Intravitreal injection of triamcinolone acetonide as treatment for chronic uveitis

Chronic intraocular inflammation such as chronic idiopathic uveitis can lead to cystoid macular oedema, papilloedema, and vitreous opacities temporarily or permanently reducing visual acuity. Chronic uveitis has usually been treated by topical or systemic application of steroids. Topical treatment, however, often has not been sufficiently effective to suppress intraocular inflammation and to reduce cystoid macular oedema. Systemic treatment with steroids inevitably leads to secondary side effects such as systemic suppression of the whole immune system and Cushing’s syndrome. Taking into account that the eye comprises only 0.01% of the whole body volume, and considering that for achieving high concentrations of a drug at its site of action it is best to apply it directly into the region of required action, we describe the clinical outcome in a patient receiving an intravitreal injection of a crystalline cortisone.

Case report
A 17 year old woman suffering from chronic idiopathic uveitis in both eyes for 5 years had been treated topically, peribulbarly, and systemically with corticosteroids. As a steroid responder, she had developed secondary ocular hypertension. Steroid induced cataract in her right eye was operated on by phacoaspiration, transpupillary anterior vitreotomy, and posterior chamber lens implantation. To reduce the systemic side effects of steroid treatment, systemic cyclosporin A had been added to the treatment scheme since January 1999. In February 2000, she presented again with a severe uveitis with papilloedema and cystoid macular oedema. Despite intensive topical treatment with steroids given hourly, and systemic acetazolamide, visual acuity remained in the range 0.10–0.16. To avoid the side effects of systemic steroid treatment and to achieve high and longstanding concentrations of steroids in the eye, we injected 20 mg crystalline triamcinolone acetonide into the vitreous cavity of the right eye in July 2000 with topical anaesthesia.

Within the next 5 weeks, visual acuity increased to 0.5. Intraocular pressure increased to a maximum of 38 mm Hg, and was reduced to the normal range with topical acetazolamide, visual acuity was 20/20 in both eyes, and visual fields were unremarkable, except for an enlarged blind spot. Both optic discs showed a prominence of 0.5 mm (right eye) and 0.6 mm (left eye) as measured by confocal laser scanning tomography. Intraocular pressure measured 18 mm Hg. With topical anaesthesia, a Goldmann contact lens fitted with a pressure sensor mounted into its holding ring was put onto the cornea (Fig 1). Pressure was measured onto the globe by slightly pressing the contact lens, and the pressure value at the time when the central retinal vein started pulsating was noted. The measurements of this new technique of ophthalmodynamometry were repeated nine times in both eyes.

The central retinal vein collapse pressure has been measured as the sum of the ophthalmodynamometric value plus the intraocular pressure, measured 103 and 98 relative units left eye and 98 relative units left eye. The central retinal vein collapse pressure is defined as the pressure at which the central retinal vein starts to collapse. The central retinal vein collapse pressure was measured by 20/20 in both eyes, and visual fields were unremarkable, except for an enlarged blind spot. Both optic discs showed a prominence of 0.5 mm (right eye) and 0.6 mm (left eye) as measured by confocal laser scanning tomography. Intraocular pressure measured 18 mm Hg. With topical anaesthesia, a Goldmann contact lens fitted with a pressure sensor mounted into its holding ring was put onto the cornea (Fig 1). Pressure was measured onto the globe by slightly pressing the contact lens, and the pressure value at the time when the central retinal vein started pulsating was noted. The measurements of this new technique of ophthalmodynamometry were repeated nine times in both eyes.

The central retinal vein collapse pressure has been measured as the sum of the ophthalmodynamometric value plus the intraocular pressure, measured 103 and 98 relative units left eye and 98 relative units left eye. These values were significantly higher than normal values (6.1 (SD 8.4) relative units) determined previously in normal subjects (own data). Direct measurement of cerebrospinal fluid pressure by lumbar puncture performed about 5 hours later revealed a value of 107 cm water column (equivalent to 82.5 mm Hg). In combination with other clinical findings, the diagnosis of pseudotumour cerebi was made.

Comment
The central retinal vein is the only structure whose appearance depends on its inner pressure, and which runs through the cerebrospinal fluid space and which is accessible from the outside the body without any invasive procedure being performed. After exiting the eye through the optic disc, the central retinal vein goes through the retrobulbar part of the optic nerve before it traverses the subarachnoidal and subdural spaces of the optic nerve and pierces the optic nerve meninges. The pressure in the central retinal vein is thus at least as high as the cerebrospinal fluid pressure. The central retinal vein collapse pressure may be measurable by ophthalmodynamometry since the vein will start to pulse, if the sum
of intraocular pressure plus an external pressure exerted onto the eye equals the diastolic pressure of the central retinal vein.14 The intraocular pressure can be determined by applanation tonometry, and the additional pressure exerted onto the globe can be measured by the ophthalmodynamometer. In the ophthalmodynamometers used in the 1960s and 1970s, determinations of the central retinal vein pressure were often difficult or almost impossible so that the central retinal vein pressure has usually not been measured.15 The new ophthalmodynamometer used in the present study (Fig 1) may overcome some of the problems associated with the old ophthalmodynamometers. In a previous study on the reproducibility of the new technique, the variation of the central retinal vein collapse pressure was 15.9% (SD 11.9%). The present study suggests that, in patients with markedly increased intraocular pressure, the new, Goldmann lens associated, ophthalmodynamometer may provide information about the intracerebral pressure by estimating the central retinal vein collapse pressure. It may be helpful for the neuro-ophtalmological diagnosis of diseases associated with increased intracerebral pressure.

Proprietary interest: none.

References

Treatment of atopic blepharitis by controlling eyelid skin water retention ability with ceramide gel application

Atopic blepharitis is one of the major ocular complications of atopic dermatitis (AD).6,7 It has been pointed out that atopic patients have dry skin accompanied by barrier disruption and water deficiency. Previously, we assessed the water retention ability of eyelid skin by measuring the water content and water evaporation rate from the eyelid in patients with atopic blepharitis. The water content positively correlated and water evaporation from the eyelid negatively correlated with the severity of blepharitis.7

Ceramide comprises about 30% of stratum corneum lipids, which have an important role in both the water retention and barrier function of the skin.7 Ceramide abnormalities in several skin disorders, such as AD, have been reported,7,8 Decreased levels of ceramides may be attributable to the insufficient water retention of the skin in AD. Apytt Gel (Zenyaku Kogyo, Tokyo, Japan) is a product containing galactosyl ceramides extracted from horses as a major moisturizing ingredient. In this study, we assessed the efficacy and safety of this gel product in patients with mild atopic blepharitis by measuring the water retention ability of the eyelid skin before and after prescription.

Methods and results

Sixteen lids of eight patients (five males and three females, 7–55 years old, average age 16.0 (SEM 8.4) years) diagnosed as having AD by dermatologists, according to Hanifin and Rajka’s criteria,9 were examined. Because ceramide gel has no anti-inflammatory effect, cases with severe inflammation were excluded from this investigation. After informed consent was obtained, patients were instructed to place Apytt Gel on their eyelids two to five times a day after washing their faces. Assessment of clinical findings using measurement of water retention ability were performed as previously described6,10 before and 4 weeks after the beginning of application. Statistical analysis was carried out by non-parametric tests (Wilcoxon test). A p value of 0.05 or less was considered statistically significant.

Water content of eyelid skin was significantly increased after treatment (30.6% (6.0%) before treatment, 41.2% (8.5%) after treatment; p<0.025) (Fig 1). Water evaporation values were significantly decreased after treatment (4.5 (1.4) × 10⁻⁷ cm²/s before treatment, 3.5 (0.9) × 10⁻⁷ cm²/s after treatment; p<0.05) (Fig 2). No slit lamp findings indicating toxicity were observed during the course of the study.

Comment

As the eyelid is a border line lesion between dermatology and ophthalmology with influences on ocular homeostasis, dermatologists often hesitate in prescribing sufficient medication to the eyelids. The assessment and treatment of atopic blepharitis is therefore an important aspect of ophthalmological examination in atopic patients.

Ceramide gel treatment for 4 weeks significantly improved the water retention ability of eyelid skin of patients with mild atopic blepharitis. Among various moisturizing products, the application of the ceramide gel is reasonable, because ceramide deficiency has been reported in the skin of atopic patients. Ceramide gel alleviates dryness without stickiness, and patients experience little discomfort. Comfort during application is thought to be one of the important factors for the compliance of patients. Some patients interrupt application of ointments, such as petrolatum (Vaseline), to the eyelid because of stickiness or because the shiny appearance around the eyes is cosmetically conspicuous. Although strong anti-inflammatory drugs are necessary in acute exacerbations of atopic blepharitis, moisturising of the skin using ceramide gel application represents a useful supplementary therapy during periods of relatively light inflammation.

Acknowledgement

The authors wish to thank Ms Mie Sasaki and Ms Saori Nishijima for their assistance in taking measurements of water evaporation from eyelid skin.

Financial support: none.

Proprietary interest: none.

References

An unusual tumour of the lacrimal gland

Lacrimal gland swelling is usually due to an inflammatory or neoplastic process. We report an oncocyctoma as the cause of lacrimal gland swelling and review the literature. Oncocytoma of the lacrimal gland is extremely rare and has been described only three times before.

Case report

A 72 year old man experienced periodic swelling of his right eyelid over a period of 9 months. For 2 months he complained of vertical diplopia. He had a past medical history of chronic obstructive airways disease and a past ocular history of early cataract, asteroid hyalosis of the vitreous body, and primary open angle glaucoma.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypertrophia. There was a 3 mm of proptosis of the right eye. Eye movements in that eye were restricted in all directions. Slight lamp examination showed bilateral mild cata- ract. Intraocular pressures were normal (12 and 10 mm Hg respectively). Funduscopic lamp evaluation showed bilateral mild cata- ract. There was no evidence of open angle glaucoma.

CT scan showing tumour in the right orbit (arrow). Axial slice shows angioinvasive growth was seen. A diagnosis of a radically removed oncocyctoma was made. Postoperative visual acuity of the right eye was reduced because of poor tear secretion confirmed on Schirmer testing and slit lamp examination showed filamentary keratopathy. Lubricating eye drops were prescribed and collagen punctal plugs were inserted in the superior and inferior puncta. Diplopia and the motility disturbance diminished. Follow up to date is 1½ years and no regrowth has been assessed.

Comment

Oncocytomas (synonyms: oxyphilic adenomas or oxyphilic adenomas) are benign epithelial tumours arising in the ductal cell lining of apocrine glandular structures. In an oncocyctoma the oncocytes can form nests, cords, and tubules. Oncocytes can be found among the epithelial cells of various normal organs. Oncocytomas occur frequently and have been described in salivary, thyroid, parathyroid, buccal mucosa, breast, kidney, pharynx, and larynx. If they occur near the eye, they are generally located in caruncle, lacrimal sac, accessory lacrimal glands of the conjunctiva and rarely in the lacrimal gland. For unknown reasons oncocytic lesions begin to appear in early adulthood and proliferate with age.

Most lacrimal gland masses represent inflammatory disease, either corresponding to antibodies or anti-inflammatory medication. Various malignant tumours of the lacrimal gland have been described varying from lymphoproliferative disorders to epithelial neoplasms. Approximately 50% of epithelial tumours are benign mixed tumours (pleomorphic adenomas) and about 30% are carcinomas. In rare cases a lacrimal gland mass is found to be an oncocyctoma, as described in our case and in three other cases in the literature, as or as an oncocyctoma.

Beskid and Zarzeka described a 39 year old woman with an oncocyctoma of the lacrimal gland. Riedel et al also reported a 1.5 year old Afri- can girl with an oncocyctoma of the lacrimal gland. This is the only case in the literature that reported on an oncocyctoma in childhood. Riedel et al also reported a 76 year old woman with an oncocyctoma of her lacrimal gland, that presented with a 2 month period of swelling of her lacrimal fossa without propto- sis. After excision there was no regrowth dur- ing a follow up period of 3.5 years. Prolifica- tions of oncocytes can also show malignant features and become malignant oncocyctomas. A 58 year old man reported by Riedel had a malignant oncocyctoma (syneo- nym: oxyphilic adenocarcinoma) of the lacrimal gland. He had a 3 month history of proptosis of his eye and diplopia. On presenta- tion the tumour had intracranial extension.

Despite radical resection and postoperative radiation therapy, he died 6 months later from liver metastases. Dorello et al described a similar case of a 59 year old patient with an oncocyctoma of the lacrimal gland with intracranial extension. The patient died approximately 2 years after development of his clinical symptoms (exophthalmos and diplopia), despite orbital exenteration and radiation therapy. A 81 year old woman reported by Bigger had a 6 month history of proptosis due to an oncocyctoma of the lacrimal gland. No follow up information was given.

In summary, a 72 year old man was found to have an oncocyctoma of the lacrimal gland. Oncocytoma has to be added to the differen- tial diagnosis of lacrimal gland swelling.

L J C Hartman, M P Maurits
Department of Ophthalmology, University Medical Center, Heidelberglaan 100, Utrecht, Netherlands

M R Conninga-van Dijk
Department of Pathology

Correspondence to: Dr Hartman; l.hartman@wanadoo.nl

Accepted for publication 16 July 2002

References

Morning glory disc anomaly: an atypical case

When optic disc elevation is encountered on funduscopy examination, the first concern is whether it represents true disc oedema. We present a patient who was urgently referred to us by a retinal specialist because of unilateral “disc swelling.” Further evaluation suggested that the patient had a congenital optic disc anomaly that was atypical in appearance, but most likely a variant of the morning glory disc anomaly (MGDA).

Case report

A 40 year old African-American woman with no visual complaints went to her local optometrist for a routine eye examination. At the optometrist’s office she was told that “in the back of her right eye she had a dark spot with a ring around it” and was referred to a retinal specialist. The retinal specialist found a mildly decreased visual acuity and a “swollen disc” in the right eye and the patient was referred for neuro-ophthalmic consultation. To her knowledge, she previously had never had a dilated funduscopy examination.

Best corrected visual acuity was 20/30 distance and J1 near in the right eye and 20/20 distance and J1+ near in the left eye. There was a 0.9 log unit right relative afferent pupillary defect. Her colour vision, external

Figure 2 Microscopic image showing oncocytes in the lacrimal gland.

Figure 1 CT scan showing tumour in the right orbit (arrow). Axial slice shows proptosis of the right eye.
examination, slit lamp biomicroscopy, intraocular pressures, and motility were all normal in both eyes. Funduscopic examination was normal in the left eye with an optic nerve cup to disc ratio of 0.4. The appearance of her right optic nerve (Fig 1) was that of an elevated ring around the centre of the disc, interrupted from about 7 o’clock to 9 o’clock. The macula and periphery were normal. Automated perimetry showed an enlarged blind spot and a relative superior altitudinal defect on the right and a full field on the left.

Fluorescein angiography showed staining of optic nerve tissue but no leakage of fluorescein outside the disc margin, confirming the absence of true disc swelling (Fig 2). Magnetic resonance imaging of the brain and orbits with gadolinium showed no pathology. B-scan ultrasonography excluded optic disc drusen. Coherent optical tomography (OCT) of the optic nerve showed the elevated annulus of tissue seen on fundus examination and also showed a peripapillary excavation of the retinal pigment epithelium (RPE) adjacent to the optic nerve (Fig 3). This was thought to be most consistent with MGDA.

Comment
Morning glory disc anomaly is a congenital anomaly of the optic disc that is typically unilateral (for review see Brodsky). The majority of patients have a visual acuity between 20/200 and counting fingers in the affected eye, although cases with 20/20 vision and no light perception have been reported. It is more common in females than males and is less common in African-Americans than white people. This condition is not typically an inherited condition or part of a multisystem genetic disorder, although it has been reported as part of the renal-cataract syndrome and trisomy 18. The term “morning glory syndrome” was coined for its ophthalmoscopic resemblance to the morning glory flower. In MGDA the optic nerve lies centrally within an excavation of the posterior globe. The size of the excavation varies from being relatively small, as in this particular case, to cases in which the excavation encompasses the macula, termed macular capture. In most cases there is a central fibrous tuft that obscures the central part of the disc and a variable amount of peripapillary pigment.

While MGDA is usually diagnosed by funduscopic examination alone, our case was atypical and not diagnosed immediately for several reasons: the patient had good visual acuity in the affected eye; she was African-American; there was no central fibrous tuft; and there was only a mild amount of peripapillary pigmentation. It is likely that our patient’s visual acuity was spared because of relative sparing of the papillomacular bundle (Fig 1). Indeed, the peripapillary annulus of tissue surrounding the optic nerve spared a small area temporally from about 7 to 9 o’clock. In this region there was some pigment disturbance, but little if any apparent fibrosis, compared to the rest of the optic nerve. While a previous study of eight patients’ suggested there was “no correlation between optic disc configuration and visual acuity” there was no patient in that study with a documented visual acuity better than 20/100.

Figure 1 Photograph of the patient’s right optic disc. An elevated annulus of apparent fibroglial tissue surrounds most of the disc, although it appears to spare part of the papillomacular bundle. An excavation of retina and retinal pigment epithelium surrounding the optic disc can be appreciated from about 12 o’clock to 7 o’clock.

Figure 2 Fluorescein angiography of the patient’s right eye. Both early (left; 32.6 seconds after injection) and late (right; 6 minutes and 14 seconds after injection) images show no evidence of fluorescein leakage outside the disc margin.

Figure 3 Optical coherence tomography (OCT) of the patient’s right optic nerve. Representative OCT shows retinal pigment epithelium lining an excavation surrounding the optic nerve, characteristic of morning glory syndrome.

Another atypical feature of our patient is the small amount of peripapillary pigment seen in the affected eye. The only area of pigmentation is between 7 and 9 o’clock. The remaining clock hours have elevated fibrovascular tissue but no visible pigment. This finding is not unexpected, as the visible peripapillary pigment in MGDA dissipates over time. This decrease in peripapillary pigment over time is believed to be secondary to a metaplasia of hamartomatous RPE into thin connective tissue and hyperplasia of the fibroglial tissue. Our patient was 40 years old at diagnosis of MGDA and it is possible that she had more peripapillary pigment when younger. It is also possible that the peripapillary excavation of this patient was larger when she was younger, as the glial hyperplasia tends to progressively elevate the disc over time. There is controversy regarding the aetiology of MGDA. Some believe it is a form of optic disc coloboma. This theory is supported by evidence that MGDA is seen along a continuum of other optic disc anomalies including coloboma in the renal coloboma syndrome. Based on the findings of a scleral defect, vascular anomalies, central glial tuft, and adipose and smooth muscle tissue in histopathological specimens, it has been hypothesised that MGDA may be a primary mesenchymal disorder or an abnormality in the relative growth between the mesoderm and ectoderm. Another theory proposes that an abnormal enlargement of the distal optic stalk during eye development allows the inner layer of the optic cup to enter, causing an excavation at the entry site. One problem in determining the aetiology has been the lack of clinical confirmation (primarily a lack of fundus photography) in previous histopathological reports. In this report we present OCT data that confirm these pathological findings in MGDA. Common to all of the histopathological reports is a layer of RPE that lines the peripapillary excavation. This histological feature is confirmed in the present case with OCT, which shows RPE extending posteriorly within the peripapillary scleral excavation as it approaches the optic nerve (Fig 3). We are currently evaluating other patients with MGDA using OCT and comparing these findings with the OCT appearances of other optic nerve anomalies, including optic disc coloboma.

MGDA is sometimes associated with a basal encephalocele and up to a third of patients with MGDA will develop a retinal detachment. Hence, the first step in the management of MGDA is recognising these associated conditions. Our patient did not have the characteristic facial features (flattened nasal bridge or cleft lip) nor did she have any neurological, endocrine, or respiratory symptoms to suggest she had a basal encephalocele and an magnetic resonance imaging confirmed its absence. Funduscopic examination showed no evidence of retinal detachment, and she will be followed carefully for this potential complication.

Although this is an atypical case, with no central fibrous tuft and little peripapillary pigmentation, this patient demonstrates the peripapillary excavation characteristic of MGDA. To our knowledge this is the first report of OCT of an eye with MGDA and confirms previous histopathological reports of MGDA showing RPE lining the central peripapillary excavation. Ongoing studies at our institution are using OCT to quantify the changes that occur with MGDA over time and to compare the features of MGDA with those of other optic nerve anomalies, including optic disc coloboma.
Idiopathic anterior hyaloid vessels

Anterior hyaloidal fibrovascular proliferation (AHFP), the growth of vessels across the anterior hyaloid face from an origin in anterior retina,1 was first described in phakic eyes after diabetic vitreoretinal surgery,2 but also reported following cataract surgery in aphakic eyes.3 Complications include cataracts, vitreous haemorrhage, tractional retinal detachment, ciliary body detachment, and phthisis bulbi.4 We present the first report of this entity occurring in a non-diabetic patient without previous ophthalmic surgery.

Case report

A 20 year old Asian man presented with acute right sided visual loss. There was no history of ocular trauma or family history of note. He was systemically well. Visual acuity was 6/12 right eye, 6/9 left. Vessels were visible on the right posterior lens capsule, associated with localised cataract and anterior vitreous opacification (Fig 1A). Clinical examination revealed no other ocular abnormality, but the temporal periphery of the right retina was obscured. Anterior segment fluorescein angiography confirmed perfusion of the vessels (Fig 1B). Posterior segment fluorescein angiography was of poor quality in the right eye and revealed no fundus or peripheral abnormality in the left eye. Fluorescein angiography of the patient’s only surviving parent was normal. Fasting blood glucose, Tiazosar/Tinosal/serology, haemoglobin electrophoresis, and skull/chest radiographs were normal. Doppler studies indicated a probable feeder vessel derived from anterior retina but no evidence of tumour or other pathology (Fig 2).

Progressive cataract reduced visual acuity to 6/24 within 2 weeks of presentation. Phacoemulsification surgery was performed, followed by closure of the abnormal vessels with krypton laser (568 nm). Nd:YAG capsulotomy was performed 6 weeks after surgery. Two weeks later, fibrous anterior uveitis and vitritis developed which resolved with topical steroid medication. A year later, vessels persisted in the rolled capsular edge, and opacification of the anterior hyaloid necessitated Nd:YAG laser discission. Two and a half years after presentation, he is asymptomatic with 6/9 visual acuity in the right eye.

Comment

In most instances of retinal neovascularisation, an angiogenic stimulus, such as capillary non-perfusion or inflammation, can be identified.5 In this case, no evidence was found of capillary non-perfusion, or any, other than postoperative, inflammation.

A number of specific diagnoses were considered. No temporal traction on vascular arcades or optic disc was seen in the affected eye, and peripheral retinal vasculature was normal, where seen in the affected eye, and in the fellow eye. There was no history of low birth weight or prematurity as in retinopathy of prematurity. There was no family history, and the retinal peripheries of the parent were normal, which makes dominant exudative vitreoretinopathy unlikely. No inflammation, other than post-surgical, was identified in anterior or posterior segment, and visible pars plana appeared normal. Tzvaxa and Tznaploma serology was negative. There was no visible peripheral retinal vasculitis or systemic evidence of sarcoidosis or multiple sclerosis. No evidence of ocular trauma was found, and no foreign body was identified radiographically. The patient is not diabetic, screening for haemoglobinopathy was negative, and there were no ophthalmoscopic or angiographic signs of retinal vascular occlusion. No evidence of a hyperviscosity syndrome was found.

The patient’s age, sex, and race are typical of patients suffering from idiopathic peripheral vaso-occlusive retinopathy (Eales’ disease), but the absence of retinal vasculitis, vitreous and retinal haemorrhage, and the unilateral nature of disease, are less characteristic. No sign of tumour was apparent on ultrasonography, and no evidence of arteriovenous malformation was found in the eye or body. He had

References

no features of incontinentia pigmenti or facioscapulohumeral muscular dystrophy. The diagnosis therefore remains uncertain.

Treatment was mandated on the basis of visual loss. Vitreoretinal opinion preferred phacoemulsification surgery to pars plana vitreoretinectomy because of the absence of definable vitreous or peripheral retinal disease. The vessels were closed with laser before capsulotomy to avoid haemorrhage, as has been described after capsulotomy in diabetic patients with AHFPP.

J G F Dowler, J S Mehta, A M Londers, A M P Hamilton
Medical Retinal Service, Moorfields Eye Hospital, City Road, London EC1V 2PD, UK

Correspondence to: Mr J S Mehta; jodmehta@hotmail.com

Accepted for publication 8 July 2002

References

Paravertebral primitive neuroectodermal tumour presenting with Horner’s syndrome

We describe a peripheral primitive neuroectodermal tumour (PNET) arising from the cervical paravertebral region of a 34 year old woman, who presented with Horner’s syndrome and a cervical radiculopathy. PNETs are rare malignant round cell tumours. This appears to be the first documented case of localised PNET with Horner’s syndrome at initial presentation.

Case report

A 34 year old woman presented with acute left scapula pain, numbness of her left forearm, a left upper lid ptosis, and left hemifacial anaesthesia. Her symptoms disappeared spontaneously within a fortnight, but returned 2 months later with greater intensity. Examination then revealed wasting of the small muscles of her left hand with reduced power in the distribution of C8 and T1; there was loss of light touch and pinprick in the C8 dermatome. The presence of left 1 mm upper lid ptosis, miosis, hemifacial anaesthesia, and 1 mm lower lid (“upside down”) ptosis was highly suggestive of a preganglionic left Horner’s syndrome (Fig 1A). Magnetic resonance imaging (MRI) of the neck showed a large mass arising from the T1, T2 intervertebral foramen extending to the root of the left side of the neck and the region of the apex of the left lung (Fig 1B).

A diagnostic biopsy was performed through a posterolateral approach, excising the extra- dural component of the tumour within the
nerve root canal. Histology revealed a malignant round cell tumour consistent with a peripheral primitive neuroectodermal tumour (PPNET, Fig 2). Immunohistochemical studies demonstrated positivity for focal vimentin, cytokeratins, synaptophysin, and MIC-2, but were negative for GFAP (glial fibrillary acidic protein), S100, desmin, and the lymphoid markers LCA, CD3, and CD20. Staging investigations showed no evidence of metastatic disease and therefore the diagnosis of localised PPNET was made.

The patient received chemotherapy as primary treatment followed by radiotherapy and has been in remission since. A year later she was referred to our unit for correction of her left ptosis, and underwent left anterior levator resection with a satisfactory result. Four years following her initial diagnosis she remains free of recurrent disease.

Comment

Horner’s syndrome is caused by an oculosym pathetic deficit to the pupillodilator and superior cervical sympathetic ganglion, and central neurological tract signs were absent.

Preganglionic Horner’s syndrome is frequently associated with neoplasms of the pulmonary apex, mediastinum, or neck, as illustrated by the location of the PPNET seen in our patient (Fig 1B).

PPNET is a rare malignant small round cell tumour that can affect any age group but is thought to peak in adolescence, with no sex predilection.

The most common location is the thoracopulmonary region, followed by the head and neck. Extraosseous Ewing’s sarcoma is now considered a form of PNET, through immunohistochemical, ultrastructural, and histogenetical similarities.

Both tumours express elevated levels of glycoprotein p30–32, a product of the MIC-2 gene, in a unique and highly selected fashion, as well as specific translocations involving a gene on chromosome 22q12. Indeed, the tumour cells of our patient exhibited immunohistochemical reactivity for MIC-2, consistent with a PPNET.

The association of Horner’s syndrome with C8/T1 cervical radiculopathy is classically seen in Pancoast’s syndrome, which is due to superior sulcus tumours of the lung that involve the chest wall and spinal column. The presentation of PPNET with Pancoast’s syndrome has been reported previously, but in this case the tumour had massively infiltrated the left thorax with widespread metastases, resulting in death at 17 weeks following initial diagnosis. In contrast, our patient presented with Horner’s syndrome at a relatively early stage of the disease, since the PPNET was localised with no evidence of metastatic spread. The malignant nature of this tumour highlights the importance of comprehensively investigating any patient with Horner’s syndrome, especially when associated with cervical radiculopathy.

Acknowledgement

We thank Dr Maria Thom, MRCPATH, Division of Pathology, Institute of Neurology, London, for her assistance and permission in the preparation of pathological figures.

Association of keratoconus and Avellino corneal dystrophy

Keratoconus is an idiopathic, progressive, non-inflammatory ectasia of the axial cornea. Its association with other systemic disorders or ocular disease have been reported, but its specific origin remains unknown. Recently, Munnier and associates detected that four types of autosomal dominant corneal dystrophy result from mutation in the human transforming growth factor β induced gene (BIGH3), the product of which has shown to be the protein keratopethelin (R553W for granular corneal dystrophy, R553Q mutation for Reis-Bückler’s corneal dystrophy, R1246 mutation for Rieger’s corneal dystrophy type I, and R124H mutation for Avellino corneal dystrophy).

Molecular genetic analysis of various corneal dystrophies which had previously presented an insuperable challenge to clinical diagnosis, now clearly demonstrates the distinct phenotypes. We report a rare case of bilateral keratoconus in association with Avellino corneal dystrophy diagnosed by molecular genetic analysis.

Case report

A 35 year old man had complained blurred vision in both eyes for several years. His general health was good and there was no history of atopic disease, connective tissue disease, or ocular trauma. His familial history was unknown.

His best corrected visual acuity was RE 20/30 and LE 20/100. Slit lamp examination revealed bilateral non-inflammatory corneal thinning with protrusion of the central thinning areas. Fleischer ring was found in both corneas. Central corneal thickness was 428 μm on the right and 421 μm on the left measured by ultrasonic pachymetry. There was also clinical evidence of granular corneal dystrophy in both eyes. Discrete grey-white opacities and star-shaped spicular opacities

References

were seen in anterior stroma (Fig 1, top). Computed corneal topography showed inferior steepening consistent with the diagnosis of keratoconus (Fig 1, bottom). With rigid gas permeable contact lenses his visual acuity corrected to 20/20 right and 20/25 left. The remainder of the ocular examination was unremarkable.

After obtaining informed consent, we collected venous blood from the patient and extracted genomic DNA. Using appropriate primers, we amplified exons 4 and 12 of the FIGH3 gene by polymerase chain reaction (PCR) and directly sequenced the products. We detected a heterozygous G→A transition in codon 124 that results in a substitution of arginine to histidine in this patient (Fig 2). These genetic findings were consistent with Avellino corneal dystrophy.

Comment

To our knowledge, this is the first molecular genetic report of a bilateral association of keratoconus with Avellino corneal dystrophy.

There is only one case report in the literature of a patient with keratoconus associated with Avellino corneal dystrophy. Sassani and associates reported the bilateral association of keratoconus and Avellino corneal dystrophy. There is only one case report in the literature of a patient with keratoconus associated with Avellino corneal dystrophy. However, those cases were diagnosed clinically, not histopathologically or genetically. A clinical diagnosis of the different types of corneal stromal dystrophy is difficult, especially for granular corneal dystrophy and Avellino corneal dystrophy. Some cases previously reported as granular corneal dystrophy might be actually cases of Avellino corneal dystrophy.

The involvement of genetic factors has been reported in keratoconus, but its hereditary pattern was not identified. A gene for at least one form of hereditary keratoconus has been mapped to human chromosome 21. In our case, it is unclear whether a genetic factor had a role in the simultaneous development of keratoconus and Avellino dystrophy. There may be some linkage between the genes responsible for these two abnormalities. In our case, molecular genetic analysis clearly demonstrated the presence of distinct phenotype, which had not previously been presented clinically.

The authors have no proprietary interest in any aspects of this work.

S Igarashi
Department of Ophthalmology, Asahikawa Medical College, Asahikawa, Japan

Y Makita
Department of Public Health, Asahikawa Medical College, Asahikawa, Japan

References

Presence of vitronectin in neovascularised cornea of patient with gelatinous drop-like dystrophy

Gelatinous drop-like corneal dystrophy (GDDL) is a rare autosomal recessive disorder that is most often seen in Japan. This bilateral dystrophy usually presents in the first decade of life and is associated with a decrease of visual acuity. Typically, a mulberry-like opacity is present with protruberant subepithelial mounds that grow with age. Corneal neovascularisation (NV) also accompanies advanced cases. Corneal transplantation is the major therapeutic option for GDDL, but because NV can significantly increase the risk of graft rejection, a better understanding of the mechanism(s) for the corneal NV would be valuable.

Case report

A 39 year old Japanese man with GDDL was studied. His right eye had band-shaped corneal opacities in the interpalpebral area with a number of gelatinous prominences, and vascular invasions from the superior limbus into the clear cornea (Fig 1A). Because the visual acuity of the right eye had decreased to 20/800, penetrating keratoplasty was performed, and the diagnosis of GDDL was confirmed by characteristic histopathological findings of amyloid deposits beneath the corneal epithelium and mutation of the M1S1 gene.
It was recently reported that vitronectin, a multifunctional extracellular matrix adhesion molecule, is often a component of the abnormal extracellular deposits in various age-related human diseases such as age-related macular degeneration and amyloidosis. This suggested that similar pathways may be involved in the etiologies of other age-related diseases. Because the disease state of GDLD deteriorates with age, we hypothesized that similar vitronectin-related pathways may also be associated with GDLD, and examined whether vitronectin was expressed in the GDLD cornea by immunohistochemistry.

An antibody directed against vitronectin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) exhibited intense reactivity with the infiltrating leukocytes and corneal epithelium around the deposits. Substantial levels of vitronectin protein were also present in the deposits (Fig 1B, C).

Because the production of new extracellular matrix proteins has a crucial role in supporting cell proliferation that is necessary for new blood vessel growth, and because vitronectin receptors, such as integrin αvβ3 and αvβ5, are involved in angiogenesis, we further hypothesized that the accumulated vitronectin in the GDLD cornea may also have a role in the accompanying corneal NV.

We therefore examined the angiogenic potential of vitronectin using an in vivo corneal assay. Five µl hydron pellets (Interferon Sciences, New Brunswick, NJ, USA) containing 1 µg of mouse vitronectin (Invitrogen, Carlsbad, CA, USA) were implanted into the cornea of a 39-year-old man with GDLD. Pellets were formulated and implanted into rat corneas. After 7 days, vessels in the region of the pellet implant were photographed. Pellets contained PBS [A] or vitronectin [B] Six rats were used to assess the effect of vitronectin and neovascularisation was observed in all six replicates.

Comment
These results provide the first evidence for the expression of vitronectin in the cornea with GDLD, and for the in vivo induction of angiogenesis by vitronectin. The results indicate that vitronectin may have a role in corneal NV by angiogenesis. Therefore, further studies exploring mechanisms of corneal NV mediated by vitronectin-integrin system, and how mutation of MISSI leads to accumulation of vitronectin with more samples, may eventually offer a novel insight in understanding the etiology of corneal NV associated with GDLD.

Acknowledgements
This work was supported in part by grants from Sumitomo Life Social Welfare Services Foundation (SV), Japan National Society for the Prevention of Blindness (AV), and Japan Eye Bank Association (AV).

Factor XII deficiency and recurrent sixth nerve palsy
Factor XII deficiency is associated with thrombosis. Severe deficiency increases an individual’s prothrombotic tendency but with minimal reduction in levels there is less certainty. We present a case of recurrent cranial nerve palsy due to severe factor XII deficiency. To our knowledge, this is the first reported case of a recurrent cranial nerve palsy associated with factor XII deficiency.

Case report
A 58 year old white male presented with an acquired constant incomitant horizontal diplopia. He had had a previous episode of horizontal diplopia of 3 weeks’ duration 6 months previously with spontaneous resolution and a further episode 18 years before that had been otherwise well. He was not hypertensive or diabetic, of normal weight and a non-smoker, and without any cardiovascular disease. There was no family or personal history of venous or arterial thrombosis. On examination he was found to have bilateral sixth nerve palsies without any associated headache or papilloedema. Detailed magnetic resonance imaging with contrast and lumbar puncture opening pressure and investigation was normal.

Owing to the recurrent nature of the nerve palsy and the initial young age of presentation, a further prothrombotic examination was undertaken. Laboratory investigations showed a normal full blood count, plasma viscosity, liver function tests, glucose, homocysteine, prothrombin time, and fibrinogen assay. There was a significantly prolonged activated partial thromboplastin time of 74.7 seconds (normal range 24–32), which was still abnormal on repeat testing (90 seconds). Further laboratory studies demonstrated severe factor XII deficiency which was consistent on repeated testing (<1% of normal levels) but otherwise normal levels of protein S, protein C, antithrombin and antithrombin III (17.4%). Factor VIII, von Willebrand factor, and factor V Leiden mutation or prothrombin G20210A allele were not found.

References
He was fitted with Fresnel prisms to relieve his diplopia and was followed up 3 weeks later. By that time his diplopia had completely resolved and he had full abduction in both eyes.

Comment
With this recurrent and resolving pattern of cranial nerve palsy in a patient with no other risk factors for arteriosclerosis and a normal magnetic resonance image and lumbar puncture, the most likely predisposing factor in this case is his prothrombotic state associated with severe factor XII deficiency.

Severe factor XII deficiency is a genetic determinant for thrombosis.1 It is not associated with any other clinical manifestations and prolonged activated thromboplastin time is a consistent finding in any level of factor XII deficiency. The only previously reported ophthalmic complications of factor XII deficiency are two cases of central retinal vein occlusion in patients without any vasculopathic risk factors. Assay for factor XII is not routinely done on thrombophilia screening protocols. It has been suggested that the frequency of factor XII deficiency (1.5–3%) is high enough to warrant the inclusion of factor XII assays in routine thrombophilia screening.2 Detailed thrombophilia screening of healthy populations may produce an identifiable abnormality in 10% but clearly 10% of the population are not clinically affected in their lifetime. Therefore the need for additional management should be assessed according to the presence of concurrent risk factors in an algorithmic fashion.3 Since his cranial nerve palsy resolved quickly and there was no family history of vascular thrombosis he was treated empirically with no other evidence to support its benefit in this condition.

A Kipioti, O C Backhouse, P M Jacobs, M R Howard
Department of Ophthalmology, York District Hospital NHS Trust, York, UK

Correspondence to: A Kipioti, Eye Department, Clarendon Wing, Leeds General Infirmary, LS2 8NS, UK, akipioti@doctors.org.uk

Accepted for publication 12 August 2002

References
1 Lee GR. Wintrobe’s clinical haematology. 10th ed. Philadelphia: Williams and Wilkins, 1999:688--9, 1706--9

Unilateral proptosis: the role of medical history
The most common cause of bilateral and unilateral exophthalmus among adults is Graves’ disease. Bilateral exophthalmos, although frequently seen in connection with thyroid diseases, has a much larger differential diagnosis than bilateral exophthalmus. With unilateral presentation, one should think of orbital pseudotumours, orbital cellulitis, cavernous sinus thrombosis, or intraorbital neoplasms.1
Graves’ ophthalmopathy (GO) usually is associated with Graves’ hyperthyroidism (GH) although the temporal relation to thyroid disease is not consistent. It has been estimated that 77% of GO patients are hyperthyroid, 21% euthyroid, and 2% hypothyroid.2 Case 1

Case 1
A female patient born in 1922 became hyperthyroid with minimal eye signs with possibly some lid retraction in 1948. She was treated by thyroidectomy and became clinically euthyroid. In 1980 her thyroid function and radioiodine uptake were normal. In 1988 another CT scan was performed which showed enlargement of all recti muscles of right eye and in lesser extent of the left eye with signs of compression of the right optic nerve. An orbital decompression through a Caldwell–Luc approach was performed on the right side. Postoperatively, visual acuity of the right eye improved to 20/30 and proptosis in the right eye was reduced by 8 mm. A strabismus convergens of the right eye was the main side effect.

In April 2001 a bilateral medial recession and a recession of the inferior rectus of the right eye were performed to treat the strabismus convergens. Binocular single vision was achieved in the primary position with some diplopia at extremes of gaze.

Comment
Unilateral proptosis as a result of Graves’ disease cannot be rejected as a diagnosis, even 20 or 30 years after the onset of thyroid disease. Only one retrospective study of patients mentioned intervals up to 25 years without giving exact numbers and underlying thyroid disease.3 For hypothyroidism and GO one study suggests intervals exceeding 15 years.4
Thyroid hormone testing should be performed to rule out abnormalities in thyroid hormone levels although thyroid status does not seem important as the active phase of ophthalmopathy can occur during hyperthyroidism, hypothyroidism, and euthyroidism.5 Thyroid antibody testing may be supportive for the diagnosis. A CT scan can be essential in further analysis showing enlargement of extraocular muscles with sparing of the tendons.6 It is also known that a CT scan can demonstrate contralateral eye muscle involvement in 50–90% of patients with clinically unilateral eye involvement.7
Our two patients illustrate that the medical history is important in evaluating proptosis. One should always think of Graves’ disease as a possible cause of unilateral exophthalmos even though a patient may have had thyroid disease more than 20 years earlier.
A 30 year old homosexual HIV+ man was referred to the uveitis department complaining of blurred vision in the left eye. He was taking isoniazid, lamivudine, ritonavir, and saquinavir. His last CD4+ count was 128 cells/μL and vein occlusions. Most of the cases show spontaneous recovery without therapy.

There are only few reports of intraocular cat scratch disease in HIV+ patients. We report an unusual case of cat scratch disease presenting as helioid unifocal choriditis in an HIV+ patient that showed good response to systemic therapy.

Case report

A 30 year old homosexual HIV+ man was referred to the uveitis department complaining of blurred vision in the left eye. He was taking isoniazid, lamivudine, ritonavir, and saquinavir. His last CD4+ count was 128 cells/μL and viral load 1 300 000. His visual acuities were 6/6 in the right eye and counting fingers in the left. There was no inflammation in the anterior chambers or in the vitreous. Ophthalmoscopy revealed a yellowish choroidal lesion surrounded by fluid and haemorrhages in the macula of the left eye (Fig 1). Fluorescein angiography showed an angiomatous lesion corresponding to those seen clinically. Blood tests were ordered including VDRL, toxoplasmosis serology, Lyme disease serology, ELISA for toxocariasis and were all negative. Computed tomography (CT) scan and serum studies were unremarkable. Blood sample was sent to CDC Atlanta for Bartonella serology. Since clinical diagnosis was cat scratch disease and most patients show good recovery without treatment we decided not to treat before results of blood tests. We kept examining the patient every week with ophthalmoscopy and fluorescein angiography (Fig 2A, B). The lesion progressively increased in size but he did not show visual acuity deterioration.

A month after presentation the lesion had increased and four small lesions appeared in the right eye. His visual acuity dropped to 6/12 in the right eye. His visual acuity dropped to 6/12 in the right eye when they reported six young patients with a clinical diagnosis was cat scratch disease and most patients show good recovery without treatment we decided not to treat before results of blood tests. We kept examining the patient every week with ophthalmoscopy and fluorescein angiography (Fig 2A, B). The lesion progressively increased in size but he did not show visual acuity deterioration.

Fifteen days after treatment was started the lesions in the right eye disappeared and the macular lesion in the left eye resolved completely.

Comment

There is a well established association between neuroretinitis and cat scratch disease although many different clinical presentations have been described.1 Ormerod et al2 described two patients with small areas of retinitis and arteriolar occlusions. Pollock and Kristinsson3 described one patient with cat scratch disease and helioid unifocal choriditis. Hong et al4 first described this syndrome when they reported six young patients with a solitary round yellow choriotinal lesion associated with subretinal fluid. There was no association with inflammatory or infectious diseases. Fish et al5 reported a case of peripapillary angiomatosis associated with neuroretinitis. Our patient presented with clinical features of helioid unifocal choroiditis but with angiogram we could see an angiomatous-like lesion.

The treatment of ocular cat scratch disease remains controversial. Pollock and Kristinsson3 reported a case that improve ment in visual acuity from 6/12 to 6/6 occurred after 3 weeks without treatment. One of the cases described by Ormerod showed some benefit after treatment although his recovery was very slow. The second patient showed improvement without treatment. Warren et al6 reported an HIV+ patient with cat scratch disease whose lesion enlarged without treatment. Once the diagnosis of Bartonella was confirmed by polymerase chain reaction of the retina sample, the patient was started on systemic antibiotics with good results. Considering that spontaneous recovery could occur we decided not to treat until our patient showed deterioration in the left eye and involvement in the fellow eye.

Ophthalmologists should be aware of this unusual presentation of cat scratch disease with helioid unifocal choriditis and angiomatous-like lesions. Although larger series and control studies are needed, HIV+ patients with intraocular manifestations of cat scratch disease may benefit from systemic treatment with antibiotics.

References

Simultaneous translocation of the macula and underlying retinal pigment epithelium during macular translocation surgery in a patient with long standing myopic neovascular maculopathy

Limited macular translocation has been reported to be a promising treatment for some patients with choroidal neovascularisation.1–4 Although this technique has the advantage of being less invasive, there is documentation of...
describe an unusual complication associated with limited macular translocation in a patient with long standing choroidal neovascularisation.

Case report
A 35 year old woman was referred to our department because of a gradual decrease in visual acuity in her right eye. At the first visit, her best corrected visual acuity was right eye, 20/40, with a refractive error of −17.5 dioptres in the spherical equivalent. Clinical and angiographic examinations showed a juxtapfoveal choroidal neovascularisation. During the subsequent follow up period, choroidal neovascularisation and surrounding retinal pigment epithelium atrophy gradually expanded and involved the subfoveal region (Fig 1A). We gave the patient detailed information on the available therapeutic options, including macular translocation, but she chose conservative follow up rather than surgical intervention. Three years after her first visit, the visual acuity in her right eye worsened to 20/100. At that time, the patient decided to have surgical treatment. With her consent, limited macular translocation was performed on her right eye, as described previously. Postoperatively, fluorescein angiography showed an extraretinal neovascular membrane with a foveal shift of 0.7 disc diameter (Fig 1B). Sharply demarcated hypofluorescence in the macular area was also demonstrated. Biomicroscopic examination revealed a slightly hyperpigmented lesion underneath the translocated macula, which corresponded to the area of hypofluorescence. A horizontal optical coherence tomography (Humphrey Systems, San Leandro, CA, USA) section taken through the translocated macula displayed highly reflective double layers (Fig 2A). These findings indicate that the abnormal subfoveal retinal pigment epithelium, which adhered tightly to the overlying neurosensory retina, probably because of the long history of neovascular maculopathy, was translocated with the macula during surgery. Two reflective bands observed on an optical coherence tomography image may have corresponded to the native retinal pigment epithelium and abnormal retinal pigment epithelium translocated with the macula. Indocyanine green angiography findings supported this speculation (Fig 2B).

Despite sufficient foveal displacement, the patient’s visual acuity has not improved. During a follow up period of 15 months, it has remained at the same level as her preoperative vision.

Comment
In many eyes with choroidal neovascularisation, the macula can easily be separated from the subjacent fibrovascular tissue. In some eyes with long standing choroidal neovascularisation, however, the outer portion of neurosensory retina may adhere firmly to the subjacent tissue. In such cases, an inner portion of fibrovascular tissue may be torn off and translocated with overlying neurosensory retina during macular translocation. The underlying healthy retinal pigment epithelium covered with the translocated abnormal tissue may not be able to fulfil its physiological roles on the overlying neurosensory retina, and good functional recovery of the translocated macula is unlikely to be achieved. As documented here, simultaneous translocation of the underlying abnormal retinal pigment epithelium associated with long standing choroidal neovascularisation can occur during limited macular translocation and result in an unsatisfactory visual outcome. When patients are deciding whether to consent to surgical intervention with limited macular translocation in such cases, they should be informed of the benefits and risks of the treatment, with due consideration of this complication.

Fungal and bacterial chronic endophthalmitis following cataract surgery
Endophthalmitis, although rare, is one of the most vision threatening complication of cataract surgery. The majority of these infections...
are bacterial in the Western world. The occurrence of fungal endophthalmitis after cataract surgery is rare as well as polymicrobial infections.1 We report a case of chronic postoperative endophthalmitis caused by bacterial and fungal pathogenic agents.

Case report
A 73 year old woman was referred for pain and redness in the left eye. Her past history was remarkable for an extracapsular cataract extraction in the left eye with a posterior chamber intraocular lens implant that had been performed in Turkey in 1998. The patient had recurrent episodes of decreased vision and ocular pain in the postoperative course and was treated with periocular injections of corticosteroids over 2 years. On presentation, visual acuity was hand movements in the left eye. Slit lamp examination of the left eye showed a white corneal infiltrates involving the superior and nasal quadrant (Fig 1). There was a moderate anterior chamber reaction and 1 mm hypopyon. The implant was in good position and no residual cortical material was seen. The vitreous showed 2+ cells. Intraocular pressure was normal. Examination of the right eye was normal except for a mild nuclear cataract. The diagnosis of chronic endophthalmitis was suspected.

The aqueous cultures were sterile for bacteria and fungi. Intravitreal injections of vancomycin and amikacin were performed. Postoperatively, the patient was given intravenous ciprofloxacin, piperillin, and topical fortified tetracillin, gentamicin, and vancomycin drops. The eye showed no improvement during the next 3 weeks and the patient subsequently underwent removal of the implant and capsular bag which grew Candida parapsilosis, Corynebacterium striatum, and Staphylococcus epidermidis.

Intravitreal injection of amphotericin B (5 µg, weekly), topical amphotericin B (7 mg/ml eye drops every 2 hours), and oral fluconazole (400 mg a day) were then added to the patient’s regimen. A decrease in intraocular inflammation and corneal infiltrates was noted after 1 month of treatment that was stopped by the patient. Six months later, visual acuity of the left eye was no light perception and biomicroscopic examination showed panophthalmitis. The patient refused medical treatment and enucleation was performed.

Comment
Species of candida, other than Candida albicans, are normal flora of cutaneous and mucocutaneous surfaces and are only rarely incriminated as agents of clinical disease in immunocompetent hosts. Candida parapsilosis is in fact one of the most common fungi cultured from the normal human external eye.1 However, it can cause infectious crystalline keratopathy or, more typically, suppurative stromal keratitis. Candida parapsilosis has also been reported as a cause of small epidemics of postoperative endophthalmitis.2 In the present case, Candida parapsilosis could be considered as a true pathogenic organism because of its localisation, in the capsular bag, and also because antifungal therapy was effective.

On the other hand, Staphylococcus and Corynebacterium species are frequently identified in postoperative endophthalmitis.3 This case is, to our knowledge, the first documented report of bacterial and fungal endophthalmitis following cataract surgery.

The use of broad spectrum antibiotics, the administration of steroids, and the increased number of patients with local or systemic immunosuppression could explain the development of such infections which are frequent in post-traumatic endophthalmitis but extremely rare after cataract surgery.4 However, cross contamination by hospital personnel may also account for increase in yeast infections in certain environments. A recent survey of hospital personnel revealed that 70% of nurses and non-nursing hospital personnel carried yeasts on their hands, particularly subungual spaces, with 70% of nurses and non-nursing hospital personnel.6

The use of broad spectrum antibiotics, the administration of steroids, and the increased number of patients with local or systemic immunosuppression could explain the development of such infections which are frequent in post-traumatic endophthalmitis but extremely rare after cataract surgery.4 However, cross contamination by hospital personnel may also account for increase in yeast infections in certain environments. A recent survey of hospital personnel revealed that 70% of nurses and non-nursing hospital personnel carried yeasts on their hands, particularly subungual spaces, with 70% of nurses and non-nursing hospital personnel.6

This case demonstrates the atypical presentation and the poor prognosis of polymicrobial endophthalmitis. Identification of all the organisms is essential before the onset of therapy, emphasising the need for complete microbiological evaluation of any postoperative endophthalmitis.

T Bourcier, S Scheer, C Chaumeil, C Morel, V Borderie, L Laroche
Quinze-Vingts National Center of Ophthalmology, Paris, France
Correspondence to: Tristan Bourcier; bourcier@quinze-vingts.fr
Accepted for publication 28 August 2002

References

Surgical performance for specialties undertaking temporal artery biopsies: who should perform them?

We read with interest the paper by Galloway and colleagues which suggests that ophthalmologists are best suited to perform temporal artery biopsies.1 We recently completed a retrospective study of all the temporal artery biopsies performed at four teaching hospitals (Hammersmith Hospital, Charing Cross Hospital, St Mary’s Hospital and The Western Eye Hospital) in north London between January 1998 and January 2002. Ninety one patients underwent 92 biopsies. Of these, 15 were positive for temporal arteritis implying a 16% positive biopsy rate which is compatible with Galloway et al’s results. Ophthalmologists performed 54 biopsies (59%) while general and vascular surgeons (GVS) performed 38 biopsies (31%). Both groups had similar positive biopsy rates—ophthalmologists 10/54 (19%) and GVS 5/28 (13%). In an analysis of the ability to perform biopsies, the ophthalmologists had two failed biopsies (one specimen—no artery identified and one specimen—crushed artery) while the GVS group had one failed biopsy (no artery identified). The average artery length was 13.0 mm (range 5–21 mm) for the ophthalmologists and 14.0 mm (range 7–22 mm) for the GVS group.

We disagree with Galloway and colleagues’ assertions that ophthalmologists are best suited to performing temporal artery biopsies as our study found that both groups of
surgeons obtained similar lengths of artery and had similar positive biopsy rates. We note that in their study, while the vascular surgeons only performed two of the 41 biopsies, the average length of specimen obtained was 22.5 mm, thus suggesting that the vascular surgeons may well be the best suited to perform these biopsies. In Charing Cross Hospital, the vascular surgeons routinely use a Doppler ultrasound probe to help detect and demarcate the superficial temporal artery before biopsy and this practice has been advocated by other studies to help improve the yield of the biopsy. 11 In our study, all the biopsies performed by ophthalmologists were done as extra cases in theatre and seven cases had to be performed outside normal working hours as emergencies because of lack of theatre time. The fact that ophthalmologists performed 59% of biopsies may be due to the fact that all four hospitals had large neurological and rhumatological units attached to them. We feel that both ophthalmologists and general and vascular surgeons are equally capable of performing temporal artery biopsies and that guidelines should be developed locally to decide who should perform the biopsies. More importantly, the follow up of these patients should be clearly stated and be ideally under the care of the rheumatologists. K Fong, V Ferguson The Western Eye Hospital, Marylebone Road, London NW1 3YE

Correspondence to: Dr Kenneth Fong; fongcsc@yaho.co.uk

References

Major complications of endoscopic sinus surgery: a comment

We were pleased to read the informative article by René et al. The authors refer to “Onodi cells” as “aerated posterior ethmoid air cells along the optic canal.” Could it be that they meant to refer to the cells as “Onodi cells”? Onodi described a number of variations of posterior ethmoid anatomy. Endoscopic sinus surgeons refer to the pattern of extramural pneumatization of the ethmoid lateral or superolateral to the sphenoid, where the posterior ethmoid is indented by the optic canal, as an Onodi cell. More recently it has been suggested that this cell is better characterised as a “sphenoethmoidal” cell. 1

The main significance of the Onodi or sphenoethmoid cell is that while sinus surgeons expect to find the optic nerve in the sphenoid sinus, they are not routinely looking for it in the posterior ethmoid. Consequently, the chance of iatrogenic injury is likely to be higher in patients with Onodi cells and even higher in patients with extensive pneumatized Onodi cells. 2 The exact incidence of Onodi cells is unclear. Endoscopic dissection studies suggest an incidence as high as 39% or 42%. CT imaging studies suggest a lower incidence of 7%. Driben et al. 3 feel that the likelihood of a sphenoethmoid cell increases with increasing obliquity of the anterior sphenoid wall. Racial factors may also have a role as Onodi cells appear to be more common in Asian patients. 4

Every effort should be made to identify sphenoethmoid cells preoperatively and to be aware of intraoperative clues such as anterior sphenoid wall alignment, which may point to the presence of an Onodi cell. Attention to these important details will increase the likelihood of uncomplicated endoscopic sinus surgery at the sphenoethmoidal junction.

S M Graham Department of Otalaryngology/Head and Neck Surgery K D Carter Oculoplastic and Orbital Service, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.

Correspondence to: Scott M Graham, MD, University of Iowa Hospitals and Clinics, Department of Otolaryngology/Head and Neck Surgery, 200 Hawkins Drive, 21201 PF, Iowa City, IA 52242–1093, USA; scott.graham@uiowa.edu

References
6 Yeoh KH, Tan KK. The optic nerve in the sphenoid wall. Oculoplastic and Orbital Service, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.

We are also concerned that the use of intraoperative antimitotabes in the trabeculectomy group added a major confounding variable in this study. This is particularly perplexing as the authors’ viscosanalostomy technique primarily relied on subconjunctival filtration, as evidenced by their scleral flap design and loos suture technique in which only three 10/0 nylon sutures were used. Furthermore, their excellent early success rate of viscosanalostomy (95% at 6 months), the presence of blebs in their successful viscosanalostomy procedures, the lack of one in their failures, and the need for postoperative bleed needling and 5-fluorouracil injection all suggest use of mitomycin-C and 5-fluorouracil improves the success rate of glaucoma filtering surgery by reducing episceral fibrosis, and probably explains the difference in success rates in this study. We wonder what the results would have been had the use of intraoperative antimitotabes been used in all groups, or if none was used at all.

In contrast with the authors’ technique, we employ Stegmann’s approach to viscosanalostomy in using a parabolical superficial flap secured tightly with five sutures in a relatively watertight fashion. 5 Although after these blebs may develop, most patients achieve IOP lowering through multiple alternate pathways including uveoscleral, through Schlemm’s canal, and subconjunctival. 5 Certainly in higher risk cases, we use antimitotabes for antimitotabes in non-penetrating surgery, and have found it to be safer than when used with trabeculectomy.

It should be mentioned that quite often we do rely on subconjunctival filtration in non-penetrating procedures (that is, deep sclerectomy) but advocate the use of a collagen wick 6 or hyaluronic acid implant with an interoperative antimetabolite in higher risk cases to obtain optimal IOP control.

Fibrosis and loss of permeability of the trabeculo-Decemet’s window (TDW) is a well described cause of postoperative elevation in IOP after non-penetrating glaucoma surgery. Postoperative Nd:YAG goniopuncture of the TDW in these cases is a relatively easy adjunctive procedure and may be needed in up to 41% of non-penetrating procedures. 6 It has been reported to successfully lower IOP in over 80% of cases. 7 Yet, we are dismayed that the authors decided not to attempt laser goniopuncture in those viscosanalostomy cases with postoperative IOP elevations because “such interventions clearly convert a ‘non-penetrating’ technique into a penetrating, full thickness procedure.” We vehemently disagree with this line of reasoning as we feel goniopuncture is an extremely useful adjunctive procedure and converting to a penetrating (not “full thickness”) procedure in the safety of the controlled postoperative period is completely reasonable. This is akin to performing a trabeculectomy in a patient who may develop bleb leak or hypotony early postoperatively, authors feel that performing suture lysis in the safety of the controlled postoperative period is completely reasonable. Although they may have shown that trabeculectomy with the use of an antimitotabes is superior to a modified form
of viscocanalostomy dependent on subconjunctival filtration without the use of an antimetabolite, this study unfortunately does not fairly compare the efficacy of Stegmann's viscocanalostomy technique versus trabeculectomy. Non-penetrating glaucoma surgery involves an improved safety profile and surely as future well designed controlled studies become available, the efficacy of these procedures compared to trabeculectomy will become clearer.

I K Ahmed, C Kranemann
University of Toronto, Toronto, Ontario, Canada
Correspondence to: I K Ahmed, 43 Bywood Drive, Toronto, Ontario M1A 1M1; ike.ahmed@utoronto.ca

References

Argon laser and trichiasis
We were interested to read the approach taken by Sahni and Clark1 to facilitate the effective argon laser treatment of trichiasis. They have ably reviewed the complications of trichiasis, the different forms of management of trichiasis, the advantages of argon laser treatment in the management of trichiasis, the technique of argon laser trichiasis therapy, and the limitations of laser laser therapy.

We take issue with the authors in two areas. Firstly, the almost certain consequence of using a duration of laser treatment of 0.1 second is that if the laser “takes,” the laser will disappear within the space of a few laser shots, effectively precluding the destruction of that particular lash follicle. We have particularly made it a point that when teaching trainees the technique of laser lash, we ensure that the energy burst lasts long enough to commence visible lash destruction as well as destruction of the subcutaneous lash, as the burn is directed towards the lash follicle. Thus we always use a duration of several seconds, or even continuous energy, and aim to achieve incisions of eyelid lashes from above the lid level after the first shot, or certainly within three shots. Thus, 1–3 second duration bursts may be required, depending on the individual lash. Just a few more shots will effectively and completely destroy the subcutaneous lash and its follicle.

Secondly, the article by Bartley and Lowry quoted by the authors, describes using a “drop of ink from a fountain pen” to facilitate lash laser. Presumably in the interests of sterility, Sahni and Clark have used the ink from a “blue skin marker pen” to allow improved absorption of argon laser energy. While use of a fresh marker pen for each patient may be relatively efficient, it could not be regarded as cost effective. By contrast, in a procedure described by us in 1994,2 we found that transferring a tiny drop of the patient’s own blood, whether still liquid or already coagulated, to the lash base on the lid margin is a simple, rapid, cheap, safe, and highly effective method of getting the laser reaction started when the lashes are pale. We have found that the required amount of blood is invariably present on the patient’s own lid skin at the site of local anaesthetic infiltration. We usually transfer it by picking it up with a sterile drawing up needle. This is achieved remarkably easily on the laser slit lamp, which allows adequate magnification for the accurate siting of the transferred blood.

G A Wilcsek, I C Francis
The Ocular Plastics Unit, Prince of Wales Hospital, and the University of New South Wales, Randwick, Sydney, Australia
Correspondence to: Ian C Francis, iif@student.unsw.edu.au

References

Management of age related macular degeneration: still room for improvement
The aim of Mitchell et al’s study1 in collaboration with the Macular Disease Society (MDS) was to assess the perceived quality of health care of people with macular disease in the United Kingdom. The survey was performed in 1999 and took the form of a prospective audit by postal survey of 2000 members of the MDS. I performed a similar but smaller study in collaboration with the MDS 7 years earlier.2 This also took the form of a retrospective audit by postal survey of 200 members of the MDS. The aim was to assess the clinical management of patients with age related macular degeneration (ARMD) in the United Kingdom from the patients’ perspective. The final response rate was 79% (similar to 77% of those answering this question). The two most common reasons given for a negative answer were the attitude of the specialist and lack of information and advice (43.5% and 43.4% respectively of those answering this question). The earlier study specifically asked whether patients were given information about visiting the ARMD, were informed about support groups or informed about relevant radio programmes by the eye department.3 Only 6% received written information, 14% were given details of support groups, and 3% details of relevant programmes. By definition 100% of the study group would have liked to have been informed of the existence of the Macular Disease Society by the eye unit. However, nine different sources were cited for discovering the MDS; over 80% from radio and magazines with only 12% from the ophthalmic unit. Unfortunately, despite that fact that the two studies are separated by 7 years, any temporal comparison has to be undertaken with caution. The protocol of both surveys included questionnaires being sent to members of the MDS chosen at random from the MDS mailing list. It is therefore conceivable that a proportion of the original study group also formed part of the second, larger study.

What is clear though, is that despite the fact that patients want information about ARMD and the fact that there are readily available sources (for example, free information booklets on ARMD from the Royal College of Ophthalmologists or Royal National Institute for the Blind), ophthalmic units throughout the United Kingdom are still failing routinely to provide such information to their patients.

L J Howe
Moorfields Eye Hospital, City Road, London EC1V 2PD, UK; lucy.robson@btpenworld.com

References

Standardised clinical photography in ophthalmic plastic surgery
We read with keen interest the path breaking article by Calista et al regarding the successful treatment of an eyelid squamous cell carcinoma with intralesional cidofovir.4 The dramatic response of this highly malignant lesion to such a non-invasive form of therapy is remarkable and certainly worth further clinical evaluation. However, we would like to raise a few crucial issues pertaining to the documentation of this case.

The authors have presented an extreme close up of the affected eye (Fig 1) which highlights the pretreatment appearance of the lesion quite adequately. However, the post-treatment photograph (Fig 2) is almost half the magnification of Figure 1. Therefore, although there is an indisputable reduction in the size of the tumour, the two clinical photographs are not strictly comparable since a decrease in magnification results in visual clues that lead to the lesion being perceived as smaller in size.

I J Howe, L J Howe
Moorfields Eye Hospital, City Road, London EC1V 2PD, UK; lucy.robson@btpenworld.com

References
We attributed our results of lack of statistically significant pain relief with Entonox to less than 50 seconds' administration of Entonox. Waud et al. have shown that optimal administration of Entonox should cover 50 seconds, based on theoretical calculations for optimum pain relief. Based on the above experience, we would like to know if the authors administered Entonox throughout the treatment and, if so, did it interfere with the laser delivery since the injection process is likely to be associated with head movements? If the Entonox was given for a shorter duration, we need to know the duration of administration since that would be of practical benefit to the readers.

The authors have concluded that Entonox is useful in young patients, those undergoing re-treatments, and in patients who have previously not been able to tolerate the full treatment. We would like to know how the authors came to this conclusion, as there is no mention of the type of patients selected for their study.

References

Mechanism of ophthalmic artery occlusion following pars plana vitrectomy

Saito et al. present a patient with Terson's syndrome and dense vitreous haemorrhage who underwent pars plana vitrectomy and was noted postoperatively to have developed an ophthalmic artery occlusion. They propose that the ophthalmic artery was occluded by the spontaneous release of an embolus from an atheromatous plaque in the internal carotid artery. This seems unlikely in a 39-year-old man without a previous history of asymptomatic atherosclerotic disease. Although the authors identified plaques in the patient's carotid artery by ultrasound, these were not visible on the carotid foramina, nor was there any evidence of an atheromatous plaque in the internal carotid artery. This is likely in a 59-year-old woman with a previous history of asymptomatic atherosclerotic disease. Although the authors identified plaques in the patient's carotid artery by ultrasound, these can be seen in 11% of asymptomatic males under age 40 and may therefore be an incidental finding in this case.

An alternate explanation for the patient's ocular findings is trauma from the retrobulbar injection. Intravascular injection into the ophthalmic artery has been reported as a complication of retrobulbar anesthesia. It is possible that either an intravascular injection or simply needle tip trauma resulted in thrombus formation with obstruction of flow in the ophthalmic artery. It should also be noted that although acute ophthalmic artery occlusion is the presumed diagnosis, the same findings could result from simultaneous obstruction of the retinal and choroidal circulations, also leading to the appearance of ERMs and ERM-like appearances. In this case, the possibility that the patient's choroidal disturbance could have been retinal pigment epithelium's involvement with the choroidal thickness and prevents any continuation of fragmentation phenomena. On balance, it is highly unlikely that the succession of markings is a manifestation of ophthalmic artery occlusion. On balance, it is highly unlikely that the succession of markings is a manifestation of ocular findings and that the plaques were present in the internal carotid artery.
The second remark by Crowston et al is particularly interesting. We too were surprised by the high percentage of TUNEL positive ECs (mean 12.7%, SD 16.4). This may imply that the high percentage of TUNEL positive ECs particularly interesting. We too were surprised by the following theory. The TUNEL staining is positive during a relatively long window (24–48 hours). The TUNEL index, measured at a given moment, provides a global view of all the cells with fragmented DNA. However, the DNA fragmentation may be at different stages, and the cells very likely spread according to a Gaussian distribution. Therefore the cells, which are TUNEL positive at a given moment, will not all die instantaneously and simultaneously. Only the cells furthest to the right on the curve will die in the very short term, and it is probably these that are liable to be reproduced rapidly. If it were possible to perform TUNEL on two consecutive days, the percentage of positive cells revealed would probably be very similar, but a large majority of the positive cells recorded on the second day would have already been counted on day one. It is, however, undeniable that the cells that are TUNEL positive at a given moment will all die eventually. In other words, we believe that, at the end of storage, corneas contain a number of ECs engaged in an irreversible cell death process far more extensive than the highly unreliable trypan blue staining technique suggests.

Role of optometry in Vision 2000

The latest issue of Community Eye Health (No 43) discusses the mobilisation of optometry to deal with uncorrected refractive error, which is now a major cause of functional blindness.

For further information please contact: Journal of Community Eye Health, International Centre for Eye Health, Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, UK (tel: +44 (0)20 7608 6910; fax: +44 (0)20 7250 3207; email: eyeresource@ucl.ac.uk; web site: www.jech.co.uk). Annual subscription (4 issues) UK£25/US$40. Free to workers in developing countries.

International Centre for Eye Health

The International Centre for Eye Health has published a new edition of the Standard List of Medicines, Equipment, Instruments and Optical Supplies (2001) for eye care services in developing countries. It is compiled by the Task Force of the International Agency for the Prevention of Blindness. Further details: Sue Stevens, International Centre for Eye Health, 11–43 Bath Street, London EC1V 9EL, UK (tel: +44 (0)20 7608 6910; email: eyeresource@ucl.ac.uk).

Second Sight

Second Sight, a UK based charity whose aims are to eliminate the backlog of cataract blind in India by the year 2020 and to establish strong links between Indian and British ophthalmologists, is regularly sending volunteer surgeons to India. Details can be found at the charity web site (www.secondsight.org.uk) or by contacting Dr Lucy Mathen (lucymathen@yahoo.com).

Specific Eye Conditions (SPECS)

Specific Eye Conditions (SPECS) is a not for profit organisation which acts as an umbrella organisation for support groups of any conditions or syndrome with an integral eye disorder. SPECS represents over fifty different organisations related to eye disorders ranging from conditions that are relatively common to very rare syndromes. We also include groups who offer support of a more general nature to visually impaired and blind people. Support groups meet regularly in the Boardroom at Moorfields Eye Hospital to offer support to each other, share experiences and explore new ways of working together. The web site www.eyeconditions.org.uk acts as a portal giving direct access to support groups own sites. The SPECS web page is a valuable resource for professionals and may also be of interest to people with a visual impairment or who are blind. For further details about SPECS contact: Kay Parkinson, SPECS Development Officer (tel: +44 (0)1803 524238; email: k@eyeconditions.org.uk; web site: www.eyeconditions.org.uk).

16th Annual Meeting of German Ophthalmic Surgeons

The 16th Annual Meeting of German Ophthalmic Surgeons will be held 8–11 May 2003 in Nürnberg, Germany. Messezentrum. Organised by the Professional Association of German Ophthalmologists Ophthalmic Surgery Group the conference will cover cataract surgery, refractive surgery, glaucoma surgery, vitreoretinal surgery, corneal surgery, eye surgery in developing countries, and orbita, lacrimal and lid surgery. Further details: MCN Medizinische Congress organisation Nürnberg AG, Zerzabelshofstr 29, 90478 Nürnberg, Germany (tel: +49 911 3931621; fax: +49 911 3931620; email: doc@mcnmag.info; web site: www.doc-muennerberg.de).

3rd British Oculoplastic Surgery Society Meeting

The 3rd British Oculoplastic Surgery Society Meeting will be held 18–19 May 2003 in Birmingham, UK. For further details please contact the Secretary of the British Oculoplastic Surgery Society. Jane Oliver (tel: +44 (0)121 424 3464; fax: +44 (0)121 424 4646; email: MartiDi@heartsol.wmids.nhs.uk; web site: www.bopss.org).

13th Meeting of the EASD Eye Complication Study Group

The 13th Meeting of the EASD Eye Complication Study Group will be held on the 23–25 May 2003, in Prague, Czech Republic. The scientific programme includes keynote lectures from Professor John H Fuller (UK) on The epidemiology of diabetic retinopathy; Dr P Martin van Hagen (The Netherlands) on Growth factors and diabetic retinopathy; Professor Terzie Pelikanova (Czech Republic) on Pathophysiology of diabetic microvascular complications; Dr Tomas Sosna (Czech Republic) on Risk and protective factors of diabetic retinopathy.

Three travel grants of €1000 each, sponsored by GlaxoSmithKline for young scientists (under 35 years at the time of the meeting), Applications should be made for the submission of abstracts. The deadline for abstracts is 14 February 2003.

Further details: Ortopedieczne Centrum, s.r.o., Strekovské nabrezi 51, 400 03 Usti nad Labem, Czech Republic (tel: +420 47 521 6588; fax: +420 47 533 40 77; email: ortcentrum-ul@volny.cz; web site: www.ortopedieczne-centrum.cz).