatible with Galloway et al’s results. Ophthalmologists performed 54 biopsies (59%) while general and vascular surgeons (GVS) performed 38 biop-
sies (31%). Both groups had similar positive biopsy rates—ophthalmologists 10/54 (19%) and GVS 5/28 (13%). In an analysis of the ability to perform biopsies, the ophthalmolo-
gists had two failed biopsies (one specimen—no artery identified and one specimen—crushed artery) while the GVS group had one failed biopsy (no artery identi-
fied). The average artery length was 13.0 mm (range 5–21 mm) for the ophthalmologists and 14.0 mm (range 7–22 mm) for the GVS group.

We disagree with Galloway and colleagues’ assertions that ophthalmologists are best suited to performing temporal artery biopsies as our study found that both groups of
surgeons obtained similar lengths of artery and had similar positive biopsy rates. We note that in their study, while the vascular surgeons only performed two of the 41 biopsies, the average length of specimen obtained was 22.5 mm, thus suggesting that the vascular surgeons may well be the best suited to perform these biopsies. In Charing Cross Hospital, the vascular surgeons routinely use a Doppler ultrasound probe to help detect and demarcate the superficial temporal artery before biopsy and this practice has been advocated by other studies to help improve the yield of the biopsy. In our study, all the biopsies performed by ophthalmologists were done under extraconal cases. In theatre and seven cases had to be performed outside normal working hours as emergencies because of lack of theatre time. The fact that ophthalmologists performed 59% of biopsies may be due to the fact that all four hospitals had large neurological and ophthalmological units attached to them. We feel that both ophthalmologists and general and vascular surgeons are equally capable of performing temporal artery biopsies and that guidelines should be designed locally to decide who should perform the biopsies. More importantly, the follow up of these patients should be clearly stated and be ideally under the care of the ophthalmologists.

K Fong, V Ferguson
The Western Eye Hospital, Marylebone Road, London NW1 3YE

Correspondence to: Dr Kenneth Fong; fongcsk@yahoo.co.uk

References

Major complications of endoscopic sinus surgery: a comment

We were pleased to read the informative article by Rene et al. The authors refer to “Onodi cells” as, “aerated posterior ethmoid air cells along the optic canal.” Could it be that they meant to refer to the cells as “Onodi cells”? Onodi described a number of variations of posterior ethmoid anatomy.1 Endoscopic sinus surgeons refer to the pattern of extramural demarcation of the superficial temporal artery Doppler ultrasound probe to help detect and perform these biopsies. In Charing Cross Hospital, the vascular surgeons have found it to be safer than when using a penetrating (not “full thickness”) procedure. “We attempted to prove a ‘non-penetrating’ technique into a penetrating, full thickness procedure.” We vehemently disagree with this line of reasoning. As we feel gonipuncture is an extremely useful adjunctive procedure and converting to a penetrating (not “full thickness”) procedure in the safety of the controlled postoperative period is completely reasonable. This is akin to performing glaucoma laser trabeculoplasty. Although authors feel that performing suture lysis constitutes conversion of a guarded trabeculotomy into a full thickness unguarded trabeculotomy and thus cannot be fairly compared. “Although viscoelastic injection was inferior to trabeculotomy cases with postoperative IOP elevations because “such interventions clearly constitute conversion of a ‘non-penetrating’ technique into a penetrating, full thickness procedure.” We vehemently disagree with this line of reasoning as we feel gonipuncture is an extremely useful adjunctive procedure and converting to a penetrating (not “full thickness”) procedure in the safety of the controlled postoperative period is completely reasonable. This is akin to performing glaucoma laser trabeculoplasty. Although authors feel that performing suture lysis constitutes conversion of a guarded trabeculotomy into a full thickness unguarded trabeculotomy and thus cannot be fairly compared. Although viscoelastic injection was inferior to trabeculotomy, this cohort consisted only of 12 patients and it is not known how many had completed follow up after 18 months. Surely, these small numbers are insufficient to draw such conclusions.

Trabeculotomy augmented with antimetabolites with a viscoelastic sinus technique for the management of open angle glaucoma

In a small randomised, prospective study, O’Brart and co-workers attempted to prove that trabeculotomy (n=25) provided better intraocular pressure (IOP) control than viscoanastomoly (n=25). However, we have serious concerns about the methodology of this study that need to be addressed.

Viscoanastomoly is characterised by the injection of viscoelastic into Schlemm’s canal. However, this was not performed in half of the patients randomised to this group. This would be as inappropriate as using an antimetabolite in only half the patients in the trabeculotomy group, and then comparing this entire group to the viscoanastomoly group. Although the authors do state that the subgroup of patients with intracanalicular viscoelastic injection was inferior to trabeculotomy, this cohort consisted only of 12 patients and it is not known how many had completed follow up after 18 months. Surely, these small numbers are insufficient to draw such conclusions.

We are also concerned that the use of intraoperative antimetabolites in the trabeculotomy group added a major confounding variable in this study. This is particularly perplexing as the authors’ viscoanastomoly technique primarily relied on subconjunctival filtration, as evidenced by their scleral flap design and lesser suturing technique in which only three 10/0 nylon sutures were used. Furthermore, their excellent early success rate of viscoanastomoly (95% at 6 months), the presence of filtering blebs in their successful viscoanastomoly procedures, the lack of one in their failures, and the need for postoperative bleb needling and 5-fluorouracil injection. In all cases, use of mitomycin-C and 5-fluorouracil improved the success rate of glaucoma filtering surgery by reducing episcleral fibrosis, and probably explains the difference in success rates in this study. We wonder what the results would have been had the use of intraoperative antimetabolites been used in all groups, or if none was used at all.

In contrast with the authors’ technique, we employ Stegmann’s approach to viscoanastomoly using a parabolics superficial flap secured tightly with five sutures in a relatively watertight fashion. Although they may have developed, most patients achieved IOP lowering through multiple alternate pathways including uveoscleral, through Schlemm’s canal, and subconjunctival. Certainly in higher risk cases, we feel that antimetabolites are safer in non-penetrating surgery, and have found it to be safer when used with trabeculotomy.

It should be mentioned that quite often we do rely on subconjunctival filtration in non-penetrating procedures (that is, deep sclerectomy) but advocate the use of a collagen wick or hyaluronic acid implant with an intraoperative antimetabolite. Higher risk cases to obtain optimal IOP control.

Fibrosis and loss of permeability of the trabeculo-Decemet’s window (TDW) is a well described cause of postoperative elevation in IOP after non-penetrating glaucoma surgery. Postoperative Nd:YAG gonipuncture of the TDW in these cases is a relatively easy adjunctive procedure and may be needed in up to 41% of non-penetrating procedures. It has been reported to successfully lower persistent IOP in over 80% of cases. Yet, we are dismayed that the authors decided not to attempt laser gonipuncture in those viscoanastomoly cases with postoperative IOP elevations because “such interventions clearly convert a ‘non-penetrating’ technique into a penetrating, full thickness procedure.” We vehemently disagree with this line of reasoning as we feel gonipuncture is an extremely useful adjunctive procedure and converting to a penetrating (not “full thickness”) procedure in the safety of the controlled postoperative period is completely reasonable. This is akin to performing glaucoma laser trabeculoplasty. Although authors feel that performing suture lysis constitutes conversion of a guarded trabeculotomy into a full thickness unguarded trabeculotomy and thus cannot be fairly compared. Although viscoelastic injection was inferior to trabeculotomy, this cohort consisted only of 12 patients and it is not known how many had completed follow up after 18 months. Surely, these small numbers are insufficient to draw such conclusions.

References
of viscocanalostomy dependent on subconjunctival filtration without the use of an antimitabolite, this study unfortunately does not fairly compare the efficacy of Stegmann's viscocanalostomy technique versus trabeculectomy. Non-perforating glaucoma surgery certainly has an improved safety profile and surely as future well designed controlled studies become available, the efficacy of these procedures compared to trabeculectomy will become clearer.

I K Ahmed, C KRannemann
University of Toronto, Toronto, Ontario, Canada

References

Argon laser and trichiasis
We were interested to read the approach taken by Sahni and Clark to facilitate the effective argon laser treatment of trichiasis. They have ably reviewed the complications of trichiasis, the different forms of management of trichiasis, the advantages of argon laser treatment in the management of trichiasis, the technique of argon laser trichiasis therapy, and the limitations of laser laser therapy.

We take issue with the authors in two areas. Firstly, the almost certain consequence of using a duration of laser treatment of 0.1 second is that if the laser “takes,” the lash will disappear within the space of a few laser shots, effectively precluding the destruction of that particular lash follicle. We have particularly made it a point that when teaching trainees the technique of laser lash, we ensure that the energy burst lasts long enough to commence visible lash destruction as well as destruction of the subcutaneous subcutaneous lash, as the burn is directed towards the lash follicle. Thus we always use a duration of several seconds, or even continuous energy, and aim to achieve iterations of effective laser shots above the lid level after the first shot, or certainly within three shots. Thus, 1-3 second duration bursts may be required, depending on the individual lash. Just a few more shots will effectively and completely destroy the subcutaneous lash and its follicle.

Secondly, the article by Bartley and Lowery quoted by the authors, describes using a “drop of ink from a fountain pen” to facilitate lash laser. Presumably in the interests of sterility, Sahni and Clark have used the ink from a “blue skin marker pen” to allow improved absorption of argon laser energy. While use of a fresh marker pen for each patient may be relatively efficient, it could not be regarded as cost effective. By contrast, in a procedure described by us in 1994, we found that transferring a tiny drop of the patient’s own blood, whether still liquid or already coagulated, to the lash base on the lid margin is a simple, rapid, cheap, safe, and highly effective method of getting the laser reaction started when the lashes are pale. We have found that the required amount of blood is invariably present on the patient’s own lid skin at the site of local anaesthetic infiltration. We usually transfer it by picking it up with a sterile drawing up needle. This is achieved remarkably easily on the laser slit lamp, which allows adequate magnification for the accurate siting of the transferred blood.

A G Wilcsek, I C Francis
The Ocular Plastics Unit, Prince of Wales Hospital, and the University of New South Wales, Randwick, Sydney, Australia

References

Management of age related macular degeneration: still room for improvement
The aim of Mitchell et al’s study in collaboration with the Macular Disease Society (MDS) was to assess the perceived quality of health care of people with macular disease in the United Kingdom. The study was performed in 1999 and took the form of a retrospective audit by postal survey of 2000 members of the MDS. I performed a similar but smaller study in collaboration with the MDS 7 years earlier. This also took the form of a retrospective audit by postal survey of 200 members of the MDS. The aim was to assess the clinical management of patients with age related macular degeneration (ARMD) in the United Kingdom from the patients’ perspective. The final response rate was 79% (similar to 77% of Mitchell et al) and patients had attended over 105 ophthalmic units throughout the United Kingdom. Mitchell et al omitted this earlier study from their discussion but comparison of the two studies raises some noteworthy points.

The prevention and treatment of ARMD remains far from ideal both for the majority of patients and their ophthalmologists. Members of the MDS are likely to be a highly motivated study group and it is not clear how their views will reflect the views of patients as a whole. The two studies were both studies which highlighted the fact that lack of information and advice on ARMD is a significant cause of dissatisfaction for these patients. Mitchell et al asked if the diagnostic consultation with the eye specialist was satisfactory: 59% responded “yes” and 41% “no.” The two most common reasons given for a negative answer were the attitude of the specialist and lack of information and advice (43.5% and 43.4% respectively of those answering this question). The earlier study specifically asked whether patients were given information on ARMD, were informed about support groups or informed about relevant radio programmes by the eye department. Only 6% received written information, 14% were given details of support groups, and 3% details of relevant programmes. By definition 100% of the study group would have liked to have been informed of the existence of the Macular Disease Society by the eye unit. However, nine different sources were cited for discovering the MDS; over 80% from radio and magazines with only 12% from the ophthalmic unit. Unfortunately, despite that fact that the two studies are separated by 7 years, any temporal comparison has to be undertaken with caution. The protocol of both surveys included questionnaires being sent to members of the MDS chosen at random from the MDS mailing list. It is therefore conceivable that a proportion of the original study group also formed part of the second, by coincidence. What is clear though, is that despite the fact that patients want information on ARMD and the fact that there are readily available sources (for example, free information booklets on ARMD from the Royal College of Ophthalmologists or Royal National Institute for the Blind), ophthalmic units throughout the United Kingdom are still failing routinely to provide such information to their patients.

L J Howe
MRI/Medicare Unit, Medcare Building, Sydney, Australia

References

Standardised clinical photography in ophthalmic plastic surgery
We read with keen interest the path breaking article by Calista et al regarding the successful treatment of an eyelid squamous cell carcinoma with intralidoflorin. The dramatic response of this highly malignant lesion to such a non-invasive form of therapy is remarkable and certainly worth further clinical evaluation. However, it also highlights a few crucial issues pertaining to the documentation of this case.

The authors have presented an extreme close up of the affected eye in which highlights the pretreatment appearance of the lesion quite adequately. However, the post-treatment photograph (Fig 2) is almost half the magnification of Figure 1. Therefore, although there is an indisputable reduction in the size of the tumour, the two clinical photographs are not strictly comparable since a decrease in magnification results in visual clues that lead to the lesion being perceived as smaller in size.

I K Ahmed, C KRannemann
University of Toronto, Toronto, Ontario, Canada

Correspondence to: I K Ahmed, 43 Bywood Drive, Toronto, Ontario M9A 1M1; ike.ahmed@utoronto.ca
Secondly, the pretreatment view (Fig 1) has been taken in primary gaze and reveals a right lower lid retraction as well as the semblance of a mild lid notch. In contrast, the post-treatment view (Fig 2) has been photographed on the left and slight downgaze and does not show either of the above findings. Now, it is difficult to discern whether there is an actual disappearance of these pretreatment findings or it is due to the inherent lack of comparability of these pictures because of their being in totally different positions of gaze, which is compounded by the magnification factor mentioned earlier. It would be of immense benefit to the readers if the authors could kindly clarify these points of discrepancy, which have arisen due to dissimilar photographs.

It is imperative that extremely high standards of clinical photography be maintained in plastic surgery/oncology and photographs be taken with similar parameters to ensure valid pretreatment and post-treatment comparisons that accurately reflect the results.1,2 The standards and recommendations for clinical photography have been widely documented and should be universally practised.3 These include using the same camera lens, settings, lighting, film, magnification, and patient position to ensure reproducibility and comparability.4 Even small variations in the pictures may cause drastic changes in the clinical and research value of photography and, unless stringent criteria are met, the photographs may lose their relevance and overall impact.5

M S Bajaj, N Pushkar, A Mahindrakar, R Balasubramanthy

Correspondence to: Mandeep S Bajaj, RP Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; mabaj32@hotmail.com

References

Entonox as an analgesic agent

We read with great interest the paper on “Entonox as an analgesic agent during ophthalmic surgery” by M S Bajaj, N Pushkar, A Mahindrakar, and R Balasubramanthy. The authors have concluded that Entonox is an analgesic agent during ophthalmic surgery. Br J Ophthalmol 2002;86:1078–8.

Mechanism of ophthalmic artery occlusion following pars plana vitrectomy

Saito et al present a patient with Terson’s syndrome and dense vitreous haemorrhage who underwent pars plana vitrectomy and was noted postoperatively to have developed an ophthalmic artery occlusion.2 They propose that the ophthalmic artery was occluded by the spontaneous release of an embolus from an atheromatous plaque in the internal carotid artery. This seems unlikely in a 79 year old man without a previous history of symptomatic atherosclerotic disease. Although the authors identified plaques in the patient’s carotid artery by ultrasound, these can be seen in 11% of asymptomatic males under age 40 and may therefore be an incidental finding in this case.1

An alternate explanation for the patient’s ophthalmic findings is trauma from the retrobulbar injection. Intravascular injection into the ophthalmic artery has been reported as a complication of retrobulbar anaesthesia.1 It is possible that either an intravascular injection or simply needle tip trauma resulted in thrombus formation with obstruction of flow in the ophthalmic artery. It should also be noted that although acute ophthalmic artery occlusion is the presumed diagnosis, the same findings could result from simultaneous obstruction of the retinal and choroidal circulations. Also, the history of iatrogenic trauma from a retrobulbar injection. The possibility that the patient’s choroidal detachment could have been iatrogenic highlights the importance of a thorough preoperative discussion with patients about the risks and benefits of different methods of delivering anaesthesia for ophthalmic surgery.

J M Stewart

Ophthalmology, University of California, San Francisco, CA, USA; ne62@yamaha.com

References

Dynamics of corneal endothelial cell death in organ culture

We read with interest the remarks of Crowston et al on our article.1 We showed that the TUNEL technique revealed a far higher percentage of endothelial cells (ECs) irreversibly engaged in a cell death process than that obtained by trypan blue staining. The two techniques were performed sequentially: after observation of trypan blue staining, corneas were immediately fixed in formaldehyde for TUNEL. Crowston et al suggest that the trypan blue itself and/or the time spent outside the organ culture medium before fixing in formaldehyde caused an artefactual increase in the percentage of TUNEL positive ECs. Two arguments counter this remark.

(1) The trypan blue staining procedure is identical to that used, during endothelial examination(s) of grafts, in all European cornea banks that use organ culture during endothelial examination(s) of grafts. Neither the low concentration of trypan blue (0.4%) nor the short exposure time (about 1 minute) nor the short incubation in the presence of 0.9% NaCl has ever been incriminated in the over-mortality of ECs in routine practice. Moreover, the innocuity of injections of trypan blue into the anterior chamber, a common feature during cataract surgery, has been well demonstrated.2

(2) The time spent outside the organ culture medium before fixing in formaldehyde, a period required for vital staining, lasts only a few minutes. The cornea remains under the microscope for about 1 minute only, the time needed for image acquisition. Such rapidity is possible by using a prototype automatic analyser of the endothelium, which we developed and have recently published.3 This is very probably insufficient time for DNA fragmentation to occur at the level we observed. Moreover, the fixing of the endothelial layer in 10% formaldehyde is immediate, and prevents any continuation of fragmentation phenomena. On balance, it is highly unlikely that the succession of markings is responsible for the discrepancy between the positivity percentages of the two techniques. In conclusion, we obviously decided to perform the two techniques simultaneously on paired corneas or on the halves of one cornea because we wanted to superimpose the two stains on the same cornea and thus obtain a double cell staining.
The second remark by Crowston et al is particularly interesting. We too were surprised by the high percentage of TUNEL positive ECs (mean 12.7%, SD 16.4). This may imply that the high percentage of TUNEL positive ECs is paradoxical to the irreversible cell death process far more extensive than the highly unreliable trypan blue staining technique suggests.

NOTICES

Role of optometry in Vision 2000

The latest issue of Community Eye Health (No 43) discusses the mobilisation of optometry to deal with uncorrected refractive error, which is now a major cause of functional blindness.

For further information please contact: Journal of Community Eye Health, International Centre for Eye Health, Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, UK (tel: +44 (0)20 7608 6910; fax: +44 (0)20 7250 3207; email: eyeresource@ucl.ac.uk; web site: www.jech.co.uk). Annual subscription (4 issues) UK£25/$40. Free to workers in developing countries.

International Centre for Eye Health

The International Centre for Eye Health has published a new edition of the Standard List of Medicines, Equipment, Instruments and Optical Supplies (2001) for eye care services in developing countries. It is compiled by the Task Force of the International Agency for the Prevention of Blindness. Further details: Sue Stevens, International Centre for Eye Health, 11–43 Bath Street, London EC1V 9EL, UK (tel: +44 (0)20 7608 6910; email: eyeresource@ucl.ac.uk).

Second Sight

Second Sight, a UK based charity whose aims are to eliminate the backlog of cataract blind in India by the year 2020 and to establish strong links between Indian and British ophthalmologists, is regularly sending volunteer surgeons to India. Details can be found at the charity web site (www.secondsight.org.uk) or by contacting Dr Lucy Mathen (lucymathen@yahoo.co.uk).

Specific Eye Conditions (SPECS)

Specific Eye Conditions (SPECS) is a not for profit organisation which acts as an umbrella organisation for support groups of any conditions or syndrome with an integral eye disorder. SPECS represents over fifty different organisations related to eye disorders ranging from conditions that are relatively common to very rare syndromes. We also include groups who offer support of a more general nature to people with a visual impairment or blind. Support groups meet regularly in the Boardroom at Moorfields Eye Hospital to offer support to each other, share experiences and explore new ways of working together. The web site www.eyeconditions.org.uk acts as a portal giving direct access to support groups own sites. The SPECS web page is a valuable resource for professionals and may also be of interest to people with a visual impairment or who are blind. For further details about SPECS contact: Kay Parkinson, SPECS Development Officer (tel: +44 (0)1803 524238; email: k@eyeconditions.org.uk; web site: www.eyeconditions.org.uk).

16th Annual Meeting of German Ophthalmic Surgeons

The 16th Annual Meeting of German Ophthalmic Surgeons will be held 8–11 May 2003 in Nürnberg, Germany, Messezentrum. Organised by the Professional Association of German Ophthalmologists Ophthalmic Surgery Group the conference will cover cataract surgery, refractive surgery, glaucoma surgery, vitreoretinal surgery, corneal surgery, eye surgery in developing countries, and orbita, lacrimal and lid surgery. Further details: MCN Medizinische Congressorganisation Nürnberg AG, Zerzabelshofstr. 29, 90478 Nürnberg, Germany (tel: +49 911 3931621; fax: +49 911 3931620; email: doc@mcnag.info; web site: www.doc-nuernberg.de).

3rd British Oculoplastic Surgery Society Meeting

The 3rd British Oculoplastic Surgery Society Meeting will be held 18–19 May 2003 in Birmingham, UK. For further details please contact the Secretary of the British Oculoplastic Surgery Society Jane Oliver (tel: +44 (0)121 424 3646; fax: +44 (0)121 424 4646; email: MartiD@heartsof.wmids.nhs.uk; web site: www.bops.org).

13th Meeting of the EASD Eye Complication Study Group

The 13th Meeting of the EASD Eye Complication Study Group will be held on the 23–25 May 2003, in Prague, Czech Republic. The scientific programme includes keynote lectures from Professor John H Fuller (UK) on The epidemiology of diabetic retinopathy; Dr P Martin van Hagen (The Netherlands) on Growth factors and diabetic retinopathy; Professor Terzic Pelikanova (Czech Republic) on Pathophysiology of diabetic microvascular complications; Dr Tomas Sosna (Czech Republic) on Risk and protective factors of diabetic retinopathy.

Three travel grants of €1000 each, sponsored by GlaxoSmithKline for young scientists (under 35 years at the time of the meeting), Applications should be made with the submission of abstracts. The deadline for abstracts is 14 February 2003.

Further details: Ortopedice Centrum, s.r.o., Strekovske nabrezi 51, 400 03 Usti nad Labem, Czech Republic (tel: +420 47 521 6588; fax: +420 47 533 40 77; email: ortcentrum-ul@voln.cz; web site: www.ortopedice-centrum.cz).

Detachment Course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding the Annual Meeting of Iranian Society of Ophthalmology

The detachment course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding Annual Meeting of Iranian Society of Ophthalmology will be held on 29–30 November 2003 and 1–4 December 2003 respectively, at the Razi Conference Center, Hemmat Byv, Tehran, Iran. Further details: Scientific programme: Prof Ingrid Kreissig, University of Tuebingen, Schleichstr. 12, Breuningerbau, 72076 Tuebingen, Germany (tel: +49 7071 293209; email: ingrid.kreissig@med.uni-tuebingen.de). Local organisation: Dr Arman Masheyerki, Dr Siamak Moradian, Dept of Ophthalmology, Labbanlinejad Medical Center, Pasdaran Ave, Boostan 9, Tehran, 16666, Iran (fax: +98 21 254 9039; email: labba@hotmail.com).