intravitreal injection of triamcinolone acetonide as treatment for chronic uveitis

Chronic intraocular inflammation such as chronic idiopathic uveitis can lead to cystoid macular oedema, papilloedema, and vitreous opacities temporarily or permanently reducing visual acuity. Chronic uveitis has usually been treated by topical or systemic application of steroids. Topical treatment, however, often has not been sufficiently effective to suppress intraocular inflammation and to reduce cystoid macular oedema. Systemic treatment with steroids inevitably leads to secondary side effects such as systemic suppression of the whole immune system and Cushing's syndrone. Taking into account that the eye comprises only 0.01% of the whole body volume, and considering that for achieving high concentrations of a drug at its site of action it is best to apply it directly into the region of required action, we describe the clinical outcome in a patient receiving an intravitreal injection of a crystalline cortisone.

Case report
A 17 year old woman suffering from chronic idiopathic uveitis in both eyes for 5 years had been treated topically, peribulbar, and systemically with corticosteroids. As a steroid responder, she had developed secondary ocular hypertension. Steroid induced cataract in her right eye was operated on by phacoaspiration, transpupillary anterior vitrectomy, and posterior chamber lens implantation. To reduce the systemic side effects of steroid treatment, systemic cyclosporin A had been added to the treatment scheme since January 1999. In February 2000, she presented again with a severe uveitis with papilloedema and cystoid macular oedema. Despite intensive topical treatment with steroids given hourly, and systemic acetazolamide, visual acuity remained in the range 0.10-0.16. To avoid the side effects of systemic steroid treatment and to achieve high and longstanding concentrations of steroids in the eye, we injected 20 mg crystalline triamcinolone acetonide into the vitreous cavity of the right eye in July 2000 with topical anaesthesia. Within the next 5 weeks, visual acuity increased to 0.5. Intraocular pressure increased to a maximum of 38 mm Hg, and was reduced to the normal range with topical antiglaucomatous medication. Four months after the injection, the steroid crystals were resorbed, visual acuity returned to the preoperative level of 0.1, and with topical steroids given, intraocular pressure decreased to values of less than 23 mm Hg without further antiglaucomatous medication.

Comment
In ophthalmology, corticosteroids applied topically or systemically are well known and have widely been used to suppress intraocular inflammation. Based on experimental studies performed by Machemer, Peyman and others, as well as on clinical observations, intravitreal injections of triamcinolone acetonide have increasingly been reported as treatment for intraocular neovascular, oedematous, or inflammatory diseases. These include diffuse diabetic macular oedema, proliferative diabetic retinopathy, neovascular glaucoma, exudative age related macular degeneration, and uveitis. In agreement with these previous studies, the results of the present report suggest that the intravitreal injection of triamcinolone acetonide may be an additional option in the treatment of chronic uveitis. Future studies may address which types of uveitis the intravitreal steroid injection are best for, and whether the use of intravitreally implanted slow release devices can decrease the recurrence rate of uveitis for a longer period than a single intravitreal injection dose.

Proprietary interest: none.

R F Degenring, J B Jonas
Department of Ophthalmology, Faculty for Clinical Medicine Mannheim, Ruprecht-Karls-University Heidelberg, Germany
Correspondence to: Dr R Degenring, Universitäts-Augenklinik, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany; robert.degenring@augen.ma.uni-heidelberg.de
Accepted for publication 17 June 2002

References

Ophthalmodynamometric estimation of cerebrospinal fluid pressure in pseudotumour cerebi

Measurement of the cerebrospinal fluid pressure usually requires a lumbar puncture or craniotomy to get direct access to the cerebrospinal fluid space. These techniques, however, are invasive and so carry the risk of complications such as infections and damage to the neural structures. Furthermore, owing to the leakage of cerebrospinal fluid during the puncture, the cerebrospinal fluid pressure will be altered in the moment the measurement is performed. It would therefore be desirable to have a non-invasive method allowing the estimation of the intracerebral pressure without requiring a direct access to the brain or spinal cord. We describe a patient in whom ophthalmodynamometry strongly suggested an increased intracerebral pressure which was confirmed by eventual direct measurement.

Case report
A 12 year old female patient presented with acute vomiting, massive headache, and bilateral abducens nerve palsy. Visual acuity was 20/20 in both eyes, and visual fields were unremarkable, except for an enlarged blind spot. Both optic discs showed a prominence of 0.5 mm (right eye) and 0.6 mm (left eye) as measured by confocal laser scanning tomography. Intraocular pressure measured 18 mm Hg. With topical anaesthesia, a Goldmann contact lens fitted with a pressure sensor mounted into its holding ring was put onto the cornea (Fig 1). Pressure was asserted onto the globe by slightly pressing the contact lens, and the pressure value at the time when the central retinal vein started pulsating was noted. The measurements of this new technique of ophthalmodynamometry were repeated nine times in both eyes.

The central retinal vein collapse pressure as the sum of the ophthalmodynamometric value plus the intraocular pressure, measured 103 relative units right eye and 98 relative units left eye. These values were significantly higher than normal values (6.1 (SD 8.4) relative units) determined previously in normal subjects (own data). Direct measurement of cerebrospinal fluid pressure by lumbar puncture performed about 5 hours later revealed a value of 107 cm water column (equivalent to 82.3 mm Hg). In combination with other clinical findings, the diagnosis of pseudotumour cerebi was made.

Comment
The central retinal vein is the only structure whose appearance depends on its inner pressure, and which runs through the cerebrospinal fluid space and which is accessible from outside the body without any invasive procedure being performed. After exiting the eye through the optic disc, the central retinal vein goes through the retrobulbar part of the optic nerve before it traverses the subarachnoid and subdural spaces of the optic nerve and pia mater to the optic nerve meninges. The pressure in the central retinal vein is thus at least as high as the cerebrospinal fluid pressure. The central retinal vein collapse pressure may be measurable by ophthalmodynamometry since the vein will start to pulsate, if the sum
of intraocular pressure plus an external pressure exerted onto the eye equals the diastolic pressure of the central retinal vein.\(^\text{11}\) The intraocular pressure can be determined by planopometry, and the additional pressure exerted onto the globe can be measured by ophthalmodynamometry. In the ophthalmodynamometers used in the 1960s and 1970s, determinations of the central retinal vein pressure were often difficult or almost impossible so that the central retinal vein pressure has usually not been measured.\(^\text{12}\) The new ophthalmodynamometer used in the present study (Fig 1) may overcome some of the problems associated with the old ophthalmodynamometers. In a previous study on the reproducibility of the new technique, the variation of the central retinal vein collapse pressure was 15.9% (SD 11.9%). The present study suggests that, in patients with markedly increased intracerebral pressure, the new, Goldmann lens associated, ophthalmodynamometer may provide information about the intracerebral pressure by estimating the central retinal vein collapse pressure. It may be helpful for the neuro-ophthalmological diagnosis of diseases associated with increased intracerebral pressure.

Proprietary interest: none.

J B Jonas, B Harder
Department of Ophthalmology, Faculty of Clinical Medicine Mannheim, University of Heidelberg, 68167 Mannheim, Germany

Correspondence to: Dr J Jonas, Universitäts-Augenklinik, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; jojonas@augen.ma.uni-heidelberg.de

Accepted for publication 14 July 2002

References

Treatment of atopic blepharitis by controlling eyelid skin water retention ability with ceramide gel application

Atopic blepharitis is one of the major ocular complications of atopic dermatitis (AD).\(^\text{13}\) It has been pointed out that atopic patients have dry skin accompanied by barrier disruption and water deficiency. Previously, we assessed the water retention ability of eyelid skin by measuring the water content and water evaporation rate from the eyelid in patients with atopic blepharitis. The water content positively correlated and water evaporation from the eyelid negatively correlated with the severity of blepharitis.\(^\text{14}\)

Ceramide comprises about 30% of stratum corneum lipids, which have an important role in both the water retention and barrier function of the skin.\(^\text{15}\) Ceramide abnormalities in several skin disorders, such as AD, have been reported.\(^\text{16}\) Decreased levels of ceramides may be attributable to the insufficient water retention of the skin in AD. Apytt Gel (Zenyaku Kogyo, Tokyo, Japan) is a product containing galactosyl ceramides extracted from horses as a major moisturizing ingredient. In this study, we assessed the efficacy and safety of this gel product in patients with mild atopic blepharitis by measuring the water retention ability of the eyelid skin before and after prescription.

Methods and results

Sixteen lids of eight patients (five males and three females, 7–35 years old, average age 16.0 (SEM 8.4) years) diagnosed as having AD by dermatologists, according to Hanifin and Rajka’s criteria,\(^\text{17}\) were examined. Because ceramide gel has no anti-inflammatory effect, cases with severe inflammation were excluded from this investigation. After informed consent was obtained, patients were instructed to place Apytt Gel on their eyelids two to five times a day after washing their faces. Assessment of clinical findings using measurement of water retention ability were performed as previously described\(^\text{18}\) before and 4 weeks after the beginning of application. Statistical analysis was carried out by non-parametric tests (Wilcoxon test). A p value of 0.05 or less was considered statistically significant.

Water content of eyelid skin was significantly increased after treatment (30.6% (6.0%) before treatment, 41.2% (8.5%) after treatment; p<0.025) (Fig 1). Water evaporation values were significantly decreased after treatment (4.5 (1.4) × 10\(^{-7}\) g/cm²/s before treatment, 3.5 (0.9) × 10\(^{-7}\) g/cm²/s after treatment; p<0.005) (Fig 2). No slit lamp findings indicating toxicity were observed during the course of the study.

Comment

As the eyelid is a borderline lesion between dermatology and ophthalmology with influences on ocular homeostasis, dermatologists often hesitate in prescribing sufficient medication to the eyelids. The assessment and treatment of atopic blepharitis is therefore an important aspect of ophthalmological examination in atopic patients.

Ceramide gel treatment for 4 weeks significantly improved the water retention ability of the eyelid skin of patients with mild atopic blepharitis. Among various moisturising products, the application of the ceramide gel is reasonable, because ceramide deficiency has been reported in the skin of atopic patients. Ceramide gel alleviates dryness without stickiness, and patients experience little discomfort during application. It is thought to be one of the important factors for the compliance of patients. Some patients interrupt application of ointments, such as petrolatum (Vaseline), to the eyelid because of stickiness or because the shiny appearance around the eyes is cosmetically conspicuous. Although strong anti-inflammatory drugs are necessary in acute exacerbations of atopic blepharitis, moisturising of the skin using ceramide gel application represents a useful supplementary therapy during periods of relatively light inflammation.

Acknowledgement

The authors wish to thank Ms Mie Sasaki and Ms Sanao Nishijima for their assistance in taking measurements of water evaporation from eyelid skin.

Financial support: none.

Proprietary interest: none.

N Asano-Kato, F Fukagawa, Y Takano, T Kawakita, K Tsutoba, H Fujishima
Department of Ophthalmology, Tokyo Dental College, Japan

S Takahashi
Department of Dermatology

Correspondence to: Naoko Asano-Kato, MD, Department of Ophthalmology, Tokyo Dental College, Chiba, Japan, S11-13 Sugano, Ichikawa-shi, Chiba 272-8513, Japan; naokakato@bc.iij4u.or.jp

Accepted for publication 15 July 2002

References

www.bjophthalmol.com
An unusual tumour of the lacrimal gland

Lacrimal gland swelling is usually due to an inflammatory or neoplastic process. We report an oncocytoma as the cause of lacrimal gland swelling and review the literature. Oncocytoma of the lacrimal gland is extremely rare and has been described only three times before.

Case report

A 72 year old man experienced periodic swelling of his right eyelid over a period of 9 months. For 2 months he complained of vertical diplopia. He had a past medical history of chronic obstructive airways disease and a past ocular history of early cataract, asteroid hyalosis of the vitreous body, and primary open angle glaucoma.

On examination visual acuity of both eyes was 0.50. External examination showed a right hypotropia. The head and neck examination (Fig 2) showed fibrous tissue displacing the right eye inferomedially. The tumour in the lacrimal fossa. The tumour composed of tubular structures lined by large cells. These transformed epithelial cells consisted of eosinophilic, granular cytoplasm. There was a sharply demarcated mass in the lacrimal fossa. No follow up information was given.

In summary, a 72 year old man was found to have an oncocytoma of the lacrimal gland. Oncocytoma has to be added to the differential diagnosis of lacrimal gland swelling.

References

Morning glory disc anomaly: an atypical case

When optic disc elevation is encountered on funduscopic examination, the first concern is whether it represents true disc oedema. We present a patient who was urgently referred to us by a retinal specialist because of unilateral “disc swelling.” Further evaluation suggested that the patient had a congenital optic disc anomaly that was atypical in appearance, but most likely a variant of the morning glory disc anomaly (MGDA).

Case report

A 40 year old African-American woman with no visual complaints went to her local optometrist for a routine eye examination. At the optometrist’s office she was told that “in the back of her right eye she had a dark spot with a ring around it” and she was referred to a retinal specialist. The retinal specialist found a mildly decreased visual acuity and a “swollen disc” in the right eye and the patient was referred for neuro-ophthalmic consultation. To her knowledge, she previously had never had a dilated funduscopic examination.

Best corrected visual acuity was 20/30 distance and J1 near in the right eye and 20/20 distance and J1+ near in the left eye. There was a 0.9 log unit right relative afferent pupillary defect. Her colour vision, external
examination, slit lamp biomicroscopy, intraocular pressures, and motility were all normal in both eyes. Funduscopic examination was normal in the left eye with an optic nerve cup to disc ratio of 0.4. The appearance of her right optic nerve (Fig 1) was that of an elevated ring around the centre of the disc, interrupted from about 7 o'clock to 9 o'clock by an area of pigmentation. The vasculature was mildly obscured as it crossed the elevation. There was no venous engorgement, haemorrhage, cotton wool spots, or exudate. Funduscopic examination gave the appearance of a peripapillary excavation of retina and retinal pigment epithelium surrounding the optic disc can be appreciated from about 12 o'clock to 7 o'clock.

Fluorescein angiography showed staining of optic nerve tissue but no leakage of fluorescein outside the disc margin, confirming the absence of true disc swelling (Fig 2). Magnetic resonance imaging of the brain and orbits showed no pathology. B-scan ultrasonography excluded optic disc drusen.

Optical coherence tomography (OCT) of the optic nerve showed the elevated annulus of tissue seen on fundus examination and also showed a peripapillary excavation of the retinal pigment epithelium (RPE) adjacent to the optic nerve (Fig 3). This was thought to be most consistent with MGDA.

Comment

Morning glory disc anomaly is a congenital anomaly of the optic disc that is typically unilateral (for review see Brodsky). The majority of patients have a visual acuity between 20/200 and counting fingers in the affected eye, although cases with 20/20 vision and no light perception have been reported. It is more common in females than males and is less common in African-Americans than white people. This condition is not typically an inherited condition or part of a multisystem genetic disorder, although it has been reported as part of the renal-coloboma syndrome and trisomy 4q. Another theory proposes that an abnormal enlargement of the distal optic stalk during eye development allows the inner layer of the optic cup to enter, causing an excavation at the entry site. One problem with determining the aetiology has been the lack of clinical confirmation (primarily a lack of fundus photography) in previous histopathological reports. In this report we present OCT data that confirm these pathological findings in MGDA. Common to all of the histopathological reports is a layer of RPE that lines the peripapillary excavation. This histological feature is confirmed in the present case with OCT, which shows RPE extending posteriorly within the peripapillary scleral excavation as it approaches the optic nerve (Fig 3). We are currently evaluating, currently evaluating other patients with MGDA using OCT and comparing these findings with the OCT appearances of other optic nerve anomalies, including optic disc coloboma.

MGDA is sometimes associated with a basal encephalocele and up to a third of patients with MGDA will develop a retinal detachment. Hence, the first step in the management of MGDA is recognising these associated conditions. Our patient did not have the characteristic facial features (flattened nasal bridge or cleft lip) nor did she have any neurological, endocrine, or respiratory symptoms to suggest she had a basal encephalocele and an magnetic resonance imaging confirmed its absence. Funduscopic examination showed no evidence of retinal detachment, and she will be followed carefully for this potential complication. Although this is an atypical case, with no central fibrous tuft and little peripapillary pigmentation, this patient demonstrates the peripapillary excavation characteristic of MGDA. To our knowledge this is the first report of OCT of an eye with MGDA and confirms previous histopathological reports of MGDA showing RPE lining the central peripapillary excavation. Ongoing investigations are using OCT to quantify the changes that occur with MGDA over time and to compare the features of MGDA with those of other optic nerve anomalies, including optic disc coloboma.

Figure 1 Photograph of the patient’s right optic disc. An elevated annulus of apparent fibroglial tissue surrounds most of the disc, although it appears to spare part of the papillomacular bundle. An excavation of retina and retinal pigment epithelium surrounding the optic disc can be appreciated from about 12 o’clock to 7 o’clock.

Figure 2 Fluorescein angiography of the patient’s right eye. Both early (left; 32.6 seconds after injection) and late (right; 6 minutes and 14 seconds after injection) images show no evidence of fluorescein leakage outside the disc margin.

Figure 3 Optical coherence tomography (OCT) of the patient’s right optic nerve. Representative OCT shows retinal pigment epithelium lining an excavation surrounding the optic nerve, characteristic of morning glory syndrome.
Acknowledgements

This manuscript was supported in part by a departmental grant (Department of Ophthalmology) from Research to Prevent Blindness, Inc, New York, New York, and by core grant P30-EY06360 (Department of Ophthalmology) from the National Institute of Health, Bethesda, Maryland. NJN is a recipient of a Research to Prevent Blindness Lew Wasserman Merit Award.

Some of the data in this paper have been previously published in abstract form at the Association for Research in Vision and Ophthalmology (ARVO) annual conference in 2002.

C A Baer, T M Aaeborg Sr
Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA

J Newman
Departments of Ophthalmology, Neurology, and Neurosurgical Surgery

References

Idiopathic anterior hyaloid vessels

Anterior hyaloid fibrovascular proliferation (AHFP), the growth of vessels across the anterior hyaloid face from an origin in anterior retina,1 was first described in phakic eyes after diabetic vitrectomy surgery;2 but also reported following cataract surgery in diabetics.3 Complications include cataracts, vitreous haemorrhage, tractional retinal detachment, ciliary body detachment, and phthisis bulbi.4 We present the first report of this entity occurring in a non-diabetic patient without previous ophthalmic surgery.

Case report

A 20 year old Asian man presented with acute right sided visual loss. There was no history of ocular trauma or family history of note. He was systemically well. Visual acuity was 6/12 right eye, 6/9 left. Vessels were visible on the right posterior lens capsule, associated with localised cataract and anterior vitreous opacities (Fig 1A). Clinical examination revealed no other ocular abnormality, but the temporal periphery of the right retina was obscured. Anterior segment fluorescein angiography confirmed perfusion of the vessels (Fig 1B). Posterior segment fluorescein angiography was of poor quality in the right eye and revealed no fundus or peripheral abnormality in the left eye. Fluorescein angiography of the patient’s only surviving parent was normal. Fasting blood glucose, Tiazac/Tiazac serology, haemoglobin electrophoresis, and skull/chest radiographs were normal. Doppler studies indicated a probable feeder vessel derived from anterior retina but no evidence of tumour or other pathology (Fig 2).

Progressive cataract reduced visual acuity to 6/24 within 2 weeks of presentation. Phacoemulsification surgery was performed, followed by closure of the abnormal vessels with kryos laser (568 nm). Nd:YAG capsulotomy was performed 6 weeks after surgery. Two weeks later, fibrinous anterior uveitis and vitritis developed which resolved with topical steroid medication. A year later, vessels persisted in the rolled capsular edge, and opacification of the anterior hyaloid necessitated Nd:YAG laser discussion. Two and a half years after presentation, he is asymptomatic with 6/9 visual acuity in the right eye.

Comment

In most instances of retinal neovascularisation, an angiogenic stimulus, such as capillary non-perfusion or inflammation, can be identified.4 In this case, no evidence was found of capillary non-perfusion, or any, other than postoperative, inflammation.

A number of specific diagnoses were considered. No temporal traction on vascular arcades or optic disc was seen in the affected eye, and peripheral retinal vasculature was normal, where seen in the affected eye, and in the fellow eye. There was no history of low birth weight or prematurity as in retinopathy of prematurity. There was no family history, and the retinal peripheries of the parent were normal, which makes dominant exudative vitreoretinopathy unlikely. No inflammation, other than post-surgical, was identified in anterior or posterior segment, and visible pars plana appeared normal. Tiazac and Tiazac serology was negative. There was no visible peripheral retinal vasculitis or systemic evidence of sarcoidosis or multiple sclerosis. No evidence of ocular trauma was found, and no foreign body was identified radiographically. The patient is not diabetic, screening for haemoglobinopathy was negative, and there were no ophthalmoscopic or angiographic signs of retinal vascular occlusion. No evidence of a hypertensive syndrome was found.

The patient’s age, sex, and race are typical of patients suffering from idiopathic peripheral vaso-occlusive retinopathy (Eales’ disease), but the absence of retinal vasculitis, vitreous and retinal haemorrhage, and the unilateral nature of disease, are less characteristic. No sign of tumour was apparent on ultrasonography, and no evidence of arteriovenous malformation was found in the eye or body. He had...
no features of incontinencia pigmenti or facio-oculopupilar muscular dystrophy. The diagnosis therefore remains uncertain.

Treatment was mandated on the basis of visual loss. Vitreoretinal opinion preferred phacoemulsification surgery to pars plana vitrectomy because of the absence of definable vitreous or peripheral retinal disease. The vessels were closed with laser before capsulotomy to avoid haemorrhage, as has been described after capsulotomy in diabetic patients with AHFHP.

J G F Dowler, J S Mehta, A M Lenders, A M P Hamilton
Medical Retinal Service, Moorfields Eye Hospital, City Road, London EC1V 2PD, UK

Correspondence to: Mr J S Mehta, jodmehta@hotmail.com

Accepted for publication 8 July 2002

References

Iris pigment epithelial cyst induced by topical administration of latanoprost

Latanoprost is an ester prodrug analogue of prostaglandin F₂ that enhances uveoscleral outflow and reduces intraocular pressure. Several adverse side effects associated with topical administration of latanoprost have been described. Iris cysts can be primary or secondary; the secondary iris cysts are usually caused by trauma, intraocular surgery, inflammation, and prolonged use of strong miotic agents, etc. We report one female patient, with advanced chronic angle closure glaucoma, who developed an iris cyst in her left eye 9 months after topical administration of latanoprost in both her eyes.

Case report
A 67 year old female patient initially presented with advanced chronic angle closure glaucoma in 1994. Laser iridotomy was performed on both her eyes in April 1994. After then, both eyes were treated with 2% pilocarpine and β blocker to maintain her intraocular pressures in the low teens. Because she preferred to use monotherapy, latanoprost had been used once a day at bedtime since July 2000. The intraocular pressures were maintained between 12 and 15 mm Hg with latanoprost monotherapy. No abnormal responses except mild hyperaemia of the conjunctiva were noticed during follow up examinations. Unfortunately, in May 2001 (about 9 months after latanoprost monotherapy), it was noticed that the iris of her left eye bulged forward between 7 o'clock and 8 o'clock. The lesion was gradually increasing its size, and in September 2001 an iris pigment epithelial cyst was found at the posterior iris surface through a mid-dilated pupil (Fig 1). Latanoprost was then discontinued and her antiglaucomatous medication was changed to dorzolamide and β blocker twice a day in both eyes. The iris cyst gradually decreased in size and completely disappeared from the pupil margin in February 2002 (Fig 2). During the follow up period of 4 months, there have been no visual complications or signs of recurring cyst.

Comment
Our report demonstrates another case of rare adverse side effects of latanoprost involving the iris. Although no ultrasonic biomicroscopy was used to follow up this case, the slit lamp biomicroscopy strongly suggested that the patient had a secondary pigment epithelial cyst arising from the posterior surface of the iris. The iris cyst developed in her left eye about 9+ months after topical administration of latanoprost in her both eyes, and it progressively decreased in size and completely disappeared 5 months after topical latanoprost was discontinued. The iris cyst in our case took more time to develop and a longer time to disappear than previously reported. We propose that if it took more time to develop an iris cyst after topical administration of latanoprost, it would need more time for the iris cyst to regress.

The topical latanoprost was administered to her both eyes, but only her left eye developed the iris cyst. We propose that both her eyes might have different sensitivity to the development of an iris cyst when exposed to topical latanoprost. (If her right eye was exposed to latanoprost for a longer time, an iris cyst might occur later.) Although cysts of uveal tissue might occur after uveitis, no definite symptoms and signs of uveitis were noticed in our patient during the follow up period. The most likely cause of this adverse side effect may be the increasing uveoscleral outflow on topical use of latanoprost; increasing uveoscleral outflow leads to an enhanced aqueous flow through the ciliary muscle and the intrapapillary space of the posterior iris. The iris cyst can occur at anytime during topical administration of latanoprost. Ophthalmologists should be aware of this possible rare side effect of topical administration of latanoprost.

I C Lai, M T Koo, I M C Teng
Department of Ophthalmology, Chang Gung Memorial Hospital, Kaohsiung, 123 Tai-Pei Road, Niao-Sung Hsiang, Kaohsiung Asien, Taiwan

Correspondence to: Ing-Chow Lai; e12014adm@gmx.org.tw

Accepted for publication 17 July 2002

References
1 Toris CB, Camras CB, Yablonski ME. Effects of PHX/A41, a new prostaglandin F₂ analog, on aqueous humor dynamics in human eyes. Ophthalmology 1993;100:927-30.

Paravertebral primitive neuroectodermal tumour presenting with Horner’s syndrome

We describe a peripheral primitive neuroectodermal tumour (PPNET) arising from the cervical paravertebral region of a 34 year old woman, who presented with Horner’s syndrome and a cervical radiculopathy. PPNETs are rare malignant small round cell tumours. This appears to be the first documented case of localised PPNET with Horner’s syndrome at initial presentation.

Case report
A 34 year old woman presented with acute left scapula pain, numbness of her left forearm, a left upper lid ptosis, and left hemifacial anhidrosis. Her symptoms disappeared spontaneously within a fortnight, but returned 2 months later with greater intensity. Examination then revealed wasting of the small muscles of her left hand with reduced power in the distribution of the C8 and T1; there was loss of light touch and pinprick in the C8 dermatome. The presence of left 1 mm upper lid ptosis, miosis, hemifacial anhidrosis, and 1 mm upper lid (“upside down”) ptosis was highly suggestive of a preganglionic left Horner’s syndrome (Fig 1A). Magnetic resonance imaging (MRI) of the neck showed a large mass arising from the T1, T2 intervertebral foramen extending into the root of the left side of the neck and the region of the apex of the left lung (Fig 1B).

A diagnostic biopsy was performed through a posterolateral approach, excising the extra-}

www.bjophthalmol.com
Horner's syndrome is caused by an oculosympathetic paralysis. It is manifest by upper lid ptosis, ipsilateral miosis, and "upside down" lower lid ptosis. The association of Horner's syndrome with upper thoracic spinal tumours is well documented.5 However, it is unusual for a thoracopulmonary region that can affect any age group but is thought to peak in adolescence, with no sex predilection. In contrast, our patient presented with Horner's syndrome at a relatively early age and therefore the diagnosis of localised PPNET was made.

The patient received chemotherapy as primary treatment followed by radiotherapy and has been in remission since. A year later she was referred to our unit for correction of her left ptosis, and underwent left anterior levator resection with a satisfactory result. Four years following her initial diagnosis she remains free of recurrent disease.

Comment
Horner's syndrome is caused by an oculosympathetic deficit to the pupillodilator and superior and inferior tarsal retractor muscles.1 It is manifest by upper lid ptosis, ipsilateral miosis, apparent enophthalmos due to lower lid ("upside down") ptosis, and ocular anhidrosis. The presence of all these features in our patient, together with the left facial anaesthesia, was indicative of a preganglionic lesion, since the sympathetic facial sweat fibres branch distal to the superior cervical sympathetic ganglion and central neurological tract signs were absent.6,7 Preganglionic Horner's syndrome is frequently associated with neoplasms of the pulmonary apex, mediastinum, or neck, as illustrated by the location of the PPNET seen in our patient (Fig 1B).

PPNET is a rare malignant small round cell tumour that can affect any age group but is thought to peak in adolescence, with no sex predilection.6 The most common location is the thoracopulmonary region, followed by the head and neck. Extraosseous Ewing's sarcoma is now considered a form of PNET, through immunohistochemical, ultrastructural, and histogenetical similarities.8 Both tumours express elevated levels of glycoprotein p30–32, a product of the MIC-2 gene, in a unique and highly selected fashion, as well as specific translocations involving a gene on chromosome 22q12. Indeed, the tumour cells of our patient exhibited immunohistochemical reactivity for MIC-2, consistent with a PPNET.

The association of Horner's syndrome with PPNET is now considered a form of PNET, through immunohistochemical, ultrastructural, and histogenetical similarities.8 Both tumours express elevated levels of glycoprotein p30–32, a product of the MIC-2 gene, in a unique and highly selected fashion, as well as specific translocations involving a gene on chromosome 22q12. Indeed, the tumour cells of our patient exhibited immunohistochemical reactivity for MIC-2, consistent with a PPNET.

The association of Horner's syndrome with PPNET is now considered a form of PNET, through immunohistochemical, ultrastructural, and histogenetical similarities.8 Both tumours express elevated levels of glycoprotein p30–32, a product of the MIC-2 gene, in a unique and highly selected fashion, as well as specific translocations involving a gene on chromosome 22q12. Indeed, the tumour cells of our patient exhibited immunohistochemical reactivity for MIC-2, consistent with a PPNET.

The association of Horner's syndrome with PPNET is now considered a form of PNET, through immunohistochemical, ultrastructural, and histogenetical similarities.8 Both tumours express elevated levels of glycoprotein p30–32, a product of the MIC-2 gene, in a unique and highly selected fashion, as well as specific translocations involving a gene on chromosome 22q12. Indeed, the tumour cells of our patient exhibited immunohistochemical reactivity for MIC-2, consistent with a PPNET.

The association of Horner's syndrome with PPNET is now considered a form of PNET, through immunohistochemical, ultrastructural, and histogenetical similarities.8 Both tumours express elevated levels of glycoprotein p30–32, a product of the MIC-2 gene, in a unique and highly selected fashion, as well as specific translocations involving a gene on chromosome 22q12. Indeed, the tumour cells of our patient exhibited immunohistochemical reactivity for MIC-2, consistent with a PPNET.
were seen in anterior stroma (Fig 1, top). Computed corneal topography showed inferior steepening consistent with the diagnosis of keratoconus (Fig 1, bottom). With rigid gas permeable contact lenses his visual acuity corrected to 20/20 right and 20/25 left. The remainder of the ocular examination was unremarkable.

After obtaining informed consent, we collected venous blood from the patient and extracted genomic DNA. Using appropriate primers,6 we amplified exons 4 and 12 of the β1-isoform of the H3 gene by polymerase chain reaction (PCR) and directly sequenced the products. We detected a heterozygous G→A transition in codon 124 that results in a substitution of valine to glutamic acid (Fig 2). These genetic findings were consistent with Avellino corneal dystrophy.

Comment
To our knowledge, this is the first molecular genetic report of a bilateral association of keratoconus with Avellino corneal dystrophy.

Figure 1 Slit lamp photographs RE (top left) and LE (top right) show discrete grey-white opacities and star-shaped spicular opacities in anterior stroma. (Bottom left and right) Computed corneal topography shows inferior steepening resulting in the diagnosis of keratoconus.

There is only one case report in the literature of a patient with keratoconus associated with Avellino corneal dystrophy. Sassani and colleagues reported the bilateral association of keratoconus and Avellino corneal dystrophy, which was diagnosed histopathologically.7 On the other hand, there are five reports with keratoconus associated with granular corneal dystrophy.8–10 However, those cases were diagnosed clinically, not histopathologically or genetically.8–10 A clinical diagnosis of the different types of corneal stromal dystrophy is difficult, especially for granular corneal dystrophy and Avellino corneal dystrophy. Some cases previously reported as granular corneal dystrophy might be actually cases of Avellino corneal dystrophy.

The involvement of genetic factors has been reported in keratoconus, but its hereditary pattern was not identified. A gene for at least one form of hereditary keratoconus has been mapped to human chromosome 21.11 In our case, it is unclear whether a genetic factor had a role in the simultaneous development of keratoconus and Avellino dystrophy. There may be some linkage between the genes responsible for these two abnormalities. In our case, molecular genetic analysis clearly demonstrated the presence of distinct phenotype, which had not previously presented clinically.

The authors have no proprietary interest in any aspects of this work.

S Igarashi
Department of Ophthalmology, Asahikawa Medical College, Asahikawa, Japan

Y Makita
Department of Public Health, Asahikawa Medical College, Asahikawa, Japan

References

Presence of vitronectin in neovascularised cornea of patient with gelatinous drop-like dystrophy

Gelatinous drop-like corneal dystrophy (GDLD) is a rare autosomal recessive disorder that is most often seen in Japan. This bilateral dystrophy usually presents in the first decade of life and is associated with a decrease of visual acuity. Typically, a multilayer-like opacity is present with proliferative subepithelial mounds that grow with age. Corneal neovascularisation (NV) also accompanies advanced cases.10 Corneal transplantation is the major therapeutic option for GDLD, but because NV can significantly increase the risk of graft rejection, a better understanding of the mechanism(s) for the corneal NV would be valuable.

Case report
A 39 year old Japanese man with GDLD was studied. His right eye had band-shaped corneal opacities in the interpalpebral area with a number of gelatinous prominences, and vascular invasions from the superior limbus into the clear cornea (Fig 1A). Because the visual acuity of the right eye had decreased to 20/800, penetrating keratoplasty was performed, and the diagnosis of GDLD was confirmed by characteristic histopathological findings of amyloid deposits beneath the corneal epithelium and mutation of the M151 gene.7

www.bjophthalmol.com

Accepted for publication 23 July 2002
potential of vitronectin using an in vivo approach. Further, we hypothesised that the accumulated vitronectin in the GDLD cornea may also have a role in the accompanying corneal NV.

Figure 1 (A) Slit lamp photographs of the right cornea of a 39 year old man with gelatinous drop-like dystrophy (GDDL). Demonstrating subepithelial raised lesions with a mulberry-like appearance and band-shaped opacities occupying the inferior cornea. There is also neovascularization from the superior limbus of the cornea, some of the vessels are indicated by arrows. (B) Light microscopic photograph of a corneal button section surgically excised from the 39 year old man. Histological section of this cornea shows eosinophilic amorphous material in the subepithelial region, and the overlying epithelium was degenerated. Note the prominent inflammatory infiltrate (haematoxylin and eosin, original magnification ×200). (C) Immunostaining of GDDL cornea with vitronectin showing immunoreactivity in the infiltrating leucocytes and basal epithelial cell layer. Diffuse staining for vitronectin is also found in the deposits. Anti-vitronectin also appears to stain the superficial layer of corneal epithelial cells, although we cannot totally rule out the possibility that this might represent an edge artefact (haematoxylin counterstain, original magnification ×200).

It was recently reported that vitronectin, a multifunctional extracellular matrix adhesion molecule, is often a component of the abnormal extracellular deposits in various age related human diseases such as age related macular degeneration and amyloidosis. This suggested that similar pathways may be involved in the aetiologies of other age related diseases. Because the disease state of GDDL deteriorates with age, we hypothesised that similar vitronectin related pathways may also be associated with GDDL, and examined whether vitronectin was expressed in the GDDL cornea by immunohistochemistry.

An antibody directed against vitronectin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) exhibited intense reactivity with the vitronectin deposits (Fig 1B, C). Substantial levels of vitronectin protein were also present in the deposits (Fig IB, C).

Because the production of new extracellular matrix matrix proteins has a crucial role in supporting cell proliferation that are necessary for new blood vessel growth, and because vitronectin receptors, such as integrin αvβ3 and αvβ5, are involved in angiogenesis, we further hypothesised that the accumulated vitronectin in the GDDL cornea may also have a role in the accompanying corneal NV.

We therefore examined the angiogenic potential of vitronectin using an in vivo corneal assay. Five μl hydron pellets (Interferon Sciences, New Brunswick, NJ, USA) containing 1 μg of mouse vitronectin (Invitrogen, Carlsbad, CA, USA) were implanted into the cornea of anaesthetised male Sprague-Dawley (S-D) rats and, after 7 days, the animals were killed, and the corneal vessels were photographed. Vitronectin elicited a strong angiogenic response, but administration of phosphate buffered saline (PBS) alone did not (Fig 2).

Comment

These results provide the first evidence for the expression of vitronectin in the cornea with GDDL, and for the in vivo induction of angiogenesis by vitronectin. The results indicate that vitronectin may have a role in corneal NV in patients with GDDL. Therefore, further studies exploring mechanisms of corneal NV mediated by vitronectin-integrin system, and how mutation of M1S1 leads to accumulation of vitronectin with more samples, may eventually offer a novel insight in understanding the aetiology of corneal NV associated with GDDL.

Acknowledgements

This work was supported in part by grants from Sumitomo Life Social Welfare Services Foundation (ST), Japan National Society for the Prevention of Blindness (AV), and Japan Eye Bank Association (AV).

S Yoshiida, A Yoshida, T Ishibashi
Department of Ophthalmology, Kyushu University Graduate School of Medicine, Fukuoka, 812–8582, Japan

Y Kumano, T Matsui
Ohshima Hospital of Ophthalmology, Fukuoka, 812–0036, Japan

References

Factor XII deficiency and recurrent sixth nerve palsy

Factor XII deficiency is associated with thrombosis. Severe deficiency increases an individual’s prothrombotic tendency but with minimal reduction in levels there is less certainty. We present a case of recurrent sixth cranial nerve palsy due to severe factor XII deficiency. To our knowledge, this is the first reported case of a recurrent cranial nerve palsy associated with factor XII deficiency.

Case report

A 58 year old white male presented with an acquired constant incomitant horizontal diplopia. He had had a previous episode of horizontal diplopia of 3 weeks’ duration 6 months previously with spontaneous resolution and a further similar episode 18 years before that had lasted for 3 weeks. He was obese and had hypertension. There was no history of venous or arterial thrombosis. He was found to have bilateral sixth nerve palsy without any associated headache or papilloedema, blood pressure, liver function tests, glucose, homocysteine, prothrombin time, and fibrinogen levels) but otherwise normal levels of protein.”
He was fitted with Fresnel prisms to relieve his diplopia and was followed up 3 weeks later. By that time his diplopia had completely resolved and he had full abduction in both eyes.

Comment
With this recurrent and resolving pattern of cranial nerve palsy in a patient with no other risk factors for arteriosclerosis and a normal magnetic resonance image and lumbar puncture, the most likely predisposing factor in this case is his prothrombotic state associated with severe factor XII deficiency.

Severe factor XII deficiency is a genetic determinant for thrombosis. It is not associated with any other clinical manifestations and prolonged activated thromboplastin time is a fast and there was no family history of vascular risk factors for arteriosclerosis and a normal

Ultrasound proptosis: the role of medical history

The most common cause of bilateral and unilateral exophthalmos among adults is Graves’ disease. Ultrasound proptosis, although frequently seen in connection with thyroid diseases, has a much larger differential diagnosis than bilateral exophthalmos. With ultrasound presentation, one should think of orbital pseudotumour, cavernous sinus thrombosis, or intraorbital neoplasms.

Graves’ ophthalmopathy (GO) usually is associated with Graves’ hyperthyroidism (GH) although the temporal relation to thyroid disease is not consistent. It has been estimated that 77% of GO patients are hyperthyroid, 21% euthyroid, and 2% hypothyroid. It is not clinically affected in their lifetime. There are some exceptions which produce an identifiable abnormality in 10% but clearly 10% of the population are not clinically affected in their lifetime. Therefore the need for additional management should be assessed according to the presence of concurrent risk factors in an algorithmic fashion. Since his cranial nerve palsy resolved quickly and there was no family history of vascular thrombosis he was treated empirically with steroids. Though there is no evidence to support its benefit in this condition.

A Kipioti, O C Backhouse, P M Jacobs, M R Howard
Department of Ophthalmology, York District Hospital NHS Trust, York, UK
Correspondence to: A Kipioti, Eye Department, Clarendon Wing, Leeds General Infirmary, LS2 9NS, UK, tknapioti@doctors.org.uk
Accepted for publication 12 August 2002

References

Unilateral proptosis: a study on 73 subjects

The following cases of Graves’ ophthalmopathy were presented at the department of ophthalmology of the University Hospital Groningen, Netherlands.

Case 1
A female patient born in 1944 was diagnosed in 1979 with hypothyroidism. In 1980 her thyroid function and laboratory testing showed thyroid hormone levels within normal ranges. She was admitted and methylprednisolone 250 mg four times a day intravenously and radiotherapy (10 × 2 Gy) was started. Thyroid peroxidase antibodies were negative. In January 1983 she presented with complaints of sharp pains in both eyes, a feeling of pressure, and an exophthalmos of her right eye. On ocular examination there were no abnormalities except for exophthalmos of the right eye. Hertel exophthalmometer values were 24 mm right eye and 19 mm left eye. In December 1983 signs and symptoms worsened. Examination of the right eye showed an obvious retraction of the upper eyelid of the right eye. The exophthalmos was stable. There was diplopia caused by a right hypotropia in primary position of 1.5 degrees with restriction of elevation. An computed tomography (CT) scan showed enlargement of all external eye muscles of the right eye without involvement of the tendons. During this exacerbation laboratory testing showed thyroid hormone levels within normal ranges, thyroid peroxidase (TPO) and colloid antibodies tests were negative. The diplopia resolved without treatment.

Case 2
A male patient born in 1944 was diagnosed with hypothyroidism in 1979. Thyroid hormones were abnormal. FT4 was decreased, TSH was increased, antibodies against colloid were positive, anti-TPO and TPA antibodies were negative. Because of this primary hyperthyroidism levothyroxine therapy was started and he gradually became euthyroid. His ophthalmology mentioned a disorder of the central retinal pigment epithelium and glaucoma which was treated with timolol.

In August 2000 he presented with unilateral proptosis and progressive loss of vision. Ocular examination showed chemosis and oedema of the eyelids in both eyes. Visual acuity was 20/60 right eye and 20/30 left eye. Papillary reflexes were normal and symmetrical. Clinically and biochemically he was presented as euthyroid. A CT scan showed bilateral enlargement of the eye muscles, more marked on the right side. He was treated with 60 mg prednisone daily.

One month later visual acuity of the right eye dropped further and he was referred to our hospital. Ocular examination showed marked soft tissue signs, worse in the right eye, bilateral chemosis, and unilateral exophthalmos of 26 mm in the right eye. Visual acuity remained and no CT scan was performed on the right eye. Colour vision was diminished and there was a relative afferent pupillary defect in the right eye. He had restrictions of the eye movements of the right eye when looking upwards, downwards, and in addition. Thyroid hormone levels were again within normal ranges. He was admitted and methylprednisolone 250 mg four times a day intravenously and radiotherapy (10 × 2 Gy) was started. Antibody testing showed borderline thyroid peroxidase and TPO antibody titres. Results of TSH receptor antibody testing could not be traced.

As visual function was not restored within a reasonable time another CT scan was performed which showed enlargement of all recti muscles of right eye and in lesser extent of the left eye with signs of compression of the right optic nerve. An orbital decompression through a Caldwell-Luc approach was performed on the right side. Postoperatively, visual acuity of the right eye improved to 20/30 and proptosis in the right eye was reduced by 8 mm. A strabismus convergens of the right eye was the main side effect.

In April 2001 a bilateral medial recession and a recession of the inferior rectus of the right eye were performed to treat the strabismus convergens. Binocular single vision was achieved in the primary position with some diplopia at extremes of gaze.

Comment
Unilateral proptosis as a result of Graves’ disease cannot be rejected as a diagnosis, even 20 or 30 years after the onset of thyroid disease. Only one retrospective study has mentioned intervals up to 25 years without giving exact numbers and underlying thyroid disease.7 For hypothyroidism and GO one study suggests intervals exceeding 15 years.8

Thyroid hormone testing should be performed to rule out abnormalities in thyroid hormone levels although thyroid status does not seem important as the active phase of ophthalmopathy can occur during hyperthyroidism, hypothyroidism, and euthyroidism.6 Thyroid antibody testing may be supportive for the diagnosis. A CT scan can be essential in further analysis showing enlargement of extraocular muscles with sparing of the tendons.5 It is also known that a CT scan can demonstrate contralateral eye muscle involvement in 50–90% of patients with clinically unilateral eye involvement.6

Our two patients illustrate that the medical history is important in evaluating proptosis. One should always think of Graves’ disease as a possible cause of unilateral exophthalmos even though a patient may have had thyroid disease more than 20 years earlier.
A 30 year old homosexual HIV+ man was referred to the uveitis department complaining of blurred vision in the left eye. He was taking zidovudine, lamivudine, ritonavir, and tenofovir. His visual acuities were 6/6 in the right eye and 6/12 with a visual field defect in the left eye. He was referred to the uveitis department complaining of blurred vision in the left eye. He was taking zidovudine, lamivudine, ritonavir, and tenofovir.

References

Unusual presentation of cat scratch disease in HIV+ patient

Intraocular cat scratch disease may present with different clinical features including neu- retinitis, retinitis, retinal infiltrates, arterial and vein occlusions. Most of the cases show spontaneous recovery without therapy.

There are only few reports of intraocular cat scratch disease in HIV+ patients. We report an unusual case of cat scratch disease presenting as helioi unifocal choroiditis in an HIV+ patient that showed good response to systemic therapy.

Case report

A 30 year old homosexual HIV+ man was referred to the uveitis department complaining of blurred vision in the left eye. He was taking zidovudine, lamivudine, ritonavir, and saquinavir. His last CD4+ count was 128 cells x10^6/l and viral load 1 300 000.

His visual acuities were 6/6 in the right eye and counting fingers in the left. There was no inflammation in the anterior chambers or in the vitreous. Ophthalmoscopy revealed a yellowish choroidal lesion surrounded by fluid and haemorrhages in the macula of the left eye (Fig 1). Fluorescein angiography showed an angiomatic-like lesion corresponding to those seen clinically. Blood tests were ordered including VDRL, toxoplasmosis serology, Lyme disease serology, ELISA for toxo- cariasis and were all negative. Computed tomography (CT) scan and serum studies were unremarkable. Blood sample was sent to CDC Atlanta for Bartonella serology. Since clinical diagnosis was cat scratch disease and most patients show good recovery without treatment we decided not to treat before results of blood tests. We kept examining the patient every week with ophthalmoscopy and fluorescein angiography (Fig 2A, B). The lesion progressively increased in size but did not show visual acuity deterioration.

A month after presentation the lesion had increased and four small lesions appeared in the right eye. His visual acuity dropped to hand movements. Although we did not have the results of Bartonella serology, we decided to give him ciprofloxacin. Bartonella henselae serology was positive for IgG 1:256, and IgM negative. Fifteen days after treatment was started the lesions in the right eye disappeared and the macular lesion in the left eye resolved completely.

Comment

There is a well established association between neuroretinitis and cat scratch disease although many different clinical presenta- tions have been described.1 Ormerod et al2 described two patients with small areas of retinitis and arterial occlusions. Pollock and Kristinsson3 described one patient with cat scratch disease and helioi unifocal choroiditis. Pollock and Kristinsson3 described one patient with cat scratch disease and helioi unifocal choroiditis. Hong et al4 first described this syndrome when they reported six young patients with a solitary round yellow chorioternal lesion associated with subretinal fluid. There was no association with inflammatory or infectious diseases. Fish et al5 reported a case of peripap- illary angiomatic associated with ne- retinitis. Our patient presented with clinical features of helioi unifocal choroiditis but after angiogram we could see an angiomatic-like lesion.

The treatment of ocular cat scratch disease remains controversial. Pollock and Kristinsson3 reported a case that improve- ment in visual acuity from 6/12 to 6/6 occurred after 3 weeks without treatment. One of the cases described by Ormerod showed some benefit after treatment although his recovery was very slow. The second patient showed improvement without treatment. Warren et al6 reported an HIV+ patient with cat scratch disease whose lesion enlarged without treatment. Once the diagnosis of Bartonella was confirmed by polymerase chain reaction of the retina sample, the patient was started on systemic antibiotics with good results. Considering that spontaneous recover- ing could occur we decided not to treat until our patient showed deterioration in the left eye and involvement in the fellow eye.

Ophthalmologists should be aware of this unusual presentation of cat scratch disease with helioi unifocal choroiditis and angiomatic-like lesions. Although larger series and control studies are needed, HIV+ patients with intraocular manifestations of cat scratch disease may benefit from systemic treatment with antibiotics.

References

Simultaneous translocation of the macula and underlying retinal pigment epithelium during macular transplantation surgery in a patient with long standing myopic neovascular maculopathy

Limited macular transplantation has been re- ported to be a promising treatment for some patients with choroidal neovascularisation.6 Although this technique has the advantage of being less invasive, there is documentation of...
In many eyes with choroidal neovascularisation, the macula can easily be separated from the subjacent fibrovascular tissue. In some eyes with long standing choroidal neovascularisation, however, the outer portion of the neurosensory retina may adhere firmly to the subjacent tissue. In such cases, an inner portion of fibrovascular tissue may be torn off and translocated with overlying neurosensory retina during macular translocation. The underlying healthy retinal pigment epithelium covered with the translocated abnormal tissue may not be able to fulfil its physiological roles on the overlying neurosensory retina, and good functional recovery of the translocated macula is unlikely to be achieved. As documented here, simultaneous translocation of the underlying abnormal retinal pigment epithelium associated with long standing choroidal neovascularisation can occur during limited macular translocation and result in an unsatisfactory visual outcome. When patients are deciding whether to consent to surgical intervention with limited macular translocation in such cases, they should be informed of the benefits and risks of the treatment, with due consideration of this complication.

References

Fungal and bacterial chronic endophthalmitis following cataract surgery

Endophthalmitis, although rare, is one of the most vision threatening complication of cataract surgery. The majority of these infections...
are bacterial in the Western world. The occurrence of fungal endophthalmitis after cataract surgery is rare as well as polymicrobial infections.1

We report a case of chronic postoperative endophthalmitis caused by bacterial and fungal pathogenic agents.

Case report

A 73 year old woman was referred for pain and redness in the left eye. Her past history was remarkable for an extracapsular cataract extraction in the left eye with a posterior chamber intraocular lens implant that had been performed in Turkey in 1998. The patient had recurrent episodes of decreased vision and ocular pain in the postoperative course and was treated with peribulbar injections of corticosteroids over 2 years. On presentation, visual acuity was hand movements in the left eye showing an hypopyon and a crystalline keratopathy. The diagnosis of postoperative endophthalmitis was suspected.

The aqueous cultures were sterile for bacteria and fungi. Intravitreal injections of vancomycin and amikacin were performed. Postoperatively, the patient was given intravenous ciprofloxacin, piperillin, and topical fortified tetracillin, gentamicin, and vancomycin drops. The eye showed no improvement during the next 3 weeks and the patient subsequently underwent removal of the implant and capsular bag which grew Candida parapsilosis, Corynebacterium species, and Staphylococcus epidermidis.

Intravitreal injection of amphotericin B (5 µg, weekly), topical amphotericin B (7 mg/ml eye drops every 2 hours), and oral fluconazole (400 mg a day) were then added to the patient’s regimen. A decrease in intraocular inflammation and corneal infiltrates was noted after 1 month of treatment that was stopped by the patient. Six months later, visual acuity of the left eye was not a light perception and biomicroscopic examination showed panophthalmitis. The patient refused medical treatment and enucleation was performed.
surgeons obtained similar lengths of artery and had similar positive biopsy rates. We note that in their study, while the vascular surgeons only performed two of the 41 biopsies, the average length of specimen obtained was 22.5 mm, thus suggesting that the vascular surgeons may well be the best trained to perform these biopsies. In Charing Cross Hospital, the vascular surgeons routinely use a Doppler ultrasound probe to help detect and demarcate the superficial temporal artery before biopsy and this practice has been advocated by other studies to help improve the yield of the biopsy.\(^1\) In our study, all the biopsies performed by ophthalmologists were done as extra cases in theatre and seven cases had to be performed outside normal working hours as emergencies because of lack of theatre time. The fact that ophthalmologists performed 59% of biopsies may be due to the fact that all four hospitals had large neurological and rheumatological units attached to them. We feel that both ophthalmologists and general and vascular surgeons are equally capable of performing temporal artery biopsies and that guidelines should be designed locally to decide who should perform the biopsies. More importantly, the follow up of these patients should be clearly stated and be ideally under the care of the rheumatologists.

K Fong, V Ferguson

The Western Eye Hospital, Marylebone Road, London NW1 3YE

Correspondence to: Dr Kenneth Fong; fongcsgk@yahoo.co.uk

References

Major complications of endoscopic sinus surgery: a comment

We were pleased to read the informative article by Rene et al. The authors refer to “Onodi cells” as, “acquired posterior ethmoid air cells along the optic canal.” Could it be that they meant to refer to the cells as “Onodi cells”? Onodi described a number of variations of posterior ethmoid anatomy.\(^2\) Endoscopic sinus surgeons refer to the pattern of extramural pneumatization of the ethmoid lateral or superolateral to the sphenoïd, where the posterior ethmoid is indented by the optic canal, as an Onodi cell. More recently it has been suggested that this cell is better characterised as a “sphenoidethmoidal” cell.\(^3\) The main significance of the Onodi or sphenoidethmoid cell is that while sinus surgeons expect to find the optic nerve in the sphenoid sinus, they are not routinely looking for it in the posterior ethmoid. Consequently, the chance of iatrogenic injury is likely to be higher in patients with Onodi cells and even higher in patients with the best group to pneumatise Onodi cells.\(^4\) The exact incidence of Onodi cells is unclear. Endoscopic dissection studies suggest an incidence as high as 39% or 42%.\(^5\) CT imaging studies suggest a lower incidence of 7%. Driben et al.\(^6\) feel that the likelihood of a sphenoidethmoid cell increases with increasing obliquity of the anterior sphenoid wall. Racial factors may also have a role as Onodi cells appear to be more common in Asian patients.\(^7\)

Every effort should be made to identify an Onodi cell preoperatively and to be aware of intraoperative clues such as anterior sphenoid wall alignment, which may point to the presence of an Onodi cell. Attention to these important details will increase the likelihood of undetected uncomplicated endoscopic sinus surgery at the sphenoidethmoid junction.

S M Graham

Department of Otolaryngology and Head and Neck Surgery

K D Carter

Oculoplastic and Orbital Service, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.

Correspondence to: Scott M Graham, MD, University of Iowa Hospitals and Clinics, Department of Otolaryngology-Head and Neck Surgery, 200 Hawkins Drive, 21201 PF, Iowa City, IA 52242–1093, USA; scott.graham@uiowa.edu

We are also concerned that the use of intraoperative antimitobetabolites in the trabeculotomy group added a major confounding variable in this study. This is particularly perplexing as the authors’ viscoanalostomy technique primarily relied on subconjunctival filtration, as evidenced by their scleral flap design and lesser suturing technique in which only three 10/0 nylon sutures were used. Furthermore, their excellent early success rate of viscoanalostomy (95% at 6 months), the presence of filtering blebs in their successful viscoanalostomy procedures, the lack of one in their failures, and the need for postoperative bleb needing and 5-fluorouracil injection all point to the use of mitomycin-c and 5-fluorouracil improving the success rate of glaucoma filtering surgery by reducing episcleral fibrosis,\(^8\) and probably explains the difference in success rates in this study. We wonder what the results would have been had the use of intraoperative antimitobetabolites been used in all groups, or if none was used at all.

In contrast with the authors’ technique, we employ Stegmann’s approach to viscoanalostomy in using a parabional superficial flap secured tightly with five sutures in a relatively watertight fashion.\(^9\) Although basement membranes may develop, most patients achieve IOP lowering through multiple alternate pathways including uveoscleral, through Schlemm’s canal, and subconjunctival.\(^9\) Certainly in higher risk cases we would use antimitobetabolites in non-penetrating surgery, and we have found it to be safer than when used with trabeculotomy.

It should be mentioned that quite often we do rely on subconjunctival filtration in non-penetrating procedures (that is, deep sclerectomy) but advocate the use of a collagen wick\(^10\) or hyaluronic acid\(^11\) implant with an intraoperative antimitobetabolite in higher risk cases to obtain optimal IOP control.

Fibrosis and loss of permeability of the trabeculo-Desce-mein’s window (TDW) is a well described cause of postoperative elevation in IOP after non-penetrating glaucoma surgery. Postoperative Nd:YAG gonipuncture of the TDW in these cases is a relatively easy adjunctive procedure and may be needed in up to 41% of non-penetrating procedures.\(^12\) It has been reported to successfully lower postoperative IOP in over 80% of cases.\(^12\) Yet, we are dismayed that the authors decided not to attempt laser gonipuncture in those viscoanalostomy cases with postoperative IOP elevations because “such interventions clearly convert a ‘non-penetrating’ technique into a penetrating, full thickness procedure.” We vehemently disagree with this line of reasoning as we feel gonipuncture is an extremely useful adjunctive procedure and converting to a penetrating (not “full thickness”) procedure in the safety of the controlled postoperative period is completely reasonable. This is akin to postoperative glaucoma laser therapy: authors have found that performing suture lysis in trabeculoanalostomy cases with postoperative IOP elevations into a full thickness unguarded trabeculectomy and thus cannot be fairly compared to a non-penetrating technique? Although the authors do state that the subgroup of patients with intracanalicular viscoelastic injection was inferior to trabeculectomy, this cohort consisted only of 12 patients and it is not known how many had completed follow up after 18 months. Surely, these small numbers are insufficient to draw such conclusions.

Trabeculectomy augmented with antimitobetabolites with a viscoanalostomy technique for the management of open angle glaucoma

In a small randomised, prospective study, O’Barr and co-workers attempted to prove that trabeculectomy (n=25) provided better intraocular pressure (IOP) control than viscoanalostomy (n=25). However, we have serious concerns about the methodology of this study that need to be addressed.

Viscoanalostomy is characterised by the injection of viscoelastic into Schlemm’s canal.\(^13\) However, this was not performed in half of the patients randomised to this group. This would be as inappropriate as using an antimitobetabolite in only half the patients in the trabeculectomy group, and then comparing this entire group to the viscoanalostomy group. Although the authors do state that the subgroup of patients with intracanalicular viscoelastic injection was inferior to trabeculectomy, this cohort consisted only of 12 patients and it is not known how many had completed follow up after 18 months. Surely, these small numbers are insufficient to draw such conclusions.

References

of viscocanalostomy dependent on subconjunctival filtration without the use of an antimetabolite, this study unfortunately does not fairly compare the efficacy of Stegmann’s viscocanalostomy technique versus trabeculectomy. Non-penetrating glaucoma surgery is an improved safety profile and surely as future well designed controlled studies become available, the efficacy of these procedures compared to trabeculectomy will become clearer.

I K Ahmed, C Cranemann
University of Toronto, Toronto, Ontario, Canada

Correspondence to: I K Ahmed, 43 Byword Drive, Toronto, Ontario M9A 1M1; ike.ahmed@utoronto.ca

References

Argon laser and trichiasis
We were interested to read the approach taken by Sahni and Clark (for example, free information booklets on ARMD) to the diagnosis of this highly malignant lesion. We also looked at the success of the treatment of ARMD in the UK, as reported in the article by Sahni and Clark.

Secondly, the article by Bartley and Lowry quoted by the authors, describes using a “drop of ink from a fountain pen” to facilitate lash laser. Presumably in the interests of sterility, Sahni and Clark have used the ink from a blue skin marker pen to allow improved absorption of argon laser energy. While use of a fresh marker pen for each patient may be relatively efficient, it could not be regarded as cost effective. By contrast, in a procedure described by us in 1994, we found that transferring a tiny drop of the patient’s own blood, whether still liquid or already coagulated, to the lash base on the lid margin is a simple, rapid, cheap, safe, and highly effective method of getting the laser reaction started when the lashes are pale. We have found that the required amount of blood is invariably present on the patient’s own lid skin at the site of local anaesthetic infiltration. We usually transfer it by picking it up with a sterile drawing up needle. This is achieved remarkably easily on the laser slit lamp, which allows adequate magnification for the accurate siting of the transferred blood.

G A Wilcezek, I C Francis
The Ocular Plastics Unit, Prince of Wales Hospital, and the University of New South Wales, Randwick, Sydney, Australia

Correspondence to: Ian C Francis; ifl@student.unsw.edu.au

References

Management of age related macular degeneration: still room for improvement
The aim of Mitchell et al’s study in collaboration with the Macular Disease Society (MDS) was to assess the perceived quality of health care of people with macular disease in the United Kingdom. The study was performed in 1999 and took the form of a retrospective audit by postal survey of 2000 members of the MDS. I performed a similar but smaller study in collaboration with the MDS 7 years earlier. This also took the form of a retrospective audit by postal survey of 200 members of the MDS. The aim was to assess the clinical management of patients with age related macular degeneration (ARMD) in the United Kingdom from the patients’ perspective. The final response rate was 79% (similar to 77% of ARMD, were informed about support groups, and the fact that there are readily available sources of information, that patients want information on ARMD and the fact that there are readily available sources of information (for example, free information booklets on ARMD from the Royal College of Ophthalmologists or Royal National Institute for the Blind), ophthalmic units throughout the United Kingdom are still failing routinely to provide such information to their patients.

L J Howe
Moorefields Eye Hospital, City Road, London EC1V 2PD, UK; lucy.robson@bpopenworld.com

References

Standardised clinical photography in ophthalmic plastic surgery
We read with keen interest the path breaking article by Calista et al regarding the successful treatment of an eyelid squamous cell carcinoma with intralidoflovir. The dramatic response of this highly malignant lesion to such a non-invasive form of therapy is remarkable and certainly worth further clinical evaluation. However, ARMD-like to raise a few crucial issues pertaining to the documentation of this case.

The authors have presented an extreme close up of the affected eye (Fig 1) which highlights the pretreatment appearance of the lesion quite adequately. However, the post-treatment photograph (Fig 2) is almost half the magnification of Figure 1. Therefore, although there is an indelible reduction in the size of the tumour, the two clinical photographs are not strictly comparable since a decrease in magnification results in visual clues that lead to the lesion being perceived as smaller in size.
Secondly, the pretreatment view (Fig 1) has been taken in primary gaze and reveals a right lower lid retraction as well as the semblance of a mild lid notch. In contrast, the post-treatment view (Fig 2) has been photographed on the left and slight downgaze and does not show either of the above findings. Now, it is difficult to discern whether there is an actual disappearance of these pretreatment findings or it is due to the inherent lack of comparability of these pictures because of their being in totally different positions of gaze, which is compounded by the magnification factor mentioned earlier. It would be of immense benefit to the readers if the authors could not only clarify these points of discrepancy, which have arisen due to dissimilar photographs.

It is imperative that extremely high standards of clinical photography be maintained in plastic surgery/oncology and photographs be taken with similar parameters to ensure valid pretreatment and post-treatment comparisons that accurately reflect the results.\(^1\)\(^2\) The standards and recommendations for clinical photography have been widely documented and should be universally practiced.\(^3\) These include using the same camera lens, settings, lighting, film, magnification, and patient position to ensure reproducibility and comparability.\(^4\) Even small variations among the photographs may cause drastic changes in the clinical and research value of photography and, unless stringent criteria are met, the photographs may lose their relevance and overall impact.\(^5\)

M S Bajaj, N Pushker, A Mahindrakar, R Rafaelsbramanyan

Correspondence to: Mandeep S Bajaj, RP Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; mbajaj32@hotmail.com

References

Entonox as an analgesic agent

We agree with great interest the paper on Entonox as an analgesic agent by Cook et al.\(^6\) We congratulate the authors for their work. However, we would like to confirm certain aspects of the study.

We recently performed a randomised, placebo controlled, double blind study with 100 patients on the analgesic effect of Entonox for pain relief during local anaesthetic injections in minor eyelid procedures (accepted for publication). We administered Entonox for 30 seconds in our study and found no statistically significant difference in the pain scores between the control and the study groups. No side effects were reported but in our pilot study, where the patients were given Entonox for 60 seconds, all the Entonox group patients reported light headness and required prolonged observation before being discharged. We attributed our results of lack of statistically significant pain relief with Entonox to less than 50 seconds’ administration of Entonox. Waud et al.\(^7\) have shown that optimal administration of Entonox should cover 50 seconds, based on theoretical calculations for effective pain relief. Based on the above experience, we would like to know if the authors administered Entonox throughout the laser treatment and, if so, did it interfere with the laser delivery since the inhalation process is likely to be associated with head movements? If the Entonox was given for a shorter duration, we need to know the duration of administration since that would be of practical relevance to the readers.

The authors have concluded that Entonox is useful in young patients, those undergoing re-treatments, and in patients who have previously been not able to tolerate the full treatment. We would like to know how the authors came to this conclusion, as there is no mention of the type of patients selected for their study.

S Sandramouli, M Kurli

Wolverhampton and Midland Counties Eye Infirmary, Compton Road, Wolverhampton WV3 9QR, UK

Correspondence to: Mr S Sandramouli; sandmul@tinynoonline.co.uk

Mechanism of ophthalmic artery occlusion following pars plana vitrectomy

Saito et al present a patient with Terson’s syndrome and dense vitreous haemorrhage who underwent pars plana vitrectomy and was noted postoperatively to have developed an ophthalmic artery occlusion.\(^8\) They propose that the ophthalmic artery was occluded by the spontaneous release of an embolus from an atheromatous plaque in the internal carotid artery. This seems unlikely in a 39 year old man without a previous history of symptomatic atherosclerotic disease. Although the authors identified plaques in the patient’s carotid artery by ultrasound, these can be seen in 11% of asymptomatic males under age 40 and may therefore be an incidental finding in this case.\(^9\)

An alternate explanation for the patient’s ocular findings is trauma from the retrobulbar injection. Intravascular injection into the ophthalmic artery has been reported as a complication of retrobulbar anaesthesia.\(^10\) It is possible that either an intravascular injection or simply needle tip trauma resulted in thrombus formation with obstruction of flow in the ophthalmic artery. It should also be noted that although acute ophthalmic artery occlusion is the presumed diagnosis, the same findings could result from simultaneous obstruction of the retinal and choroidal circulations.\(^11\) Also, the occurrence of macular oedema after retrobulbar injection. The possibility that the patient’s choriotinal disturbance could have been iatrogenic highlights the importance of a thorough preoperative discussion with patients about the risks and benefits of different methods of delivering anaesthesia for ophthalmic surgery.

J M Stewart

Ophthalmology, University of California, San Francisco, CA, USA; ne62@yahoo.com

References

Dynamics of corneal endothelial cell death in organ culture

We read with interest the remarks of Crowston et al on our article.\(^1\) We showed that the TUNEL technique revealed a far higher percentage of endothelial cells (ECs) irreversibly engaged in a cell death process than that obtained by trypan blue staining.

The two techniques were performed sequentially: after observation of trypan blue staining, corneas were immediately fixed in formaldehyde for TUNEL. Crowston et al suggest that the trypan blue itself and/or its fixative denatured ECs irreversibly engaged in a cell death process than that obtained by trypan blue staining.

For a shorter duration, we need to know the duration of administration since that would be of practical relevance to the readers. We would like to know how the authors arrived at this conclusion, as there is no mention of the type of patients selected for their study.

We would like to comment on our article.\(^2\) We showed that the TUNEL technique revealed a far higher percentage of endothelial cells (ECs) irreversibly engaged in a cell death process than that obtained by trypan blue staining. The two techniques were performed sequentially: after observation of trypan blue staining, corneas were immediately fixed in formaldehyde for TUNEL. Crowston et al suggest that the trypan blue itself and/or its fixative denatured ECs irreversibly engaged in a cell death process than that obtained by trypan blue staining.

376 PostScript

M S Bajaj, N Pushker, A Mahindrakar, R Rafaelsbramanyan

Correspondence to: Mandeep S Bajaj, RP Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; mbajaj32@hotmail.com
The second remark by Crowston et al is particularly interesting. We too were surprised by the high percentage of TUNEL positive ECs (mean 12.7%, SD 16.4). This may imply that all the cells died within 8 days, which was evidently not the case. We believe this apparent contradiction can be explained by the following theory. The TUNEL staining is positive during a relatively long window (24–48 hours). The TUNEL index, measured at a given moment, provides a global view of all the cells with fragmented DNA. However, the DNA fragmentation may be at different stages, and the cells very likely spread according to a Gaussian distribution. Therefore the cells, which are TUNEL positive at a given moment, will not die instantaneously and simultaneously. Only the cells furthest to the right on the curve will die in the very short term, and it is probably those that are liable to be revealed by trypan blue. If it were possible to perform TUNEL on two consecutive days, the percentage of positive cells revealed would probably be very similar, but a large majority of the positive cells recorded on the second day would have already been counted on day one. It is, however, undeniable that the cells that are TUNEL positive at a given moment will all die eventually. In other words, we believe that, at the end of storage, corneas will all die eventually. In other words, we believe that, at the end of storage, corneas will all die eventually.

For further information please contact: Journal of Community Eye Health, International Centre for Eye Health, Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, UK (tel: ++44 (0)20 7608 6910; fax: ++44 (0)20 7250 3207; email: eyeresource@ucl.ac.uk; web site: www.jceh.co.uk; Annual subscription (4 issues) UK£25/US$40. Free to workers in developing countries.

International Centre for Eye Health

The International Centre for Eye Health has published a new edition of the Standard List of Medicines, Equipment, Instruments and Optical Supplies (2001) for eye care services in developing countries. It is compiled by the Task Force of the International Agency for the Prevention of Blindness. Further details: Sue Stevens, International Centre for Eye Health, 11–43 Bath Street, London EC1V 9EL, UK (tel: ++44 (0)20 7608 6910; email: eyeresource@ucl.ac.uk).

Second Sight

Second Sight, a UK based charity whose aims are to eliminate the backlog of cataract blind in India by the year 2020 and to establish strong links between Indian and British ophthalmologists, is regularly sending volunteer surgeons to India. Details can be found at the charity web site (www.secondsight.org.uk) or by contacting Dr Lucy Mathen (lucymathen@yahoo.co.uk).

Specific Eye Conditions (SPECS)

Specific Eye Conditions (SPECS) is a not for profit organisation which acts as an umbrella organisation for support groups of any conditions or syndrome with an integral eye disorder. SPECS represents over fifty different organisations related to eye disorders ranging from conditions that are relatively common to very rare syndromes. We also include groups who offer support of a more general nature to visually impaired and blind people. Support groups meet regularly in the Boardroom at Moorfields Eye Hospital to offer support to each other, share experiences and explore new ways of working together. The web site www.eyeconditions.org.uk acts as a portal giving direct access to support groups own sites. The SPECS web page is a valuable resource for professionals and may also be of interest to people with a visual impairment or who are blind. For further details about SPECS contact: Kay Parkinson, SPECS Development Officer (tel: ++44 (0)1803 524238; email: k@eyeconditions.org.uk; web site: www.eyeconditions.org.uk).

16th Annual Meeting of German Ophthalmic Surgeons

The 16th Annual Meeting of German Ophthalmic Surgeons will be held 8–11 May 2003 in Nürnberg, Germany, Messezentrum. Organised by the Professional Association of German Ophthalmologists, the Ophthalmic Surgery Group will cover cataract surgery, refractive surgery, glaucoma surgery, vitreoretinal surgery, corneal surgery, eye surgery in developing countries, and orbita, lacrimal and lid surgery. Further details: MCN Medizinische Congress organisation Nürnberg AG, Zerzabelshofstr 29, 90478 Nürnberg, Germany (tel: +49 911 3931621; fax: +49 911 3931620; email: doc@mcnag.info; web site: www.doc-mcnag.de).

3rd British Oculoplastic Surgery Society Meeting

The 3rd British Oculoplastic Surgery Society Meeting will be held 18–19 May 2003 in Birmingham, UK. For further details please contact the Secretary of the British Oculoplastic Surgery Society: Jane O’Hara (tel: ++44 (0)121 424 5464; fax: ++44 (0)121 424 4464; email: MartiDi@heartsof.wmids.nhs.uk; web site: www.bopss.org).

13th Meeting of the EASD Eye Complication Study Group

The 13th Meeting of the EASD Eye Complication Study Group will be held on the 23–25 May 2003, in Prague, Czech Republic. The scientific programme includes keynote lectures from Professor John H Fuller (UK) on The epidemiology of diabetic retinopathy; Dr P Martin van Hagen (The Netherlands) on Growth factors and diabetic retinopathy; Professor terzic Pelikanova (Czech Republic) on Pathophysiology of diabetic microvascular complications; Dr Tomas Sosna (Czech Repub.) on Risks and protective factors of diabetic retinopathy.

Three travel grants of £1000 each, sponsored by GlaxoSmithKline for young scientists (under 35 years at the time of the meeting). Applications should be made for the submission of abstracts. The deadline for abstracts is 14 February 2003.

Further details: Ortopedice Centrum, s.r.o., Streckovské nabrezi 51, 400 03 Usti nad Labem, Czech Republic (tel: +420 47 521 6588; fax: +420 47 533 40 77; email: ortcentrum-ul@voln.cz; web site: www.ortopedice-centrum.cz).

Detachment Course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding the Annual Meeting of Iranian Society of Ophthalmology

The detachment course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding Annual Meeting of Iranian Society of Ophthalmology will be held on 29–30 November 2003 and 1–4 December 2003 respectively, at the Razieh Conference Center, Hemmat Byw, Tehran, Iran. Further details: Scientific programme: Prof Ingrid Kreissig, University of Tuebingen, Schleichstr. 12, Breuningerbau, 72076 Tuebingen, Germany (tel: +49 7071 293209; email: ingrid.kreissig@med.uni-tuebingen.de). Local organisation: Dr Arman Masheychi, Dr Siamak Moradian, Dept of Ophthalmology, Labbanfinejad Medical Center, Pasdaran Ave, Boosten 9, Tehran, 16666, Iran (fax: +98 21 254 9039; email: labbafi@hotmail.com).

Role of optometry in Vision 2000

The latest issue of Community Eye Health (No 43) discusses the mobilisation of optometry to deal with uncorrected refractive error, which is now a major cause of functional blindness.