Intravitreal injection of triamcinolone acetonide as treatment for chronic uveitis

Chronic intraocular inflammation such as chronic idiopathic uveitis can lead to cystoid macular oedema, papilloedema, and vitreous opacities temporarily or permanently reducing visual acuity. Chronic uveitis has usually been treated by topical or systemic application of steroids. Topical treatment, however, often has not been sufficiently effective to suppress intraocular inflammation and to reduce cystoid macular oedema. Systemic treatment with steroids inevitably leads to secondary side effects such as a systemic suppression of the whole immune system and Cushings’s syndrome. Taking into account that the eye comprises only 0.01% of the whole body volume, and considering that for achieving high concentrations of the drug at its site of action it is best to apply it directly into the region of required action, we describe the clinical outcome in a patient receiving an intravitreal injection of a crystalline cortisone.

Case report

A 17 year old woman suffering from chronic idiopathic uveitis in both eyes for 5 years had been treated topically, peribulbarly, and systemically with corticosteroids. As a steroid responder, she had developed secondary ocular hypertension. Steroid induced cataract in her right eye was operated on by phacoaspiration, transpupillary anterior vitrectomy, and posterior chamber lens implantation. To reduce the systemic side effects of steroid treatment, systemic cyclosporin A had been added to the treatment scheme since January 1999. In February 2000, she presented again with a severe uveitis with papilloedema and cystoid macular oedema. Despite intensive topical treatment with steroids given hourly, and systemic acetazolamide, visual acuity remained in the range 0.10–0.16. To avoid the side effects of systemic steroid treatment and to achieve a high and longstanding concentrations of steroids in the eye, we injected 20 mg crystalline triamcinolone acetonide into the vitreous cavity of the right eye in July 2000 with topical anaesthesia.

Within the next 5 weeks, visual acuity increased to 0.5. Intraocular pressure increased to a maximum of 38 mm Hg, and was reduced to the normal range with topical antiglaucomatous medication. Four months after the injection, the steroid crystals were resolved, visual acuity returned to the preoperative level of 0.1, and with topical steroids given, intraocular pressure decreased to values of less than 23 mm Hg without further antiglaucomatous medication.

Comment

In ophthalmology, corticosteroids applied topically or systemically are well known and have widely been used to suppress intraocular inflammation. Based on experimental studies performed by Machemer, Peyman and others, as well as on clinical observations, intravitreal injections of triamcinolone acetonide have increasingly been reported as treatment for intraocular neovascular, oedematous, or inflammatory diseases. These include diffuse diabetic macular oedema, proliferate diabetic retinopathy, neovascular glaucoma, exudative age related macular degeneration, and uveitis. In agreement with these previous studies, the results of the present report suggest that the intravitreal injection of triamcinolone acetonide may be an additional option in the treatment of chronic uveitis. Future studies may address which type of uveitis responds to an intravitreal steroid injection are best for, and whether the use of intravitreally implanted slow release devices can decrease the recurrence rate of uveitis for a longer period than a single intravitreal injection dose.

References

Ophthalmodynamometric estimation of cerebrospinal fluid pressure in pseudotumour cerebri

Measurement of the cerebrospinal fluid pressure usually requires a lumbar puncture or cranionoty to get direct access to the cerebrospinal fluid space. These techniques, however, are invasive and so carry the risk of complications such as infections and damage to the neural structures. Furthermore, owing to the leakage of cerebrospinal fluid during the puncture, the cerebrospinal fluid pressure will be altered in the moment the measurement is performed. It would therefore be desirable to have a non-invasive method allowing the estimation of the intracerebral pressure without requiring a direct access to the brain or spinal cord. We describe a patient in whom ophthalmodynamometry strongly suggested an increased intracerebral pressure which was confirmed by eventual direct measurement.

Case report

A 12 year old female patient presented with acute vomiting, massive headache, and bilateral abducent nerve palsy. Visual acuity was 2/20 in both eyes, and visual fields were unremarkable, except for an enlarged blind spot. Both optic discs showed a prominence of 0.5 mm (right eye) and 0.6 mm (left eye) as measured by confocal laser scanning tomography. Intraocular pressure measured 18 mm Hg. With topical anaesthesia, a Goldmann contact lens fitted with a pressure sensor mounted into its holding ring was put onto the cornea (Fig 1). Pressure was asserted onto the globe by slightly pressing the contact lens, and the pressure value at the time when the central retinal vein started pulsating was noted. The measurements of this new technique of ophthalmodynamometry were repeated nine times in both eyes.

The central retinal vein collapse pressure as the sum of the ophthalmodynamometric value plus the intraocular pressure, measured 103 relative units right eye and 98 relative units left eye. These values were significantly higher than normal values (6.1 (SD 8.4) relative units) determined previously in normal subjects (own data). Direct measurement of cerebrospinal fluid pressure by lumbar puncture performed about 5 hours later revealed a value of 107 cm water column (equivalent to 82.3 mm Hg). In combination with other clinical findings, the diagnosis of pseudotumour cerebri was made.

Comment

The central retinal vein is the only structure whose appearance depends on its inner pressure, and which runs through the cerebrospinal fluid space and which is accessible from outside the body without any invasive procedure being performed. After exiting the eye through the optic disc, the central retinal vein goes through the retrolubar part of the optic nerve before it traverses the subarachnoidal and subdural spaces of the optic nerve and pieces the optic nerve meninges. The pressure in the central retinal vein is thus at least as high as the cerebrospinal fluid pressure. The central retinal vein collapse pressure may be measurable by ophthalmodynamometry since the vein will start to pulsate, if the sum

Figure 1 Photograph showing the Goldmann contact lens with a pressure sensor mounted into the holding ring of the contact lens and connected to a display.
of intraocular pressure plus an external pressure exerted onto the eye equals the diastolic pressure of the central retinal vein. The intraocular pressure can be determined by applanation tonometry, and the additional pressure exerted onto the globe can be measured by the ophthalmodynamometer. In the ophthalmodynamometers used in the 1960s and 1970s, determinations of the central retinal vein pressure were often difficult or almost impossible so that the central retinal vein pressure has usually not been measured. The new ophthalmodynamometer used in the present study (Fig 1) may overcome some of the problems associated with the old ophthalmodynamometers. In a previous study on the reproducibility of the new technique, the variation of the central retinal vein collapse pressure was 15.9% (SD 11.9%). The present study suggests that, in patients with markedly increased intracerebral pressure, the new, Goldmann lens associated, ophthalmodynamometer may provide information about the intracerebral pressure by estimating the central retinal vein collapse pressure. It may be helpful for the neuro-ophthalmological diagnosis of diseases associated with increased intracerebral pressure.

Proprietary interest: none.

References

Treatment of atopic blepharitis by controlling eyelid skin water retention ability with ceramide gel application

Atopic blepharitis is one of the major ocular complications of atopic dermatitis (AD). It has been pointed out that atopic patients have dry skin accompanied by barrier disruption and water deficiency. Previously, we assessed the water retention ability of eyelid skin by measuring the water content and water evaporation rate from the eyelid in patients with atopic blepharitis. The water content positively correlated and water evaporation from the eyelid negatively correlated with the severity of blepharitis.

Ceramide comprises about 30% of stratum corneum lipids, which have an important role in both the water retention and barrier function of the skin. Ceramide abnormalities in several skin disorders, such as AD, have been reported. Decreased levels of ceramides may be attributable to the insufficient water retention of the skin in AD. Apytt Gel (Zenyaku Kogyo, Tokyo, Japan) is a product containing galactosyl ceramides extracted from horses as a major moisturizing ingredient. In this study, we assessed the efficacy and safety of this gel product in patients with mild atopic blepharitis by measuring the water retention ability of the eyelid skin before and after prescription.

Methods and results

Sixteen lids of eight patients (five males and three females, 7–55 years old, average age 16.0 (SEM 8.4) years) diagnosed as having AD by dermatologists, according to Hanifin and Rajka's criteria, were examined. Because ceramide gel has no anti-inflammatory effect, cases with severe inflammation were excluded from this investigation. After informed consent was obtained, patients were instructed to place Apytt Gel on their eyelids two to five times a day after washing their faces. Assessment of clinical findings using measurement of water retention ability were performed as previously described before and 4 weeks after the beginning of application. Statistical analysis was carried out by non-parametric tests (Wilcoxon test). A p value of 0.05 or less was considered statistically significant.

Water content of eyelid skin was significantly increased after treatment (30.6% (6.0%) before treatment, 41.2% (8.5%) after treatment; p<0.025) (Fig 1). Water evaporation values were significantly decreased after treatment (4.5 (1.4) × 10−2 g/cm2/s before treatment, 3.5 (0.9) × 10−2 g/cm2/s after treatment; p<0.05) (Fig 2). No slit lamp findings indicating toxicity were observed during the course of the study.

Comment

As the eyelid is a borderline lesion between dermatology and ophthalmology with influences on ocular homeostasis, dermatologists often hesitate in prescribing sufficient medication to the eyelids. The assessment and treatment of atopic blepharitis is therefore an important aspect of ophthalmological examination in atopic patients.

Ceramide gel treatment for 4 weeks significantly improved the water retention ability of eyelid skin of patients with mild atopic blepharitis. Among various moisturising products, the application of the ceramide gel is reasonable, because ceramide deficiency has been reported in the skin of atopic patients. Ceramide gel alleviates dryness without stickiness, and patients experience little discomfort. Comfort during application is thought to be one of the important factors for the compliance of patients. Some patients interrupt application of ointments, such as petrolatum (Vaseline), to the eyelid because of stickiness or because the shiny appearance around the eyes is cosmetically conspicuous. Although strong anti-inflammatory drugs are necessary in acute exacerbations of atopic blepharitis, moisturizing of the skin using ceramide gel application represents a useful supplementary therapy during periods of relatively light inflammation.

Acknowledgement

The authors wish to thank Ms Sae Sasaki and Ms Saori Nishijima for their assistance in taking measurements of water evaporation from eyelid skin.

Financial support: none.

Proprietary interest: none.

References
An unusual tumour of the lacrimal gland

Lacrimal gland swelling is usually due to an inflammatory or neoplastic process. We report an oncocytoma as the cause of lacrimal gland swelling and review the literature. Oncocytoma of the lacrimal gland is extremely rare and has been described only three times before.

Case report

A 72 year old man experienced periodic swelling of his right eyelid over a period of 9 months. For 2 months he complained of vertical diplopia. He had a past medical history of chronic obstructive airways disease and a past ocular history of early cataract, asteroid hyalosis of the vitreous body, and primary open angle glaucoma.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination yielded cup:disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extracranially solid space occupying mass in the lacrimal fossa. The tumour displaced the right eye inferiormedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytes. The tumour was removed in toto via a transconjunctival incision. The mass was 3.0 x 1.9 cm.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination yielded cup:disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extracranially solid space occupying mass in the lacrimal fossa. The tumour displaced the right eye inferiormedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytes. The tumour was removed in toto via a transconjunctival incision. The mass was 3.0 x 1.9 cm.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination yielded cup:disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extracranially solid space occupying mass in the lacrimal fossa. The tumour displaced the right eye inferiormedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytes. The tumour was removed in toto via a transconjunctival incision. The mass was 3.0 x 1.9 cm.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination yielded cup:disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extracranially solid space occupying mass in the lacrimal fossa. The tumour displaced the right eye inferiormedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytes. The tumour was removed in toto via a transconjunctival incision. The mass was 3.0 x 1.9 cm.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination yielded cup:disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extracranially solid space occupying mass in the lacrimal fossa. The tumour displaced the right eye inferiormedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytes. The tumour was removed in toto via a transconjunctival incision. The mass was 3.0 x 1.9 cm.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination yielded cup:disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extracranially solid space occupying mass in the lacrimal fossa. The tumour displaced the right eye inferiormedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytes. The tumour was removed in toto via a transconjunctival incision. The mass was 3.0 x 1.9 cm.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slit lamp examination showed bilateral mild cataract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic examination yielded cup:disc ratios of 0.8. Computed tomography (CT) of orbit (Fig 1) showed an extracranially solid space occupying mass in the lacrimal fossa. The tumour displaced the right eye inferiormedially. The tumour was thought to arise from the lacrimal gland. A fine needle aspiration cytology demonstrated proliferation of oncocytes. The tumour was removed in toto via a transconjunctival incision. The mass was 3.0 x 1.9 cm.
Figure 1 Photograph of the patient’s right optic disc. An elevated annulus of apparent fibroglial tissue surrounds most of the disc, although it appears to spare part of the papillomacular bundle. An excavation of retina and retinal pigment epithelium surrounding the optic disc can be appreciated from about 12 o’clock to 7 o’clock.

examination, slit lamp biomicroscopy, intraocular pressures, and motility were all normal in both eyes. Funduscopic examination was normal in the left eye with an optic nerve cup to disc ratio of 0.4. The appearance of her right optic nerve (Fig 1) was that of an elevated ring around the centre of the disc, interrupted from about 7 o’clock to 9 o’clock by an area of pigmentation. The vasculature was mildly obscured as it crossed the elevation. There was no venous engorgement, haemorrhage, cotton wool spots, or exudate. Funduscopic examination gave the appearance of a peripapillary excavation of retina and retinal pigment epithelium surrounding the elevated ring from about 12 o’clock to 7 o’clock. The macula and periphery were normal. Automated perimetry showed an enlarged blind spot and a relative superior altitudinal defect on the right and a full field enlargement on the left.

Fluorescein angiography showed staining of optic nerve tissue but no leakage of fluorescein outside the disc margin, confirming the absence of true disc swelling (Fig 2). Magnetic resonance imaging of the brain and orbits with gadolinium showed no pathology. B-scan ultrasonography excluded optic disc drusen. Optical coherence tomography (OCT) of the optic nerve showed the elevated annulus of tissue seen on fundus examination and also showed a peripapillary excavation of the retinal pigment epithelium (RPE) adjacent to the optic nerve (Fig 3). This was thought to be most consistent with MGDA.

Comment Morning glory disc anomaly is a congenital anomaly of the optic disc that is typically unilateral (for review see Brodsky’s). The majority of patients have a visual acuity between 20/200 and counting fingers in the affected eye, although cases with 20/20 vision and no light perception have been reported. It is more common in females than males and is less common in African-Americans than white people. This condition is not typically an inherited condition or part of a multisystem genetic disorder, although it has been reported as part of the renal-colooboma syndrome and trisomy 4q.

The term “morning glory syndrome” was coined for its ophthalmoscleral resemblance to the morning glory flower. In MGDA the optic nerve lies centrally within an excavation of the posterior globe. The size of the excavation varies from being relatively small, as in this particular case, to cases in which the excavation encompasses the macula, termed macular capture. In most cases there is a central fibrous tuft that obscures the central disc and a variable amount of peripapillary pigment.

While MGDA is usually diagnosed by funduscopic examination alone, our case was atypical and not diagnosed immediately for several reasons: the patient had good visual acuity in the affected eye; she was African-American; there was no central fibrous tuft; and there was only a mild amount of peripapillary pigmentation. It is likely that our patient’s visual acuity was spared because of relative sparing of the papillomacular bundle (Fig 1). Indeed, the peripapillary annulus of tissue surrounding the optic nerve spared a small area temporally from about 7 to 9 o’clock. In this region there was some pigment disturbance, but little if any apparent fibrosis, compared to the rest of the optic nerve. While a previous study of eight patients’ suggested there was “no correlation between optic disc configuration and visual acuity” there was no patient in that study with a documented visual acuity better than 20/100.

Another atypical feature of our patient is the small amount of peripapillary pigment seen in the affected eye. The only area of pigmentation is between 7 and 9 o’clock. The remaining clock hours have elevated fibrovascular tissue but no visible pigment. This finding is not unexpected, as the visible peripapillary pigment in MGDA dissipates over time. This decrease in peripapillary pigment over time is believed to be secondary to a metaplasia of hamartomatous RPE into thin tissue and hyperplasia of the fibroglial tissue. Our patient was 40 years old at diagnosis of MGDA and it is possible that she had more peripapillary pigment at birth. This finding is also possible that the peripapillary excavation of this patient was larger when she was younger, as the glial hyperplasia tends to progressively elevate the disc over time. There is controversy regarding the aetiology of MGDA. Some believe it is a form of optic disc coloboma. This theory is supported by evidence that MGDA is seen along a continuum of other optic disc anomalies including coloboma in the renal coloboma syndrome. Based on the findings of a scleral defect, vascular anomalies, central glial tuft, and adipose and smooth muscle tissue in histopathological specimens, it has been hypothesised that MGDA may be a primary mesenchymal disorder or an abnormality in the relative growth between the mesoderm and endoderm. Another theory proposes that an abnormal enlargement of the distal optic stalk during eye development allows the inner layer of the optic cup to enter, causing an excavation at the entry site. One problem with determining the aetiology has been the lack of clinical confirmation (primarily a lack of fundus photography) in previous histopathological reports. In this report we present OCT data that confirm these pathological findings in MGDA. Common to all of the histopathological reports is a layer of RPE that lines the peripapillary excavation. This histological feature is confirmed in the present case with OCT, which shows RPE extending posteriorly within the peripapillary scleral excavation as it approaches the optic nerve (Fig 3).

We are currently evaluating, currently evaluating other patients with MGDA using OCT and comparing these findings with the OCT appearances of other optic nerve anomalies, including optic disc coloboma. MGDA is sometimes associated with a basal encephalocele and up to a third of patients with MGDA will develop a retinal detachment. Hence, the first step in the management of MGDA is recognising these associated conditions. Our patient did not have the characteristic facial features (flattened nasal bridge or cleft lip) nor did she have any neurological, endocrine, or respiratory symptoms to suggest she had a basal encephalocele and an magnetic resonance imaging confirmed its absence. Funduscopic examination showed no evidence of retinal detachment, and she will be followed carefully for this potential complication.

Although this is an atypical case, with no central fibrous tuft and little peripapillary pigmentation, this patient demonstrates the peripapillary excavation characteristic of MGDA. To our knowledge this is the first report of OCT of an eye with MGDA and confirms previous histopathological reports of MGDA showing RPE lining the central peripapillary excavation. Ongoing investigations are using OCT to quantify the changes that occur with MGDA over time and to compare the features of MGDA with those of other optic nerve anomalies, including optic disc coloboma.
Acknowledgements

This manuscript was supported in part by a departmental grant (Department of Ophthalmology) from Research to Prevent Blindness, Inc, New York, New York, and by core grant P30-EY06360 (Department of Ophthalmology) from the National Institute of Health, Bethesda, Maryland. NJN is a recipient of a Research to Prevent Blindness Lew R Wasserman Merit Award.

Some of the data in this paper have been previously published in abstract form at the Association for Research in Vision and Ophthalmology (ARVO) annual conference in 2002.

C A Baer, T M Aaberg Sr
Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA

N J Newman
Department of Ophthalmology, Neurology, and Neurosurgical Surgery

Correspondence to: Nancy J Newman, MD, Neuro-ophthalmology Unit, Emory Eye Center, 1365 Clifton Road, NE, Atlanta, GA 30322, USA; ophnj@emory.edu

Accepted for publication 5 July 2002

References

Idiopathic anterior hyaloid vessels

Anterior hyaloid fibrovascular proliferation (AHFP), the growth of vessels across the anterior hyaloid face from an origin in anterior retina, was first described in phakic eyes after diabetic vitrectomy surgery, but also reported following cataract surgery in diabetics. Complications include cataracts, vitreous haemorrhage, tractional retinal detachment, ciliary body detachment, and phthisis bulbi. We present the first report of this entity occurring in a non-diabetic patient without previous ophthalmic surgery.

Case report

A 20 year old Asian man presented with acute right sided visual loss. There was no history of ocular trauma or family history of note. He was systemically well. Visual acuity was 6/12 right eye, 6/9 left. Vessels were visible on the right posterior lens capsule, associated with localised cataract and anterior vitreous opacity (Fig 1A). Clinical examination revealed no other ocular abnormality, but the temporal periphery of the right retina was obscured. Anterior segment fluorescein angiography confirmed perfusion of the vessels (Fig 1B). Posterior segment fluorescein angiography of prematurity. There was no family history, and the retinal peripheries of the parent were normal, which makes dominant exudative vitreoretinopathy unlikely. No inflammation, other than post-surgical, was identified in anterior or posterior segment, and visible pars plana appeared normal. Tzverska and Tzplasma serology was negative. There was no visible peripheral retinal vasculitis or systemic evidence of sarcoidosis or multiple sclerosis. No evidence of ocular trauma was found, and no foreign body was identified radiographically. The patient is not diabetic, screening for haemoglobinopathy was negative, and there were no ophthalmoscopic or angiographic signs of retinal vascular occlusion. No evidence of a hyperviscosity syndrome was found.

The patient’s age, sex, and race are typical of patients suffering from idiopathic peripheral vaso-occlusive retinopathy (Eales’ disease), but the absence of retinal vasculitis, vitreous and retinal haemorrhage, and the unilateral nature of disease, are less characteristic. No sign of tumour was apparent on ultrasonography, and no evidence of arteriovenous malformation was found in the eye or body. He had

Figure 1 Right eye. (A) Abnormal vessels on temporal aspect of posterior capsule associated with localised cataract and anterior vitreous opacity. (B) Anterior segment fluorescein angiography confirming perfusion of vessels.

Figure 2 B-scan ultrasonography with Doppler showing a feeder vessel.
no features of incontinentia pigmenti or facio-oculopalmar muscular dystrophy. The diagnosis therefore remains uncertain.

Treatment was mandated on the basis of visual loss. Vitreoretinal opinion preferred phacoemulsification surgery to pars plana vitreal surgery because of the absence of definable vitreous or peripheral retinal disease. The vessels were closed with laser before capsulotomy to avoid haemorrhage, as has been described after capsulotomy in diabetic patients with AHFPP.

J G F Dowler, J S Mehta, A M Lenders,
A M P Hamilton
Medical Retinal Service, Moorfields Eye Hospital,
City Road, London EC1V 2PD, UK

Correspondence to: Mr J S Mehta,
jodmehta@hotmail.com

Accepted for publication 8 July 2002

References

Iris pigment epithelial cyst induced by topical administration of latanoprost

Latanoprost is an ester prodrug analogue of β-adrenergic agonist, which enhances uveal outflow and reduces intraocular pressure. Several adverse side effects associated with topical administration of latanoprost have been described. Iris cyst can be primary or secondary; the secondary iris cysts are usually caused by trauma, intraocular surgery, inflammation, and prolonged use of strong miotic agents, etc. We report one female patient, with advanced chronic angle closure glaucoma, who developed an iris cyst in her left eye 9 months after topical administration of latanoprost in her both eyes.

Case report
A 67 year old female patient initially presented with advanced chronic angle closure glaucoma in 1994. Laser iridotomy was performed on both her eyes in April 1994. After then, both eyes were treated with 2% pilocarpine and β blocker to maintain her intraocular pressures in the low teens. Because she preferred to use monotherapy, latanoprost had been used once a day at bedtime since July 2000. The intraocular pressures were maintained between 12 and 15 mm Hg with latanoprost monotherapy. No abnormal responses except mild hyperaemia of the conjunctiva were noticed during follow up examinations. Unfortunately, in May 2001 (about 9 months after latanoprost monotherapy), it was noticed that the iris of her left eye bulged forward between 7 o’clock and 8 o’clock. The lesion was gradually increasing its size, and in September 2001 an iris pigment epithelial cyst was found at the posterior iris surface through a mid-dilated pupil (Fig 1). Latanoprost was then discontinued and her antiglaucomatous medication was changed to dorzolamide and β blocker twice a day in both eyes. The iris cyst gradually decreased in size and completely disappeared from the pupil margin in February 2002 (Fig 2). During the follow up period of 4 months, there have been no visual complications or signs of recurring cyst.

Comment

Our report demonstrates another case of rare adverse side effects of latanoprost involving the iris. Although no ultrasonic biomicroscopy was used to follow up this case, the slit lamp biomicroscopy strongly suggested that the patient had a secondary pigment epithelial cyst arising from the posterior surface of the iris. The iris cyst developed in her left eye about 9 months after topical administration of latanoprost in her both eyes, and it progressively decreased in size and completely disappeared 5 months after topical latanoprost was discontinued. The iris cyst in our case took more time to develop and a longer time to disappear than previously reported. We propose that if it took more time to develop an iris cyst after topical administration of latanoprost, it would need more time for the iris cyst to regress.

The topical latanoprost was administered to her both eyes, but only her left eye developed the iris cyst. We propose that both her eyes might have different sensitivity to the development of an iris cyst when exposed to topical latanoprost. (If her right eye was exposed to latanoprost for a longer time, an iris cyst might occur later.) Although cysts of uveal tissue might occur after uveitis, no definite symptoms and signs of uveitis were noticed in our patient during the follow up period. The most likely cause of this adverse side effect may be the increasing uveal outflow on topical use of latanoprost; increasing uveal outflow leads to an enhanced aqueous flow through the ciliary muscle and the intrapapillary space of the posterior iris. The iris cyst can occur at anytime during topical administration of latanoprost. Ophthalmologists should be aware of this possible rare side effect of topical administration of latanoprost.

I C Lai, M T Kuo, I M C Tang
Department of Ophthalmology, Chang-Gung Memorial Hospital, Kaohsiung, 123 Tai-Pei Road, Niao-Sung Hsiang, Kaohsiung, Taiwan

Correspondence to: Ing-Chou Lai;
e12014@adm.cgmh.org

Accepted for publication 17 July 2002

Paravertebral primitive neuroectodermal tumour presenting with Horner’s syndrome

We describe a peripheral primitive neuroectodermal tumour (PPNET) arising from the cervical paravertebral region of a 34 year old woman, who presented with Horner’s syndrome and a cervical radiolucent opacity. PPNETs are rare malignant small round cell tumours. This appears to be the first documented case of localised PPNET with Horner’s syndrome at initial presentation.

Case report
A 34 year old woman presented with acute left scalpua pain, numbness of her left forearm, a left upper lid ptosis, and left hemifacial anhidrosis. Her symptoms disappeared spontaneously within a fortnight, but returned 2 months later with greater intensity. Examination then revealed wasting of the small muscles of her left hand with reduced power in the distribution of C8 and T1; there was loss of light touch and pinprick in the C8 dermatome. The presence of left 1 mm upper lid ptosis, miosis, hemifacial anhidrosis, and 1 mm upper lower lid (“upside down”) ptosis was highly suggestive of a preganglionic left Horner’s syndrome (Fig 1A). Magnetic resonance imaging (MRI) of the neck showed a large mass arising from the T1, T2 intervertebral foramen extending to the roof of the left side of the neck and the region of the apex of the left lung (Fig 1B).

A diagnostic biopsy was performed through a posterolateral approach, excising the extra- dural component of the tumour within the
sympathetic ganglion and central neurofibres branch distal to the superior cervical lesion, since the sympathetic facial sweat anhydrosis, was indicative of a preganglionic in our patient, together with the left facial anterior and inferior tarsal retractor muscles.

Comment
Horner’s syndrome is caused by an oculosym pathetic deficit to the pupillodilator and superior and inferior tarsal retractor muscles. It is manifest by upper lid ptosis, ipsilateral miosis, apparent enophthalmos due to lower lid (“upside down”) ptosis, and often facial anhydrosis. The presence of all these features in our patient, together with the left facial anhydrosis, was indicative of a preganglionic lesion, since the sympathetic facial sweat fibres branch distal to the superior cervical sympathetic ganglion and central neurofibres. Both tumours express elevated levels of glycoprotein p30–32, a product of the MIC-2 gene, in a unique and highly selected fashion, as well as specific translocations involving a gene on chromosome 22q12. Indeed, the tumour cells of our patient exhibited immunohistochemical reactivity for βHC-1, consistent with a PPNET.

Association of keratoconus and Avellino corneal dystrophy
Keratoconus is an idiopathic, progressive, non-inflammatory ectasia of the axial cornea. Its association with other systemic disorders or ocular disease have been reported, but its specific origin remains unknown. Recently, Muller and associates detected that four types of autosomal dominant corneal dystrophy result from mutation in the human transforming growth factor β induced gene (Btg3), the product of which has shown to be the protein keratoepithelin (R535W for granular corneal dystrophy, R535Q for Reis-Bückler’s corneal dystrophy, R124C for lattice corneal dystrophy type 1, and R124H mutation for Avellino corneal dystrophy). Molecular genetic analysis of various corneal dystrophies which had previously presented an insuperable challenge to clinical diagnosis, now clearly demonstrates the distinct phenotypes. We report a rare case of bilateral keratoconus in association with Avellino corneal dystrophy diagnosed by molecular genetic analysis.

Case report
A 35 year old man had complained blurred vision in both eyes for several years. His general health was good and there was no history of atopic disease, connective tissue disease, or ocular trauma. His familial history was unknown. His best corrected visual acuity was 20/20 and LE 20/100. Slit lamp examination revealed bilateral non-inflammatory corneal thinning with protrusion of the central thinning areas. Fleischer ring was found in both corneas. Central corneal thickness was 428 µ on the right and 421 µ on the left measured by ultrasonic pachymetry. There was also clinical evidence of granular corneal dystrophy in both eyes. Discrete grey-white opacities and star-shaped pachydermoparapalpebral folds were visible.
were seen in anterior stroma (Fig 1, top). Computed corneal topography showed inferior steepening consistent with the diagnosis of keratoconus (Fig 1, bottom). With rigid gas permeable contact lenses his visual acuity corrected to 20/20 right and 20/25 left. The remainder of the ocular examination was unremarkable.

After obtaining informed consent, we collected venous blood from the patient and extracted genomic DNA. Using appropriate primers, we amplified exons 4 and 12 of the \(\beta \)H3 gene by polymerase chain reaction (PCR) and directly sequenced the products. We detected a heterozygous \(G \rightarrow A \) transition in codon 124 that results in a substitution of arginine to histidine in this patient (Fig 2). These genetic findings were consistent with Avellino corneal dystrophy.

Comment

To our knowledge, this is the first molecular genetic report of a bilateral association of keratoconus with Avellino corneal dystrophy. Presence of vitronectin in neovascularised cornea of patient with gelatinous drop-like dystrophy

Gelatinous drop-like corneal dystrophy (GDL) is a rare autosomal recessive disorder that is most often seen in Japan. This bilateral dystrophy usually presents in the first decade of life and is associated with a decrease in visual acuity. Typically, a mulberry-like opacity is present with proliferative subepithelial mounds that grow with age. Corneal neovascularisation (NV) also accompanies advanced corneal dystrophy. There may be some linkage between the genes responsible for these two abnormalities. In our case, molecular genetic analysis demonstrated the presence of distinct phenotype, which had not previously presented clinically.

The authors have no proprietary interest in any aspects of this work.

S Igarashi
Department of Ophthalmology, Asahikawa Medical College, Asahikawa, Japan

Y Makita
Department of Public Health, Asahikawa Medical College, Asahikawa, Japan

References

Figure 1
Slit lamp photographs RE [top left] and LE [top right] show discrete grey-white opacities and star-shaped spicular opacities in anterior stroma. [Bottom left and right] Computed corneal topography shows inferior steepening resulting in the diagnosis of keratoconus.

Figure 2
Results of direct sequencing analysis of the exon 4 of \(\beta \)H3 gene. Heterozygous \(G \rightarrow A \) transition is seen at the second position of codon 124 (arrow).
It was recently reported that vitronectin, a multifunctional extracellular matrix adhesion molecule, is often a component of the abnormal extracellular deposits in various age-related human diseases such as age-related macular degeneration and amyloidosis. This suggested that similar pathways may be involved in the aetiologies of other age-related diseases. Because the disease state of GDLD deteriorates with age, we hypothesised that similar vitronectin related pathways may also be associated with GDLD, and examined whether vitronectin was expressed in the GDLD cornea by immunohistochemistry. An antibody directed against vitronectin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) exhibited intense reactivity with the GDLD cornea by immunohistochemistry. Because the production of new extracellular matrix adhesion molecules is often a component of the abnormal extracellular deposits in various age-related diseases, we hypothesised that similar pathways may be involved in the aetiology of other age-related diseases. Therefore, we studied exploring mechanisms of corneal NV mediated by vitronectin-integrin system, and how mutation of MISO leads to accumulation of vitronectin with more samples, may eventually offer a novel insight in understanding the aetiology of corneal NV associated with GDLD.

Comment
These results provide the first evidence for the expression of vitronectin in the cornea with GDLD, and for the in vivo induction of angiogenesis by vitronectin. The results indicate that vitronectin may have a role in corneal NV in patients with GDLD. Therefore, further studies exploring mechanisms of corneal NV mediated by vitronectin-integrin system, and how mutation of MISO leads to accumulation of vitronectin with more samples, may eventually offer a novel insight in understanding the aetiology of corneal NV associated with GDLD.

Acknowledgements
This work was supported in part by grants from Sumitomo Life Social Welfare Services Foundation (SV), Japan National Society for the Prevention of Blindness (AY), and Japan Eye Bank Association (AY).

S Yoshida, A Yoshida, T Ishibashi
Department of Ophthalmology, Kyushu University Graduate School of Medicine, Fukuoka, 812–8582, Japan
Y Kumano, T Matsui
Ohshima Hospital of Ophthalmology, Fukuoka, 812–0036, Japan

References

Factor XII deficiency and recurrent sixth nerve palsy
Factor XII deficiency is associated with thrombosis. Severe deficiency increases an individual’s prothrombotic tendency but with a mild reduction in levels there is less certainty. We present a case of recurrent sixth cranial nerve palsy due to severe factor XII deficiency. To our knowledge, this is the first reported case of a recurrent cranial nerve palsy associated with factor XII deficiency.

Case report
A 58 year old white male presented with an acquired constant incomitant horizontal diplopia. He had had a previous episode of horizontal diplopia of 3 weeks’ duration 6 months previously with spontaneous resolution and a further similar episode 18 years before that had been otherwise well. He was not hypertensive or diabetic, of normal weight and a non-smoker, and without any cardiovascular disease. There was no family or personal history of venous or arterial thrombosis. On examination he was found to have bilateral sixth nerve palsies without any associated headache or papilloedema. Detailed magnetic resonance imaging with contrast and lumbar puncture opening pressure and investigation was normal.

Owing to the recurrent nature of the nerve palsy and the initial young age of presentation, a further prothrombotic examination was undertaken. Laboratory investigations showed a normal full blood count, plasma viscosity, liver function tests, glucose, homocysteine, prothrombin time, and fibrinogen assay. There was a significantly prolonged activated partial thromboplastin time of 74.7 seconds (normal range 24–32), which was still abnormal on repeat testing (90 seconds). Further laboratory studies demonstrated severe factor XII deficiency which was consistent on repeated testing (<1% of normal levels) but otherwise normal levels of protein S, protein C, antithrombin III, and factor V levels. Factor VIII was 1.1% of normal and factor X 1.3%. Factor XII was <1.0% of normal. Factor XII deficiency was confirmed at a low level of significance (p<0.05) on repeated testing. The results indicated a possible deficiency of factor XII which was consistent on repeated testing. The results indicated a possible deficiency of factor XII which was consistent on repeated testing. The results indicated a possible deficiency of factor XII which was consistent on repeated testing.
He was fitted with Fresnel prisms to relieve his diplopia and was followed up 3 weeks later. By that time his diplopia had completely resolved and he had full abduction in both eyes.

Comment
With this recurrent and resolving pattern of cranial nerve palsy in a patient with no other risk factors for arteriosclerosis and a normal magnetic resonance image and lumbar puncture, the most likely predisposing factor in this case is his prothrombotic state associated with severe factor XII deficiency.

Severe factor XII deficiency is a genetic determinant for thrombosis. It is not associated with any other clinical manifestations and prolonged activated thromboplastin time is a consistent finding in any level of factor XII deficiency. The only previously reported ophthalmic complications of factor XII deficiency are two cases of central retinal vein occlusion in patients without any vasculopathic risk factors. Assay for factor XII is not routinely done on thrombophilia screening protocols. It has been suggested that the frequency of factor XII deficiency (1.5–3%) is high enough to warrant the inclusion of factor XII assays in routine thrombophilia screening. Detailed thrombophilia screening of healthy populations may produce an identifiable abnormality in 10% but clearly 10% of the population are not clinically affected in their lifetime. Therefore the need for additional management should be assessed according to the presence of concurrent risk factors in an algorithmic fashion. Since his cranial nerve palsy resolved quickly and there was no family history of vascular thrombosis he was treated empirically with steroids even though there is no evidence to support its benefit in this condition.

A Kipioti, O C Backhouse, P M Jacobs, M R Howard
Department of Ophthalmology, York District Hospital NHS Trust, York, UK

Correspondence to: A Kipioti, Eye Department, Clownend Wing, Leeds General Infirmary, LS2 9NS, UK, tknapiotti@doctors.org.uk

Accepted for publication 12 August 2002

References

Unilateral proptosis: the role of medical history
The most common cause of bilateral and unilateral exophthalmos among adults is Graves’ disease. Unilateral exophthalmos, although frequently seen in connection with thyroid diseases, has a much larger differential diagnosis than bilateral exophthalmos. With unilateral presentation one should think about orbital pseudotumour, orbital cellulitis, cavernous sinus thrombosis, or intraorbital neoplasms.

Graves’ ophthalmopathy (GO) usually is associated with Graves’ hyperthyroidism (GH) although the temporal relation to thyroid disease is not consistent. It has been estimated that 77% of GO patients are hyperthyroid, 21% euthyroid, and 2% hypothyroid. Since the interval between GH and GO is 3.3 years in men and 3.6 years in women. Two thirds of patients present with orbital symptoms within 18 months of diagnosis of thyroid disease.

The following cases of Graves’ ophthalmopathy are described because of their unusual presentation: a long interval between thyroid disease and the development of predominantly unilateral Graves’ ophthalmopathy. Both cases were seen at the department of ophthalmology of the University Hospital Groningen, Netherlands.

Case 1
A female patient born in 1922 became hyperthyroid with minimal eye signs with possibly some lid retraction in 1948. She was treated by thyroxin and became clinically euthyroid. In 1986 an PTCA failed to restore vision. A FMCT scan showed enlargement of all recti muscles of right eye. The patient was admitted and methylprednisolone was given intravenously.

Case 2
A male patient born in 1944 was diagnosed with hypothyroidism in 1979. Thyroid hormones were within normal ranges although thyroid status does not seem important as the active phase of ophthalmopathy can occur during hyperthyroidism, hypothyroidism, and euthyroidism.

Thyroid hormone testing should be performed to rule out abnormalities in thyroid hormone levels although thyroid status does not seem important as the active phase of ophthalmopathy may occur during hyperthyroidism, hypothyroidism, and euthyroidism.

Our two patients illustrate that the medical history is important in evaluating proptosis. One should always think of Graves’ disease as a possible cause of unilateral exophthalmos even though a patient may have had thyroid disease more than 20 years earlier.
Case report
A 30 year old homosexual HIV+ man was referred to the uveitis department complaining of blurred vision in the left eye. He was taking zidovudine, lamivudine, ritonavir, and saquinavir. His last CD4+ count was 128 cells x10^3/L and viral load 1 300 000. His visual acuities were 6/6 in the right eye and counting fingers in the left. There was no inflammation in the anterior chambers or in the vitreous. Ophthalmoscopy revealed a yellowish choroidal lesion surrounded by fluid and haemorrhages in the macula of the left eye (Fig 1). Fluorescein angiography showed an angiomatosus lesion corresponding to those seen clinically. Blood tests were ordered including VDRL, toxoplasmosis serology, Lyme disease serology, ELISA for toxocariasis and were all negative. Computed tomography (CT) scan and serum studies were unremarkable. Blood sample was sent to CDC Atlanta for Bartonella serology. Since clinical diagnosis was cat scratch disease and most patients show good recovery without treatment we decided not to treat before results of blood tests. We kept examining the patient every week with ophthalmoscopy and fluorescein angiography (Fig 2A, B). The lesion progressively increased in size but he did not show visual acuity deterioration.

A month after presentation the lesion had increased and four small lesions appeared in the right eye. His visual acuity dropped to hand movements. Although we did not have the results of Bartonella serology, we decided to give him ciprofloxacin. Bartonella henselae serology was positive for IgG, 1:256, and IgM negative.

Fifteen days after treatment was started the lesions in the right eye disappeared and the macular lesion in the left eye resolved completely.

Comment
There is a well established association between neuroretinitis and cat scratch disease although many different clinical presentations have been described.1 Ormerod et al2 described two patients with small areas of retinitis and arteriolar occlusions. Pollock and Kristinsson3 described one patient with cat scratch disease and helioid unicocular choroiditis. Hong et al4 first described this syndrome when they reported six young patients with a solitary round yellow chorioretinal lesion associated with subretinal fluid. There was no association with inflammatory or infectious diseases. Fish et al5 reported a case of peripapillary angiomatosis associated with neuroretinitis. Our patient presented with clinical features of helioid unicocular choroiditis but after angiogram we could see an angiomatosus-like lesion.

The treatment of ocular cat scratch disease remains controversial. Pollock and Kristinsson3 reported a case that improved in visual acuity from 6/12 to 6/6 occurred after 3 weeks without treatment. One of the cases described by Ormerod showed some benefit after treatment although his recovery was very slow. The second patient showed improvement without treatment. Warren et al6 reported an HIV+ patient with cat scratch disease whose lesion enlarged without treatment. Once the diagnosis of Bartonella was confirmed by polymerase chain reaction of the retina sample, the patient was started on systemic antibiotics with good results. Considering that spontaneous recovery could occur we decided not to treat until our patient showed deterioration in the left eye and involvement in the fellow eye.

Ophthalmologists should be aware of this unusual presentation of cat scratch disease with helioid unicocular choroiditis and angiomatosus-like lesions. Although larger series and control studies are needed, HIV+ patients with intraocular manifestations of cat scratch disease may benefit from systemic treatment with antibiotics.

References

Simultaneous translocation of the macula and underlying retinal pigment epithelium during macular translocation surgery in a patient with long standing myopic neovascular maculopathy

Limited macular translocation has been reported to be a promising treatment for some patients with choroidal neovascularisation.7 Although this technique has the advantage of being less invasive, there is documentation of
Various complications that have been experienced with its use. In this report, we describe an unusual complication associated with limited macular translocation in a patient with long-standing choroidal neovascularisation.

Case report
A 35 year old woman was referred to our department because of a gradual decrease in visual acuity in her right eye. At the first visit, her best corrected visual acuity was right eye, 20/40, with a refractive error of −17.5 dioptres in the spherical equivalent. Clinical and angiographic examinations showed a juxtafoveal choroidal neovascularisation. During the subsequent follow up period, choroidal neovascularisation and surrounding retinal pigment epithelial atrophy gradually expanded and involved the subtotal region (Fig 1A). We gave the patient detailed information on the available therapeutic options, including macular translocation, but she chose conservative follow up rather than surgical intervention. Three years after her first visit, the visual acuity in her right eye worsened to 20/100. At that time, the patient decided to have surgical treatment. With her consent, limited macular translocation was performed on her right eye, as described previously. Postoperatively, fluorescein angiography showed an extraretinal neovascular membrane with a foveal shift of 0.7 disc diameter (Fig 1B). Sharply demarcated hypofluorescence in the macular area was also demonstrated. Biomicroscopic examination revealed a slightly hyperpigmented lesion underneath the translocated macula, which corresponded to the area of hypofluorescence. A horizontal optical coherence tomography (Humphrey Systems, San Leandro, CA, USA) section taken through the translocated macula displayed highly reflective double layers (Fig 2A). These findings may indicate that the abnormal subfoveal retinal pigment epithelium, which adhered tightly to the overlying neurosensory retina, probably because of the long history of neovascular maculopathy, was translocated with the macula during surgery. Two reflective bands observed on an optical coherence tomography image may have corresponded to the native retinal pigment epithelium and abnormal retinal pigment epithelium translocated with the macula. Indocyanine green angiography findings supported this speculation (Fig 2B).

Despite sufficient foveal displacement, the patient’s visual acuity has not improved. During a follow up period of 15 months, it has remained at the same level as her preoperative vision.

In many eyes with choroidal neovascularisation, the macula can easily be separated from the subjacent fibrovascular tissue. In some eyes with long-standing choroidal neovascularisation, however, the outer portion of the neurosensory retina may adhere firmly to the subjacent tissue. In such cases, an inner portion of fibrovascular tissue may be torn off and translocated over the overlying neurosensory retina. The underlying healthy retinal pigment epithelium covered by the translocated abnormal tissue may not be able to fulfil its physiological roles on the overlying neurosensory retina, and good functional recovery of the translocated macula is unlikely to be achieved. As documented here, simultaneous translocation of the underlying abnormal retinal pigment epithelium associated with long-standing choroidal neovascularisation can occur during limited macular translocation and result in an unsatisfactory visual outcome. When patients are deciding whether to consent to surgical intervention with limited macular translocation in such cases, they should be informed of the benefits and risks of the treatment, with due consideration of this complication.

M Ichibe, K Imai, M Ohji, Y Oya, T Yoshizawa, H Abe
Department of Ophthalmology, Niigata University School of Medicine, Niigata, Japan

Correspondence to: Dr Ichibe, Department of Ophthalmology, Niigata University School of Medicine, 1-757 Asahimachi, Niigata 951-8510, Japan; ichibem@med.niigata-u.ac.jp

Accepted for publication 22 August 2002

References

Fungal and bacterial chronic endophthalmitis following cataract surgery

Endophthalmitis, although rare, is one of the most vision threatening complication of cataract surgery. The majority of these infections...
are bacterial in the Western world. The occurrence of fungal endophthalmitis after cataract surgery is rare as well as polymicrobial infections. We report a case of chronic postoperative endophthalmitis caused by bacterial and fungal pathogenic agents.

Case report
A 73 year old woman was referred for pain and redness in the left eye. Her past history was remarkable for an extracapsular cataract extraction in the left eye with a posterior chamber intraocular lens implant that had been performed in Turkey in 1998. The patient had recurrent episodes of decreased vision and ocular pain in the postoperative course and was treated with peribulbar injections of corticosteroids over 2 years. On presentation, visual acuity was hand movements in the left eye. Slit lamp examination of the left eye showed a white corneal infiltrates involving the superior and nasal quadrant (Fig 1). There was a moderate anterior chamber reaction with 2+ cells. Intraocular pressure was normal. Examination of the vitreous showed 2+ cells. The aqueous cultures were sterile for bacteria and fungi. Intravitreal injection of vancomycin and amikacin were performed. Postoperatively, the patient was given intravenous ciprofloxacin, piperillin, and topical fortified corticosteroids over 2 years. On presentation, the patient's regimen. A decrease in intraocular pressure and also because antifungal therapy was considered as a true pathogenic organism because of its localisation, in the capsular bag, and also because antifungal therapy was effective.

The use of broad spectrum antibiotics, the administration of steroids, and the increased number of patients with local or systemic immunosuppression could explain the development of such infections which are frequent in post-traumatic endophthalmitis. However, it can cause infectious crystalline keratophaty or, more typically, suppurative stromal keratitis. Candida parapsilosis has also been reported as a cause of small epidemics of postoperative endophthalmitis. In this present case, Candida parapsilosis could be considered as a true pathogenic organism because of its localisation, in the capsular bag, and also because antifungal therapy was effective.

The other hand, Staphylococcus and Corynebacterium species are frequently identified in postoperative endophthalmitis. This case is, to our knowledge, the first documented report of bacterial and fungal endophthalmitis following cataract surgery. The use of broad spectrum antibiotics, the administration of steroids, and the increased number of patients with local or systemic immunosuppression could explain the development of such infections which are frequent in post-traumatic endophthalmitis but extremely rare after cataract surgery. However, cross contamination by hospital personnel may also account for increase in yeast infections in certain environments. A recent survey of hospital personnel revealed that 70% of nurses and non-nursing hospital personnel carried yeasts on their hands, particularly subungual spaces, with Candida parapsilosis being those most frequently recovered.

This case demonstrates the atypical presentation and the poor prognosis of polymicrobial endophthalmitis. Identification of all the organisms is essential before the onset of therapy, emphasising the need for complete microbiological evaluation of any postoperative endophthalmitis.

This case report is, to our knowledge, the first documented report of bacterial and fungal endophthalmitis following cataract surgery. The use of broad spectrum antibiotics, the administration of steroids, and the increased number of patients with local or systemic immunosuppression could explain the development of such infections which are frequent in post-traumatic endophthalmitis. However, cross contamination by hospital personnel may also account for increase in yeast infections in certain environments. A recent survey of hospital personnel revealed that 70% of nurses and non-nursing hospital personnel carried yeasts on their hands, particularly subungual spaces, with Candida parapsilosis being those most frequently recovered.

This case demonstrates the atypical presentation and the poor prognosis of polymicrobial endophthalmitis. Identification of all the organisms is essential before the onset of therapy, emphasising the need for complete microbiological evaluation of any postoperative endophthalmitis.

we are concerned that the use of intraoperative antimetabolites in the trabeculectomy group added a major confounding variable in this study. This is particularly perplexing as the authors’ viscosanalostomy technique primarily relied on subconjunctival filtration, as evidenced by their scleral flap design and looser suturing technique in which only three 10/0 nylon sutures were used. Furthermore, their excellent early success rate of viscosanalostomy (95% at 6 months), the presence of filtering blebs in their successful viscosanalostomy procedures, the lack of one in their failures, and the need for postoperative bleb needling and 5-fluouracil injection all cast some doubt on the use of mitomycin-C and 5-fluorouracil as a superior rate of glaucoma filtering surgery by reducing epithelial fibrosis, and probably explains the difference in success rates in this study. We wonder what the results would have been had the use of intraoperative antimetabolites been used in all groups, or if none was used at all.

In contrast with this authors’ technique, we employ Stegmann’s approach to viscosanalostomy in using a parabical superficial flap secured tightly with five sutures in a relatively watertight fashion. Although filtering blebs may develop, most patients achieve IOP lowering through multiple alternate pathways including uveoscleral, through Schlemm’s canal, and subconjunctival. Certainly in higher risk cases, we advocate using antimitabolites in non-penetrating surgery, and have found it to be safer than when used with trabeculectomy. It should be mentioned that quite often we do rely on subconjunctival filtration in non-penetrating procedures (that is, deep sclerectomy) but advocate the use of a collagen wick or hyaluronic acid implant with an intraoperative antimitabolite in higher risk cases to obtain optimal IOP control.

Fibrosis and loss of permeability of the trabeculo-Decemet’s window (TDW) is a well described cause of postoperative elevation in IOP after non-penetrating glaucoma surgery. Postoperative Nd:YAG gonipuncture of the TDW in these cases is a relatively easy adjunctive procedure and may be needed in up to 41% of non-penetrating procedures. It has been reported to successfully lower IOP in over 80% of cases. Yet, we are dismayed that the authors decided not to attempt laser gonipuncture in those viscosanalostomy cases with postoperative IOP elevations because “such interventions clearly convet a ‘non-penetrating’ technique into a penetrating, full thickness procedure.” We vehemently disagree with this line of reasoning as we feel gonipuncture is an extremely useful adjunctive procedure and converting to a penetrating (not “full thickness”) procedure in the safety of the controlled postoperative period is completely reasonable. This is akin to converting in trabeculectomy. However, the authors feel that performing suture lysis constitutes conversion of a guarded trabeculectomy into a full thickness unguarded trabeculectomy and thus cannot be fairly compared to goniopuncture? Although suture lysis performed in only three eyes at 18 months, we wonder what results would have been obtained if this was done in all cases with uncontrolled IOPs at any point in the postoperative period.

Although we are critical of this study, we applaud O’Brart and colleagues for attempting to investigate this evolving area of glaucoma surgery. Although they may have shown that trabeculectomy with the use of an antimitabolite is superior to a modified form...
of viscocanalostomy dependent on subconjunctival filtration without the use of an antimetabolite, this study unfortunately does not fairly compare the efficacy of Steggan’s viscocanalostomy technique versus trabeculectomy. Non-penetrating glaucoma surgery offers an improved safety profile and surely as future well designed controlled studies become available, the efficacy of these procedures compared to trabeculectomy will become clearer.

I K Ahmed, C Kraneumann
University of Toronto, Toronto, Ontario, Canada

Correspondence to: I K Ahmed, 43 Bywood Drive, Toronto, Ontario M3A 1M1; ike.ahmed@utoronto.ca

References

Argon laser and trichiasis
We were interested to read the approach taken by Sahni and Clark2 to facilitate the effective argon laser treatment of trichiasis. They have ably reviewed the complications of trichiasis, the different forms of management of trichiasis, the advantages of argon laser treatment in the management of trichiasis, the technique of argon laser trichiasis therapy, and the limitations of laser lash therapy.

We take issue with the authors in two areas. Firstly, the almost certain consequence of using a duration of laser treatment of 0.1 second is that if the laser “takes,” the lash will disappear within the space of a few laser shots, effectively precluding the destruction of that particular lash follicle. We have particularly made it a point that when teaching trainees the technique of laser lash, we ensure that the energy burst lasts long enough to commence visible lash destruction as well as destruction of the subcutaneous lash, as the burn is directed towards the lash follicle. Thus we always use a duration of several seconds, or even continuous energy, and aim to achieve immediate cessation of lash movement above the lid level after the first shot, or certainly within three shots. Thus, 1–3 second duration bursts may be required, depending on the individual lash. Just a few more shots will effectively and completely destroy the subcutaneous lash and its follicle.

Secondly, the article by Bartley and Lowry quoted by the authors, describes using a “drop of ink from a fountain pen” to facilitate lash ‘laser.” Presumably in the interests of sterility, Sahni and Clark have used the ink from a blue skin marker pen to allow improved absorption of argon laser energy. While use of a fresh marker pen for each patient may be relatively efficient, it could not be regarded as cost effective. By contrast, in a procedure described by us in 1994,4 we found that transferring a tiny drop of the patient’s own blood, whether still liquid or already coagulated, to the lash base on the lid margin is a simple, rapid, cheap, safe, and highly effective method of getting the laser reaction started when the lashes are pale. We have found that the required amount of blood is invariably present on the patient’s own lid skin at the site of local anaesthetic infiltration. We usually transfer it by picking it up with a sterile drawing up needle. This is achieved remarkably easily on the laser slit lamp, which allows adequate magnification for the accurate siting of the transferred blood.

G A Wilcsek, I C Francis
The Ocular Plastics Unit, Prince of Wales Hospital, and the University of New South Wales, Randwick, Sydney, Australia

Correspondence to: Ian C Francis, ifl@student.unsw.edu.au

References

Management of age related macular degeneration: still room for improvement
The aim of Mitchell et al’s study1 in collaboration with the Macular Disease Society (MDS) was to assess the perceived quality of health care of people with macular disease in the United Kingdom.

The final response rate was 79% (similar to 77% in the earlier study specifically asked whether patients want information on ARMD and the fact that there are readily available sources for example, free information booklets on ARMD from the Royal College of Ophthalmologists or Royal National Institute for the Blind), ophthalmic units throughout the United Kingdom are still failing routinely to provide such information to their patients.

L J Howe
Moorfields Eye Hospital, City Road, London EC1V 2PD, UK; lucy.robson@btpenworld.com

References

Standardised clinical photography in ophthalmic plastic surgery
We read with keen interest the path breaking article by Calista et al regarding the successful treatment of an eyelid squamous cell carcinoma with intralidoflorin. The dramatic response of this highly malignant lesion to such a non-invasive form of therapy is remarkable and certainly worth further clinical evaluation. However, Argon laser may like to raise a few crucial issues pertaining to the documentation of this case.

The authors have presented an extreme close view of the affected eyelid which highlights the pretreatment appearance of the lesion quite adequately. However, the post-treatment photograph (Fig 2) is almost half the magnification of Figure 1. Therefore, although there is an indisputable reduction in the size of the tumour, the two clinical photographs are not strictly comparable since a decrease in magnification results in visual clues that lead to the lesion being perceived as smaller in size.
We attributed our results of lack of statistically significant pain relief with Entonox to less than 50 seconds’ administration of Entonox. Waud et al have shown that optimal administration of Entonox should cover 50 seconds, based on theoretical calculations for delivery of the laser light. Consequently, if the laser花卉 was delivered within this time frame, we would expect to see similar pain scores in both groups. However, we would like to know if the authors administered Entonox throughout the laser treatment and, if so, did it interfere with the laser delivery since the inhalation process is likely to be associated with head movements? If the Entonox was given for a shorter duration, we need to know the duration of administration since that would be of practical benefit to the readers.

The authors have concluded that Entonox is useful in young patients, those undergoing re-treatments, and in patients who have previously not been able to tolerate the full duration of administration since that would be of practical benefit to the readers.

We would like to know how the authors came to this conclusion, as there is no mention of the type of patients selected for their study.

Mechanism of ophthalmic artery occlusion following pars plana vitrectomy

Saito et al present a patient with Terson’s syndrome and dense vitreous haemorrhage who underwent pars plana vitrectomy and was noted postoperatively to have developed an ophthalmic artery occlusion. They propose that the ophthalmic artery was occluded by the spontaneous release of an embolus from an atheromatous plaque in the internal carotid artery. This seems unlikely in a 39 year old man with a previous history of symptomatic atherosclerotic disease. Although the authors identified plaques in the patient’s carotid artery by ultrasound, these can be seen in 11% of asymptomatic males under age 40 and may therefore be an incidental finding in this case.

An alternate explanation for the patient’s ocular findings is trauma from the retrobulbar injection. Intravascular injection into the ophthalmic artery has been reported as a complication of retrobulbar anaesthesia. It is possible that either an intravascular injection or simply needle tip trauma resulted in thrombus formation with obstruction of flow in the ophthalmic artery. It should also be noted that although acute ophthalmic artery occlusion is the presumed diagnosis, the same findings could result from simultaneous obstruction of the retinal and choroidal circulations. Moreover, the injection of trypan blue into the anterior chamber, a common feature during cataract surgery, has been well demonstrated.

(2) The time spent outside the organ culture medium before fixing in formaldehyde for TUNEL. Crowston et al4 showed that the trypan blue itself and/or the short exposure time (about 1 minute) or the short incubation in the presence of 0.9% NaCl has ever been intracranial in the over-mortality of ECs in routine practice. Moreover, the innocuity of injections of trypan blue into the anterior chamber, a common feature during cataract surgery, has been well demonstrated.

(3) The time spent outside the organ culture medium before fixing in formaldehyde for TUNEL. Crowston et al4 showed that the trypan blue itself and/or the short exposure time (about 1 minute) or the short incubation in the presence of 0.9% NaCl has ever been intracranial in the over-mortality of ECs in routine practice. Moreover, the innocuity of injections of trypan blue into the anterior chamber, a common feature during cataract surgery, has been well demonstrated.

(4) The time spent outside the organ culture medium before fixing in formaldehyde for TUNEL. Crowston et al4 showed that the trypan blue itself and/or the short exposure time (about 1 minute) or the short incubation in the presence of 0.9% NaCl has ever been intracranial in the over-mortality of ECs in routine practice. Moreover, the innocuity of injections of trypan blue into the anterior chamber, a common feature during cataract surgery, has been well demonstrated.

Dynamics of corneal endothelial cell death in organ culture

We read with interest the remarks of Crowston et al on our article. We showed that the TUNEL technique revealed a far higher percentage of endothelial cells (ECs) irreversibly engaged in a cell death process than that obtained by trypan blue staining.

The two techniques were performed sequentially: after observation of trypan blue staining, corneas were immediately fixed in formaldehyde for TUNEL. Crowston et al suggest that the trypan blue itself and/or the time spent outside the organ culture medium before fixing in formaldehyde for TUNEL may have caused an artefactual increase in the percentage of TUNEL positive ECs. Two arguments counter this remark.

(1) The trypan blue staining procedure is identical to that used, during endothelial examination(s) of grafts, in all European cornea banks that use organ culture during endothelial examination(s) of grafts. Neither the low concentration of trypan blue (0.1%) nor the short exposure time (about 1 minute) nor the short incubation in the presence of 0.9% NaCl has ever been intracranial in the over-mortality of ECs in routine practice. Moreover, the innocuity of injections of trypan blue into the anterior chamber, a common feature during cataract surgery, has been well demonstrated.

(2) The time spent outside the organ culture medium before fixing in formaldehyde, a period required for vital staining and microscopic examination of the endothelium, lasts only a few minutes. The cornea remains under the microscope for about 1 minute only, the time needed for image acquisition. Such rapidity is possible by using a prototype automatic analyser of the endothelium, which we have developed and have recently published. This is very probably insufficient time for DNA fragmentation to occur at the level we observed. Moreover, the fixing of the endothelial layer in 10% formaldehyde is immediate, and prevents any continuation of fragmentation phenomena. On balance, it is highly unlikely that the succession of markings is responsible for the discrepancy between the positivity percentages of the two techniques.

In addition, we chose to perform the two techniques simultaneously on paired corneas on the same eye, to avoid imprecision of two stains on the same cornea and thus obtain a double cell staining.

References

The second remark by Crowston et al is particularly interesting. We too were surprised by the high percentage of TUNEL positive ECs (mean 12.7%, SD 16.4). This may imply that, at the end of storage, corneas will all die eventually. In other words, we believe this apparent contradiction can be explained by the following theory. The TUNEL staining is positive during a relatively long window (24–48 hours). The TUNEL index, measured at a given moment, provides a global view of all the cells with fragmented DNA. However, the DNA fragmentation may be at different stages, and the cells very likely spread according to a Gaussian distribution. Therefore the cells, which are TUNEL positive at a given moment, will not all die instantaneously and simultaneously. Only the cells furthest to the right on the curve will die in the very short term, and it is probably these that are liable to be reveals by trypan blue. If it were possible to perform TUNEL on two consecutive days, the percentage of positive cells revealed would probably be very similar, but a large majority of the positive cells recorded on the second day would have already been counted on day one. It is, however, undeniable that the cells that are TUNEL positive at a given moment will all die eventually. In other words, we believe that, at the end of storage, corneas contain a number of ECs engaged in an irreversible cell death process far more extensive than the highly unreliable trypan blue staining technique suggests.

G Thuret, C Chiquet, L Campos, P Gain
Cell Death and Neoplasia Laboratory EA 3063, University Hospital, St Etienne, France

Correspondence to: Gilles Thuret; gilles.thuret@univ-st-etienne.fr

References

Special Eye Conditions (SPECs)

Specific Eye Conditions (SPECs) is a not for profit organisation which acts as an umbrella organisation for support groups of any conditions or syndrome with an integral eye disorder. SPECs represents over fifty different organisations related to eye disorders ranging from conditions that are relatively common to very rare syndromes. We also include groups who offer support of a more general nature to visually impaired and blind people. Support groups meet regularly in the Boardroom at Moorfields Eye Hospital to offer support to each other, share experiences and explore new ways of working together. The web site www.eyesconditions.org.uk acts as a portal giving direct access to support groups own sites. The SPECs web page is a valuable resource for professionals and may also be of interest to people with a visual impairment or who are blind. For further details about SPECs contact: Kay Parkinson, SPECs Development Officer (tel: +44 (0)1803 524238; email: k@eyesconditions.org.uk; web site: www.eyesconditions.org.uk).

16th Annual Meeting of German Ophthalmic Surgeons

The 16th Annual Meeting of German Ophthalmic Surgeons will be held 8–11 May 2003 in Nürnberg, Germany, Messezentrum. Organised by the Professional Association of German Ophthalmologists Ophthalmic Surgery Group the conference will cover cataract surgery, refractive surgery, glaucoma surgery, vitreoretinal surgery, corneal surgery, eye surgery in developing countries, and orbit, lacrimal and lid surgery. Further details: MCN Medizinische Congress organisation Nürnberg AG, Zerzabelshofstr 29, 90478 Nürnberg, Germany (tel: +49 911 391621; fax: +49 911 391620; email: doc@mcnag.info; web site: www.doc-muennerberg.de).

3rd British Oculoplastic Surgery Society Meeting

The 3rd British Oculoplastic Surgery Society Meeting will be held 18–19 May 2003 in Birmingham, UK. For further details please contact the Secretary of the British Oculoplastic Surgery Society. Jane Ollerenshaw (tel: +44 (0)121 424 5646; fax: +44 (0)121 424 4464; email: MartiD@heartsol.wmids.nhs.uk; web site: www.bopss.org).

13th Meeting of the EASD Eye Complication Study Group

The 13th Meeting of the EASD Eye Complication Study Group will be held on the 23–25 May 2003, in Prague, Czech Republic. The scientific programme includes keynote lectures from Professor John H Fuller (UK) on The epidemiology of diabetic retinopathy; Dr P Martin van Hagen (The Netherlands) on Growth factors and diabetic retinopathy; Professor Terzic Pelikanova (Czech Republic) on Pathophysiology of diabetic microvascular complications; Dr Tomas Sosna (Czech Republic) on Risk and protective factors of diabetic retinopathy.

Three travel grants of €1000 each, sponsored by GlaxoSmithKline for young scientists (under 35 years at the time of the meeting). Applications should be made for the submission of abstracts. The deadline for abstracts is 14 February 2003.

Further details: Ortopedieke Centrum, s.r.o., Strekovské nabrezi 51, 400 03 Ústí nad Labem, Czech Republic (tel: +420 47 521 6588; fax: +420 47 533 40 77; email: ortcentrum-ul@volny.cz; web site: www.ortopedieke-centrum.cz).

Detachment Course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding the Annual Meeting of Iranian Society of Ophthalmology

The detachment course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding Annual Meeting of Iranian Society of Ophthalmology will be held on 29–30 November 2003 and 1–4 December 2003 respectively, at the Razi Conference Center, Hemmat Byw, Tehran, Iran. Further details: Scientific programme: Prof Ingrid Kreissig, University of Tuebingen, Schleichstr. 12, Breuningerbau, 72076 Tuebingen, Germany (tel: +49 7071 293209; email: ingrid.kreissig@med.uni-tuebingen.de). Local organisation: Dr Arman Masheyehki, Dr slamming Moradian, Dept of Ophthalmology, Labbanfinjed Medical Center, Pasdaran Ave, Boosan 9, Tehran, 16666, Iran (fax: +98 21 254 9039; email: labbafi@hotmail.com).