LETTERS

Laser induced chorioretinal venous anastomosis in ischaemic central retinal vein occlusion

Laser induced chorioretinal venous anastomosis (CRVA) has been advocated by McAllister and Constable as a treatment for non-ischaemic central retinal vein occlusion (CRVO). This technique potentially offers a means of permanently bypassing the site of obstruction to venous outflow, which is thought to occur in the region of the lamina cribrosa. In ischaemic CRVO, the visual prognosis is usually much poorer, with devastating complications like neovascular glaucoma and progressive macular ischaemia. In this prospective study, we investigated the feasibility of laser induced CRVA in eyes with ischaemic CRVO, in view of the possibility of avoiding or lessening these severe complications.

Materials and methods

The classification of ischaemic CRVO was based on the presence of 10 disc diameter or more of capillary non-perfusion in the fundus fluorescence angiography (FFA), according to the criteria in the CRVO study. Approval from the ethics committee and informed consent from patients were obtained. Inclusion and exclusion criteria are shown in Table 1. All the laser treatment was performed by one of the authors (AK) who had successfully treated patients with non-ischaemic CRVO with a similar procedure. The site for attempts at the creation of anastomosis was in the inferotemporal and superonasal retina over a venous tributary of the retinal vein where it crosses over an underlying choroidal vein, at least 3 disc diameters away from the optic disc. Argon or diode laser with 50 µm spot size of 0.1–0.2 second’s duration and with a power level of 1.5–2.5 W was focused over the edge of the chosen retinal vein. Increasing power was used until there was haemorrhaging from the vein (Fig 1A). The bleeding was stopped by pressure on the eye with a contact lens.

Results

Six eyes of six patients were included (Table 2). All of them had posterior vitreous detachment. Median follow up was 21 months (range 5–31 months). The median preoperative best corrected visual acuity (BCVA) was 3/200 (range, hand movement to 8/200). The median postoperative best corrected visual acuity (BCVA) was 2/200 (range, hand movement to 20/200). The median number of attempted anastomosis per eye was four (range, two to four). Through repeated ophthalmoscopic examination, FFA, and indocyanine green angiography, no functional anastomosis was found. A small nodular fibrotic scar was noted in each site (Fig 1B). No other significant laser related complication was found. One eye eventually developed rubecic glaucoma.

Comment

In non-ischaemic CRVO, a successful CRVA was created in 33–54% of eyes. Laser photocoagulation treatment parameters differed, because the superiority of one combination of parameters compared with another had not been demonstrated. In our study, it appears that argon or diode laser induced CRVA was not feasible in ischaemic CRVO. We attribute this to the severe endothelial cell damage secondary to ischaemia and venous thrombosis across the retinal circulation. In a dog model without retinal vein occlusion, a successful laser induced CRVA was shown to be lined by endothelial cells. Despite the failure to create functional CRVA, we did not encounter any adverse complication related to the laser treatment. The presence of posterior vitreous detachment in our patients might have lessened the chance of development of chorioretinovascular neovascularisation. Successful CRVA in ischaemic CRVO has been reported to be established through pars plana vitrectomy with direct surgical puncture or erbium:YAG laser. This surgical approach may be a better option to create CRVA in ischaemic eyes, especially when the posterior hyaloid is still attached preoperatively.

Table 1 Inclusion and exclusion criteria of patients

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Confirmed presence of central retinal vein occlusion</td>
<td></td>
</tr>
<tr>
<td>2 Central retinal vein occlusion ≤3 months’ duration</td>
<td></td>
</tr>
<tr>
<td>3 Visual acuity <2/20</td>
<td></td>
</tr>
<tr>
<td>4 Intraocular pressure <30 mm Hg</td>
<td></td>
</tr>
<tr>
<td>5 Ability to obtain good quality fundus photographs and angiograms</td>
<td></td>
</tr>
<tr>
<td>6 Age ≥21 years</td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td></td>
</tr>
<tr>
<td>1 Intercurrent eye disease of study eye that is likely to affect visual acuity over study period</td>
<td></td>
</tr>
<tr>
<td>2 Presence of any diabetic retinopathy in either eye</td>
<td></td>
</tr>
<tr>
<td>3 New or old branch artery/vein occlusion in study eye</td>
<td></td>
</tr>
<tr>
<td>4 Other retinal vascular disease in study eye</td>
<td></td>
</tr>
<tr>
<td>5 Vitreous haemorrhage other than breakthrough in study eye</td>
<td></td>
</tr>
<tr>
<td>6 Presence of neovascularisation of the study eye (iris, angle, retina, disc)</td>
<td></td>
</tr>
<tr>
<td>7 Haemorrhagic vitreous cannot be discontinued for duration of study</td>
<td></td>
</tr>
<tr>
<td>8 Impossible to differentiate between ischaemic and non-ischaemic central retinal vein occlusion</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Baseline and outcome characteristics of patients receiving laser treatment

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex/age</th>
<th>Interval of CRVO and laser (weeks)</th>
<th>Laser used</th>
<th>No of laser sessions</th>
<th>Total No of laser sites attempted</th>
<th>Initial BCVA</th>
<th>Final BCVA</th>
<th>Duration of follow up (months)</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M/79</td>
<td>5</td>
<td>Argon</td>
<td>2</td>
<td>4</td>
<td>8/200</td>
<td>HM</td>
<td>31</td>
<td>Neovascular glaucoma</td>
</tr>
<tr>
<td>2</td>
<td>M/2</td>
<td>2</td>
<td>Diode</td>
<td>1</td>
<td>2</td>
<td>2/200</td>
<td>2/200</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F/54</td>
<td>3</td>
<td>Argon</td>
<td>2</td>
<td>4</td>
<td>4/200</td>
<td>20/200</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M/53</td>
<td>1</td>
<td>Diode</td>
<td>2</td>
<td>4</td>
<td>8/200</td>
<td>5/200</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F/80</td>
<td>6</td>
<td>Argon</td>
<td>2</td>
<td>4</td>
<td>HM</td>
<td>HM</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F/80</td>
<td>10</td>
<td>Argon</td>
<td>1</td>
<td>2</td>
<td>HM</td>
<td>2/200</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

CRVO = central retinal vein occlusion, BCVA = best corrected visual acuity.
Actinic granuloma is a condition characterised, histologically, by a preponderance of giant cells in close relation with damaged elastic fibres and the absence of necrobiosis, lipid, mucin, and palisading of the elastic fibres and the absence of necrobiosis, giant cells in close relation with damaged

Comment
O’Brien, in his original description of actinic granuloma, described the pathogenesis as a phenomenon of repair occurring in damaged connective tissue. This concept was disputed by Ragaz and Ackerman who believed that the granulomatous inflammation was not a response to degenerative elastic fibres but

Table 1 Review of previously published cases of actinic granuloma

<table>
<thead>
<tr>
<th>Patient age (years)</th>
<th>Sex</th>
<th>Location</th>
<th>Size of lesion</th>
<th>Clinical presentation</th>
<th>Differential diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1, Proia et al</td>
<td>38</td>
<td>Female</td>
<td>Temporal bulbar conjunctiva</td>
<td>2 mm</td>
<td>3/52 History of painless red eye</td>
</tr>
<tr>
<td>Case 2, Ferrer et al</td>
<td>30</td>
<td>Female</td>
<td>Temporal bulbar conjunctiva</td>
<td>2 × 3 mm</td>
<td>6/52 History of red eye</td>
</tr>
<tr>
<td>Case 3, Steffen et al</td>
<td>39</td>
<td>Female</td>
<td>Conjunctiva, site unknown</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Case 4, Gallagher et al</td>
<td>67</td>
<td>Female</td>
<td>Nasal bulbar conjunctiva</td>
<td>3 × 3 mm</td>
<td>Not known</td>
</tr>
</tbody>
</table>

Figure 1 Presenting appearance of lesion.
Figure 2 Histology of excised lesion.
Figure 3 Appearance post-incision. Persisting scleral thinning shown by arrowhead.
that the lesions described by O’Brien represented variants of granuloma annulare, a disorder of skin and ocular adnexae.4–6 The existence of conjunctival actinic granulomas in isolation distinguishes this condition from granuloma annulare and implies that granuloma formation can occur in response to elastotic material. Furthermore, actinic granulomas are histologically distinct with prominent elastotic degeneration of connective tissue fibres, giant cells, and incompensate palisading of epithelioid histiocytes.

McGrae postulated that actinic granuloma represented a cell mediated immune response to weakly antigenic determinants on actinically altered elastotic fibres with a predominance of helper T cells in the lymphocytic infiltrate.1

More recently the association of temporal arteritis and actinic granulomas of the skin has been documented.6 It is hypothesised that actinic radiation selectively injures elastic tissue in the skin and its superficial arteries and this tissue may then become antigenic, with local, humoral, and systemic overtones. It is reported that the serum of patients with untreated giant cell arteritis contains a significantly elevated level of an elastase in the form of matrix metalloproteinase 9 (MMP-9) and that this enzyme was found to be abundant in the vicinity of damaged temporal internal elastic laminae.6 Gillett et al.7 observed that sera from 12 of 13 patients with untreated giant cell arteritis contained high levels of elastase derived elastin peptides and that the peptides were targeted by T lymphocytes such as appear in the actual lesions of the skin.2 This mode of autoimmune reaction complies with the "danger" model of autoimmunity described by Matzinger and appraised by Larkin.8

Our case presented with the novel association of an underlying focal scleral atrophy. Negative investigations for scleritis would suggest that this feature may be an extension of the autoimmune process representative of actinic granuloma rather than an independent idiopathic scleritis.

It is interesting to note that all documented cases of actinic granuloma of the conjunctiva have occurred in females which would be supportive of an autoimmune pathogenesis. Clinically, the differential diagnosis of conjunctival actinic granuloma includes pingueculitis, Bowen's disease, conjunctival naevus, granuloma annulare (pseudohypermelanotic nodule), and episcleral rheumatoid nodule.

Pathologically, the differential diagnosis includes pingueculae, pingueculitis, infection—particularly fungal, parasitic, or mycobacterial—and foreign body reactions. However, there is no granulomatous reaction to the actinic elastosis in pingueculae. In fungal and parasitic lesions there is often a prominent eosinophilic infiltrate associated with the granulomas. Caseous necrosis is seen in mycobacterial infections. In difficult cases special stains may help. Polarised light microscopy rules out the presence of birefringent material.

Actinic granuloma of the conjunctiva represents a distinct clinical, histopathological, and immunological entity. Its classic presentation over a short period of a few weeks and poor response to topical steroid treatment should aid the ophthalmologist in recognising this lesion. Of practical importance to the ophthalmic pathologist is recognition that the granulomatous inflammation may be associated with elastotic degeneration and does not necessarily imply the presence of a foreign body, fungal, or mycobacterial infection.

References

Ultrasound biomicroscopy has the ability to provide objective quantification. The data presented here show that the technique can be used in a clinical context to assess the response to treatment. The correlation between subjective clinical and objective ultrasound biomicroscopy findings shows that the two methods are complementary. Longitudinal studies are needed to further evaluate the potential of ultrasound biomicroscopy in the management of glaucoma.

Figure 1 Humphrey 24-2 visual field showing (A) precataract visual field, (B) field with cataract and visual field defect, (C) visual field after cataract removal.

www.bjophthalmol.com
gave a 1 month history of a sudden onset of misty vision affecting her right nasal visual field noticed while driving her car. There were no other associated neurological symptoms. Just before this she had been diagnosed with “borderline” systemic hypertension. There were no other risk factors for a vascular event, although there is a positive family history—her father had had a cerebrovascular accident.

On examination, her visual acuity had dropped from 6/6 to 6/24 in the right eye, remaining unchanged at 6/6 in the left since the previous visit. It had also been documented that letters on the nasal side of the Snellen chart were not seen with the right eye. An initial visual field demonstrated a nasal hemianopsia of the right eye. Her pupils were equal with normal reactions to light and accommodation. Dilated slit lamp biomicroscopy revealed marked central posterior subcapsular lens opacity with very mild subcapsular changes in the other eye, previously documented as normal. Retinal examination was normal and the optic discs pathologically cupped with inferior rim thinning; changes consistent with glaucoma, although there were no documented changes from the previous visit 6 months earlier.

Further neurological and cardiovascular examination (other than a blood pressure of 170/70 mm Hg, were also unremarkable. A computed tomograph (CT) scan of the brain, orbits and visual pathways was also normal. A repeat red spot visual field revealed marked central posterior subcapsular cataract due to posterior cortical paraxial lens opacity. A repeat red spot visual field test confirmed the absence of focal neurological scotoma.

Whereas in this case the right nasal hemianopsia was due to a posterior subcapsular cataract, we believe that a neurological cause for the field defect should always be sought, particularly with a history of sudden onset. Cataract extraction should be considered only after excluding the absence of the same.

Further, consider performing a postoperative red spot visual field test to confirm the absence of focal neurological defects in such eyes.

1. Rahman, A, Nambiar, A, F Spencer
Manchester Royal Eye Hospital, Lister Centre, Nelson Street, Manchester, UK

Correspondence to: Mr Imran Rahman, Manchester Royal Eye Hospital, Lister Centre, Nelson Street, Manchester, UK; imran1973@tiscali.co.uk

Accepted for publication 9 December 2002

References

Lack of human papillomavirus in pterygium of Chinese patients from Taiwan

We read with interest that Gallagher et al had demonstrated the association of human papillomavirus (HPV) and pterygium by polymerase chain reaction (PCR). Several hypotheses concerning the pathogenesis of pterygia have been proposed, including exposure to ultraviolet irradiation and other environmental factors, genetic predisposition, and viral infection. The various theories regarding pterygium formation imply that much about the pathogenesis of pterygia remains to be investigated.

The involvement of HPV in the genesis of pterygia is controversial. Some authors have demonstrated that HPV is present in 25–50% of specimens, whereas others have failed to detect HPV in pterygia. To help resolve this controversy, we evaluated 65 pterygia, 23 pinguecula, and 88 normal conjunctiva derived from Chinese patients in Taiwan for the presence of HPV DNA. We used PCR with three different consensus primer sets—MY09/ MY11 (MY), L1C1/L1C2-1 (LC), and GPs/GP (GP).

Material and methods
Samples were obtained from consecutive patients treated at the ophthalmologic clinic of the Taipei Veterans General Hospital. Medical and ophthalmologic histories were recorded for each patient, a slit lamp microscope examination was performed, and pterygia were photographed before surgery. In each case, a specimen of adjacent clinically normal conjunctival tissue (from the 12 o’clock position of the corneconjunctival limbus) was obtained. Immediately after surgery, tissue specimens (pterygia, pingueculas, or conjunctival tissues) were stored at −70°C.

DNA preparation
The DNA from specimens was isolated as described previously. Briefly, the lysis buffer (10 mM TRIS-HCl, pH 7.5, 1 mM EDTA, pH 7.9, 0.5% SDS) and the proteinase K (100 μg/ml) were added to the specimens and the mixture was incubated overnight at 37°C. The standard phenol-chloroform extraction and the ethanol precipitation were used for DNA purification and the pelleted DNA was resuspended in 50–100 μl of distilled sterile water. To determine the quality and quantity of the isolated DNA, each pelleted DNA sample was analysed by electrophoresis on 1% agarose gels stained with ethidium bromide and viewed spectrophotometrically.

PCR analysis for HPV
Each amplification reaction was carried out in a total volume of 20 μl overlaid with one drop of mineral oil and contained 10 mM TRIS-HCl (pH 8.3), 50 mM KCl, 0.25 U Taq DNA-polymerase (Perkin-Elmer), and 100–200 ng DNA. The concentration of dNTPs and MgCl2, varied with each set of primers. Each PCR was carried out in DNA thermal cycler (Perkin-Elmer Cetus DNA Thermal Cycler 480) with the first denaturation step at 92°C for 2 minutes and the final extension step at 72°C for 15 minutes. The conditions and the number of denaturation, annealing, and extension cycles were different for each set of primers.

table1

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY11</td>
<td>GCMGACGCGWCATAAATAGG</td>
</tr>
<tr>
<td>MY09</td>
<td>CTGTCMARRGGAWCTGATC</td>
</tr>
<tr>
<td>L1C1</td>
<td>GTGAAAAGTCCTTCCTAATT</td>
</tr>
<tr>
<td>L1C2-1</td>
<td>TACCTAAATACCTGTATG</td>
</tr>
<tr>
<td>GP5</td>
<td>TTTGACTACGTGATAC</td>
</tr>
<tr>
<td>GP6</td>
<td>GAAAAATAAATGCTAAATC</td>
</tr>
</tbody>
</table>

*Ma=A+C, Ra=G, Wa=A+T, Y=C+T.
Table 2 Characteristics of patients with pterygia and pinguecula

<table>
<thead>
<tr>
<th></th>
<th>Pterygium</th>
<th>Pinguecula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (M/F)</td>
<td>65/40(25)</td>
<td>23/15(8)</td>
</tr>
<tr>
<td>Age (years, mean (SE))</td>
<td>63.3 (5.9) (range 55.5–82.3)</td>
<td>58.3 (7.4) (range 44.4–71.2)</td>
</tr>
<tr>
<td>Duration of lesion (years, mean (SE))</td>
<td>9.8 (3.7) (range 5.5–21.5)</td>
<td>18.1 (7.9) (range 10.0–28.5)</td>
</tr>
<tr>
<td>Conjunctivitis history (%)</td>
<td>24 (36.9)</td>
<td>2 (8.7)</td>
</tr>
</tbody>
</table>

Table 3 Literature reports of human papillomavirus detection in pterygia

<table>
<thead>
<tr>
<th>Authors (year published)</th>
<th>No of specimens</th>
<th>Pterygium (type)</th>
<th>Method/prime</th>
<th>Positive rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolmatch et al (1996)</td>
<td>16</td>
<td>?</td>
<td>Immunohistochemical stain</td>
<td>100%</td>
</tr>
<tr>
<td>Dushku et al (1999)</td>
<td>13</td>
<td>P + R</td>
<td>My09/My11</td>
<td>100%</td>
</tr>
<tr>
<td>Chen et al (current study) (2002)</td>
<td>65</td>
<td>P</td>
<td>MY09/My11</td>
<td>0</td>
</tr>
</tbody>
</table>
Factor V Leiden mutation does not correlate with retinal vascular occlusion in white patients with Behcet’s disease

The factor V Leiden (FV Leiden) mutation causes resistance to activated protein C by substituting the Glu295 residue with arginine at the cleavage site for activated protein C. Heterozygous carriers of the FV Leiden mutation have an increased risk of venous thrombosis between threefold and sevenfold in population based and family studies. No significant association between FV Leiden and ocular disease has been shown in a study of 106 Middle Eastern patients with Behcet’s disease and 120 racially matched controls that the prevalence of factor V Leiden was significantly higher among patients with ocular inflammation (odds ratio 1.67) and was even more prevalent in patients who had developed retinal vascular occlusive disease (odds ratio 2.93).

In this current study we analysed the association between factor V Leiden and clinical features of Behcet’s disease in white patients from the United Kingdom. The results show that, unlike the Middle Eastern Behcet’s disease patients, factor V Leiden was not associated with Behcet’s disease in UK patients.

Patients
DNA samples from 53 white patients with Behcet’s disease were collected from individuals attending the Behcet’s disease clinic at the Medical Eye Unit, St Thomas’ Hospital, London. All patients fulfilled the international criteria for Behcet’s disease. Middle Eastern and Afro-Caribbean patients were excluded from this study. A total of 150 white controls were obtained from our database. Patients’ clinical details were recorded following full systemic and ocular examination, the diagnosis of retinal vein occlusion being recorded following fluorescein angiography.

Factor V Leiden analysis
HLA typing and detection of the FV Leiden mutation was performed using PCR-SSP as previously described. The results were analysed by generating two by two contingency tables and statistical analysis was performed using z² test.

Results
Fifty three patients (28 males, 25 females) were analysed; 74% (n=39) had ocular disease, 11 had no ocular disease, and for three patients the ocular disease status was unknown. Of those patients with ocular disease, 54% (21/39) had retinal vein occlusion.

Twenty two out of 53 (42%) were HLA-B*51 of whom 3/22 (14%) were B*5108, the remainder being B*5101 (Table 1).

Only 2/53 (3.8%) patients in this cohort of patients were homozygous for the FV Leiden mutation (Table 1). Both patients were male, and had ocular disease, however only one of these individuals had evidence of retinal occlusion.

Comment
The factor V Leiden mutation has been linked with ocular disease in Middle Eastern patients with Behcet’s disease, in particular those with proved retinal venous thrombosis. The current data on UK patients with Behcet’s disease do not show a similar association. The prevalence of FV Leiden in the patient group was no different from the control group. Moreover, while both patients positive for FV Leiden but without ocular disease this is against a background of a high level of eye disease in this group.

There are several possibilities that could explain the difference between the groups. Firstly, the prevalence of FV Leiden in the Middle Eastern population was particularly high (17%) and this may have accounted for the functional role of this molecule in retinal venous thrombosis in this population. By comparison, the low prevalence of the mutation in white people suggests that much larger numbers of Behcet’s disease patients will need to be tested to identify any possible association. This has been supported by studies on other European patients with Behcet’s disease where FV Leiden was not identified as a risk factor for systemic venous thrombosis. Moreover, in our previous study, we identified several patients who were homozygous for the FV Leiden mutation and were clinically blind. In a population with such a high prevalence of the mutation, homozgyosity will be more common and may have biased the data in favour of an association between Behcet’s disease, ocular disease and severity of ocular disease in the patient group.

Secondly, recent studies in relatives of individuals with venous thrombosis have shown that the presence of FV Leiden adds only a threefold risk of thromboembolism. Over half of these events were linked to other risk factors such as pregnancy, surgery, or oral contraceptives. This would suggest that in the general white population genetic mutations affecting proteins involved in the coagulation cascade might only be associated with thrombosis in individuals with concurrent risk factors.

Thirdly, population specific phenotypic effects have been described for other gene polymorphisms. In a worldwide survey of HIV+ and HIV- individuals, a particular haplotype of the RANTES gene was associated with increased risk of acquiring HIV-1, and accelerated disease progression, in European Americans, but not African-Americans. A second RANTES haplotype was associated with delayed progression of disease in Japanese populations.
patients, but not in other ethnic groups of patients, probably because this haplotype is rarely found in non-Far East Asians. There are several other factor V gene polymorphisms that may be involved in white patients and these could be an area for future study.

These results suggest that intrapopulal and interpopulation specific genotypes are associated with disease although the phenotypic outcome remains the same. Therefore gene polymorphisms that associate with disease in one population cannot be regarded as associating with the disease in different ethnic groups. It may not be possible to identify genes involved in severity of a complex disease such as Behçet's disease, which will hold across different patient populations.

Y Chen, M R Stanford, G R Wallace
Department of Ophthalmology, King’s College, London SE1 7EH, UK

R W Vaughan, E Kondeatis
Department of Tissue Typing, King’s College, London SE1 7EH, UK

F Fortune
Department of Oral Medicine, University of Leeds, Leeds, UK

Correspondence to: Dr Graham Wallace, Academic Unit of Ophthalmology, University of Birmingham, City Hospital, Dudley Road, Birmingham B1 7QG, UK; g.r.wallace@bham.ac.uk

Accepted for publication 15 December 2002

References

4 Oner AF, Gurgey A, Gurler A, et al. Factor V Leiden mutation in patients with the gene polymorphisms that associate with the disease in different ethnic groups. It may not be possible to identify genes involved in severity of a complex disease such as Behçet’s disease, which will hold across different patient populations.

Y Chen, M R Stanford, G R Wallace
Department of Ophthalmology, King’s College, London SE1 7EH, UK

R W Vaughan, E Kondeatis
Department of Tissue Typing, King’s College, London SE1 7EH, UK

F Fortune
Department of Oral Medicine, University of Leeds, Leeds, UK

Correspondence to: Dr Graham Wallace, Academic Unit of Ophthalmology, University of Birmingham, City Hospital, Dudley Road, Birmingham B1 7QG, UK; g.r.wallace@bham.ac.uk

Accepted for publication 15 December 2002

References

4 Oner AF, Gurgey A, Gurler A, et al. Factor V Leiden mutation in patients with the

gene polymorphisms that associate with the disease in different ethnic groups. It may not be possible to identify genes involved in severity of a complex disease such as Behçet’s disease, which will hold across different patient populations.

Y Chen, M R Stanford, G R Wallace
Department of Ophthalmology, King’s College, London SE1 7EH, UK

R W Vaughan, E Kondeatis
Department of Tissue Typing, King’s College, London SE1 7EH, UK

F Fortune
Department of Oral Medicine, University of Leeds, Leeds, UK

Correspondence to: Dr Graham Wallace, Academic Unit of Ophthalmology, University of Birmingham, City Hospital, Dudley Road, Birmingham B1 7QG, UK; g.r.wallace@bham.ac.uk

Accepted for publication 15 December 2002

References

4 Oner AF, Gurgey A, Gurler A, et al. Factor V Leiden mutation in patients with the

gene polymorphisms that associate with the disease in different ethnic groups. It may not be possible to identify genes involved in severity of a complex disease such as Behçet’s disease, which will hold across different patient populations.

Y Chen, M R Stanford, G R Wallace
Department of Ophthalmology, King’s College, London SE1 7EH, UK

R W Vaughan, E Kondeatis
Department of Tissue Typing, King’s College, London SE1 7EH, UK

F Fortune
Department of Oral Medicine, University of Leeds, Leeds, UK

Correspondence to: Dr Graham Wallace, Academic Unit of Ophthalmology, University of Birmingham, City Hospital, Dudley Road, Birmingham B1 7QG, UK; g.r.wallace@bham.ac.uk

Accepted for publication 15 December 2002

References

4 Oner AF, Gurgey A, Gurler A, et al. Factor V Leiden mutation in patients with the
Figure 1 (A) and (B) Bilateral macular staphylomas in a patient with cone dystrophy. There are macular retinal pigment epithelial changes consistent with cone dystrophy. The retinal vessels in both eyes appear to dive posteriorly into staphylomas that are centred around the macula (type 2 staphyloma).

staphylomas were centred around the macula in each eye. The peripheral retina in each eye was otherwise normal.

Fluorescein angiography demonstrated mottled hyperfluorescence without leakage corresponding to the retinal pigment epithelium (RPE) changes (data not shown). Goldmann visual fields were remarkable for central scotomas in both eyes with peripheral isoptres full to II-4 stimulus in the right eye and I-4 stimulus in the left eye (Fig 2). A B-scan showed bilateral staphylomas with macular involvement (Fig 3). On electroretinography, photopic responses were markedly reduced. The dim scotopic responses were normal. The mixed scotopic responses were 90% of normal in the right eye and 97% of normal in the left eye. There were markedly reduced photopic flash and ficker responses, with a questionable response of 10% of the normal amplitude. Pelli-Robson contrast sensitivity testing was depressed at 1.2 log units in a dim environment (normal = 1.65). D15 colour testing detected four major and three minor errors in the right eye, and five major and two minor errors in the left eye. A therapeutic red tinted contact lens was prescribed to eliminate the photophobia and aversion to light due to cone dystrophy, and thereby to reduce the level of visual dysfunction.

Comment
In summary, we have described a patient whose findings are consistent with a diagnosis of cone dystrophy compounded by bilateral macular staphylomas. We believe that this does not represent congenital achromatopsia given the absence of nystagmus and the history of progressively worsening vision. Although there is a report of familial cone dystrophy with bilateral macular staphylomas, we are unaware of a case of bilateral macular staphylomas associated with cone dystrophy. To our knowledge, this case represents a previously unreported association of cone dystrophy with macular staphylomas. Awareness of this association will hopefully contribute to proper diagnosis as this finding had presumably been missed in previous ophthalmological examinations.
Given the significant association of macular staphylomas with numerous complications listed above, especially the risk for choroidal neovascularisation and haemorrhage, such patients should receive counselling regarding its symptoms and receive periodic comprehensive ophthalmological examinations.

Financial interests: None.

Financial support: None.

R S Apte, J S Sunness
The Retinal Vascular Center, The Wilmer Ophthalmological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

R S Apte, B G Goldstein
The Vitreoretinal Division
W L Park, J S Sunness
Lions Vision Center
R Z Raden, M J Elman
Elman Retina Group, PA, Baltimore, MD, USA

Correspondence to: Janet S Sunness, MD, The Wilmer Ophthalmological Institute, The Johns Hopkins University School of Medicine, 550 N Broadway, 6th Floor, Baltimore, MD 21205, USA; jsunness@mjh.org

Accepted for publication 2 January 2003

References

Bloody tears, or haemolacra, are an occasional feature of hereditary haemorrhagic telangiectasia, and tumours of the lacrimal apparatus. In the emergency department, however, they are more commonly encountered accompanying epistaxis. To date, Medline lists only a single case report of haemolacra in this context, and the photograph presented here may well be the first of the phenomenon.

Its anatomical basis lies in the intimate connection of nose and eye via the lacrimal apparatus. An increase in pressure within the nasal cavity during epistaxis—for example, by pinching or blowing the nose, can cause retrograde flow of blood through the system and thus lead to bloody tears emerging from the ipsilateral eye.

As our patient had longstanding perforation of both tympanic membranes, the blood in her nose was also able to travel retrograde via the auditory tube and middle ear into the external auditory canal. This led to the additional bleeding from the right ear.

Bleeding was readily controlled by nasal sponge tamponade. The patient made an uneventful recovery.

M F Wiese
Department of Emergency Medicine, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; wiese@doctors.org.uk

Accepted for publication 23 December 2002

References:

Haemorrhagic toxoplasmin retinochorioiditis: description of an unusual clinical presentation

Toxoplasmin retinochorioiditis (TRC) is an infectious disease caused by the protozoan Toxoplasma gondii. This infection affects many organs including the eyes. Most of the time ocular involvement occurs after a transplacental transmission, throughout pregnancy, but the infection can also be acquired. In immunocompetent patients, TRC is the most common cause of infection affecting the posterior segment. Clinically, the lesion appears as a white focal necrosis involving the full thickness of the retina, at the margin of an old pigmented chorioretinal scar. A vitreous inflammation is usually present and occasionally vasculitis is observed.

We report the case of a healthy patient who developed a unilateral haemorrhagic retinochorioiditis (RC). The investigations performed were positive for a TRC.

Case report
A 43 year old African man was referred with a 10 day history of a painless progressive visual loss affecting the left eye. No other ophthalmological or systemic complaints were present. His past medical history was unremarkable.

Ophthalmological examination disclosed a vision of 20/200 in the right eye without correction and in the left eye the best visual acuity was 20/200. Anterior segment examination was normal in the right eye but revealed a mild inflammation in the left. Intraocular pressure was within the normal limits in both eyes. Left eye fundus examination showed a vitreous inflammation (cells: + +) and a whitish retinochoroidal lesion surrounded by a large preretal haemorrhage. Hard exudates were present in the macular area as well as a retinal oedema (Fig 1).

Investigations revealed an erythrocyte sedimentation rate of 6 mm in the first hour (reference range 1-12), and a normal white blood cell count. Serological testing for toxoplasmosis gave negative results for IgM but IgG titre were 40 IU/ml (reference range >3). Serology tests for Borrelia burgdorferi, Treponema pallidum, and HIV were normal. An acute infection was suspected and we decided to perform an anterior chamber tap. Polymerase chain reaction (PCR) (toxoplasmosis, CMV, HSV, VZV) gave negative results, but the Goldmann-Witmer coefficient was 13.64 (reference range <4), revealing a local production of anti-toxoplasmin immunoglobulins. Tests for sarcoidosis and for connective tissue disorders were negative. Immunoglobulin electrophoresis, quantitative immunoglobulin levels, CD4-CD8 lymphocyte count, C3-C4 and CH50 examination were within the normal range. PPD skin test was just positive (7 mm). Chest x-ray was normal.

Based on these findings, a TRC was diagnosed. The patient was treated with sulphadiazine (4 × 1 g/day), pyrimethamine (2 × 25 mg/day) and folic acid, during 6 weeks. Topical steroids and mydriatic drops were also prescribed. Prednisone (1 mg/kg) was introduced, at tapering doses, during the treatment.

After 3 months, visual acuity returned to 20/20 without a correction in the left eye. Anterior segment examination was normal. Left eye posterior segment examination disclosed a regression of the haemorrhages and a white chorioretinal scar with hard exudates located around the fovea. Kyrieleis’s plaque were observed along the inferior papillary arterial vessel (Fig 2).

The patient was followed during 2 years and no reactivation of the RC was observed. Moreover, tests to exclude an immune disease were still within the normal limits (HIV, immunoglobulin electrophoresis, quantitative immunoglobulin levels, PPD skin test, CD4-CD8 lymphocytes count, C3-C4, and CH50).

Comment
The most classic clinical presentation of an active toxoplasmin lesion is that of a whitish and oedematus necrotising RC close to an old pigmented scar. A severe vitreous haemorrhage can be found on the outer retina of the macula. This case is an unusual presentation of a toxoplasmin lesion associated with a haemorrhagic retinochorioiditis. The diagnosis of toxoplasmin retinochorioiditis is usually made during the follow-up of an immunosuppressive treatment for another indication. The diagnosis of toxoplasmin retinochorioiditis should be considered in any unusual case of retinochorioiditis.

Figure 1
Fundus of the left eye. Presence of an oedematous retinochoroidal lesion surrounded by a large preretal haemorrhage. Hard exudates are observed in the macular area.
inflammatory reaction is usually associated, appearing as a “headlight in the fog.” Lesions can occur anywhere in the posterior segment but most of the time, they are located in the macular area, affecting one or both eyes. Associated findings include the presence of an inflammatory sheathing of retinal vessels.

However, a variety of clinical presentations have been reported in the past; Friedmann et al. described the presence grey-white fine punctuate lesions affecting the deep retina with a mild vitreous inflammation. Direct optic nerve involvement by the protozoan was described by Zimmermann in 1956. More recently, various clinical aspects of TCR were described in immunocompromised hosts, appearing as diffuse areas of retinal necrosis or as a bilateral military retinitis.

Ocular occlusive vasculitis can be observed in inflammatory diseases including Behçet's syndrome, sarcoidosis and systemic lupus erythematosus, in infectious disorders (syphilis, acute retinal necrosis), and in TCR. Branch artery obstruction has been reported when a vessel passes through an acute TCR, as well as retinal vein occlusion.

The case reported here was diagnostically challenging as the fundus appearance was not characteristic of classic TCR. In fact, haemorrhages are more frequently found in viral infections such as cytomegalovirus retinitis. This feature could be explained by damage to the vascular wall passing through the RC, without signs of a vascular obstruction.

This case demonstrates the importance of including toxoplasmosis in the differential diagnosis of unilateral haemorrhagic RC in immunocompetent patients.

E Baglivo, A B Safran
Clinique d’Ophthalmologie, Hôpitaux Universitaires de Genève, Rue Alcide-Jenster, 22-CH-05
Geneva, Switzerland

Correspondence to: Eduardo Baglivo, MD, Clinique d’Ophthalmologie, rue Alcide-Jenster, 22-CH-1205
Geneva, Switzerland; Eduardo.Baglivo@hcuge.ch

Accepted for publication 2 January 2003

References

Topical dorzolamide and metabolic acidosis in a neonate

We describe a neonate with bilateral Peter’s anomaly who became unwell and developed a metabolic acidosis after commencing topical dorzolamide. He was fully investigated to exclude other causes of acidosis, and subsequently improved on discontinuation of topical treatment. To the best of our knowledge, there have been no reports of topical carbonic anhydrase inhibitors causing metabolic acidosis in children or adults.

A 5 day old boy was referred to a tertiary ophthalmology unit with bilateral corneal opacities for consideration of penetrating keratoplasty. He had a normal Apgar score at delivery at 35 weeks’ gestation and weight 2.3 kg. In addition, he had had full screening investigations including blood gas, liver function and urine analysis for pH, specific gravity, and electrolytes were also unremarkable. The DMSA scan showed a normal functioning single right kidney.

As the cause for the metabolic acidosis at this stage was unknown he was given intravenous bicarbonate, fludrocortisone, and sodium bicarbonate infusion followed by oral sodium bicarbonate supplements for 3 days. He showed some improvement with treatment; however, he remained significantly acidic and unwell. At routine ophthalmic review 5 days later, while free of all other treatments, the eye drops were stopped and he showed spontaneous next-day resolution of his acidosis. He asymptptomatically improved and gained weight over the subsequent few days (Fig. 1).

Topical dorzolamide has been shown to cause significant reduction in intraocular pressure (IOP) in children and is well tolerated. Secondary glaucoma is well recognised in cases of Peter’s anomaly and raised IOP is well known to cause corneal clouding. Congenital corneal opacities necessitate urgent treatment in order to reduce amblyopia, and therefore it is essential to exclude glaucoma. Topical Trusopt (MSD) is used routinely at the department of ophthalmology, Great Ormand Street, as it is thought to have lower potential for adverse systemic effects than topical β blockers.

Topical dorzolamide is a potent inhibitor of CA-II and this inhibition decreases the rate of aqueous humour secretion consequently lowering IOP. In the proximal renal tubule CA-II is also required to sustain maximal rates of HCO3 reabsorption. Significant systemic inhibition of carbonic anhydrase has not been observed and there has been an absence of demonstrable metabolic effects in adults. However, with the oral carbonic anhydrase inhibitor, acetazolamide, the renal carbonic anhydrase inhibition and acidosis has been shown to be proportionally related to the plasma concentration levels of the drug. The dose per kg systemic absorption of topically
administered dorzolamide would be expected to be higher in neonates/infants of lower body weight compared with adults.

Metabolic acidosis with normal anion gap and serum electrolytes in the absence of diar-

...to treat neonates. Zolamide is a relatively safe topical antihypertensive. One functioning kidney may have led to poor termination of the topical dorzolamide is administered dorzolamide would be expected to be higher in neonates/infants of lower body weight compared with adults.

Metabolic acidosis with normal anion gap and serum electrolytes in the absence of diarrhoea, as in this case, is more likely to be due to proximal renal tubular bicarbonate loss. Spontaneous improvement of the acidosis on termination of the topical dorzolamide is strongly suggestive of the culpability of dorzolamide. It is unclear as to why this happened, but factors such as prematurity, low birth weight, renal tubular immaturity, and one functioning kidney may have led to poor handling of drug elimination at a higher systemic concentration. Although we feel dorzolamide is a relatively safe topical antihypertensive treatment, this case underlines the need for caution when treating neonates.

S Morris, V Geh, K K Nischal
Department of Ophthalmology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK

S Morris, V Geh, K K Nischal
Visual Science Unit, Institute of Child Health, London, UK
S Sahi, M A & Ahmed
Department of Paediatrics, King George Hospital, Barley Lane, Ilford, IG3 8YB, UK

Correspondence to: Mr Ken K Nischal, Department of Ophthalmology, Great Ormond Street Hospital for Children, London WC1N 3JH; kkn@btinternet.com

Accepted for publication 3 January 2003

References

Recurrent infectious crystalline keratopathy caused by different organisms in two successive corneal grafts in the same patient

Infectious crystalline keratopathy (ICK) is a rare complication of penetrating keratoplasty characterised by indolent infectious keratitis in which needle-like, branching crystalline opacities are seen within the corneal stroma, in the absence of appreciable corneal or anterior segment inflammation.1 We report an unusual case of recurrent ICK which occurred in two successive corneal grafts.

Case report

A 63 year old man underwent penetrating keratoplasty for aphakic bullous keratopathy. The immediate postoperative course was uneventful. Topical corticosteroid (dexamethasone 0.1%) was initially given four times daily, and then was tapered to twice daily. Seven months after transplantation, visual acuity decreased to counting fingers with no other symptoms. Slit lamp examination showed a focal area of non-suppurative branching intrastromal white opacities (Fig 1). Corneal scrapings for diagnostic smears and cultures were performed. Microscopic examination of the smears showed dense groupings of many Gram positive cocci with no inflammatory cells. Cultures grew Streptococcus viridans and were negative for fungi. The patient was treated hourly with two fortified antibiotic eye drops (amikacin, vancomycin) and topical rifamycin. Topical antibiotic therapy was gradually tapered over 12 months. Topical dexamethasone was withdrawn and topical ciclopisporin was used to maintain an immunosuppression. Despite intensive treatment with appropriate antibiotics, ICK increased in size and evolved simultaneously towards abscess and acute rejection. The subsequent corneal condition was severe and rapidly progressed to diffuse neovascularisation. A second penetrating keratoplasty was then performed 19 months after the first transplantation. Topical dexamethasone, ciclopisporin, and rifamycin were given four times daily. Three months after the second graft, slit lamp examination showed a large central epithelial defect with multiple diffuse white opacities confined to the anterior stroma. These multiple opacities merged into a larger confluent dense opacity near the continuous suture (Fig 2). Cytological studies and cultures of the corneal scrapings were performed. Light microscopy disclosed aggregates of many fungi with no inflammatory cells. Cultures yielded Candida albicans sensitive to amphotericin B and fluconazole. Bacterial cultures were negative. Topical amphotericin B was started every hour, along with oral fluconazole. Corticosteroids were stopped and topical ciclopisporin was maintained. Despite intensive treatment, the infectious keratopathy slowly worsened over 6 months and the corneal infiltrates were replaced by scarring and neovascularisation.

Comment

Typically, ICK develops in a corneal graft after long term use of topical corticosteroids. Chronic topical corticosteroids used to prevent graft rejection produces relative immunosuppression allowing infection to develop with little or no inflammation in the cornea. Gram positive cocci, usually Streptococcus viridans, are commonly isolated from ICK lesions, but other bacteria, fungi, and mixed infections have been reported.12 To the best of our knowledge, recurrent ICK has never been reported in two successive corneal grafts and with two different organisms. Appropriate laboratory evaluation is therefore necessary to guide specific antimicrobial therapy. Discontinuation of topical steroids with aggressive antibiotic therapy may suffice, but continued infection, vascularisation, or scar formation may sometimes affect visual acuity and corneal graft survival. In this case, medical treatment failed, despite in vitro susceptibility of micro-organisms to antibiotics and antifungal drugs. Moreover, immunosuppression (that is, corticosteroids, ciclopisporin), necessary to prevent graft rejection, worsened the infection and did not prevent the acute rejection process from developing.

In conclusion, this case suggests that local immunosuppression and factors related to the patient ocular surface may be predisposing factors for the development of ICK.

O Touzeau, T Bourcier, V M Borderie, L Laroche
Quinze-Vingts National Center of Ophthalmology, Paris, France

Correspondence to: Tristan Bourcier, MD, PhD, Ophthalmology 5, Quinze-Vingts National Center of Ophthalmology, 28 rue de Charenton 75012 Paris, France; bourcier@quinzevingts.fr

Accepted for publication 2 February 2003

References
Rosai Dorfman disease or sinus histiocytosis with massive lymphadenopathy of the orbit

Sinus histiocytosis with massive lymphadenopathy (SHML) or Rosai Dorfman syndrome is a rare benign proliferative histiocytic disease of unknown origin. It predominantly affects the lymph nodes. The head and neck region usually in association with lymph node involvement, represents one of the most common extranodal areas affected by SHML. The other common extra nodal site is skin. Rarely, there is widespread dissemination with liver, kidney, respiratory organs, orbit, and eyeball involvement. The mean age of onset is 20 years (birth to 74 years).

Case report
A 57 year old woman with a 6 month history of double vision was referred to the Victoria Eye and Ear Hospital, Dublin. She was found to have proptosis, ptosis, diplopia due to inferior rectus dysfunction, and restriction of elevation of the left eye. Her visual acuity was normal. Relevant investigations showed a high erythrocyte sedimentation rate (ESR) of 44 mm in the first hour, C reactive protein of 1.9 (normal less than 1). Her thyroid function tests, including thyroid microsomal and thyroglobulin antibodies, were normal. The anticyt choline receptor antibodies were also negative. A computed tomography (CT) scan of the orbit was performed which showed an extraconal soft tissue mass with well defined margins in the inferolateral part of the left orbit and no separation from inferior and medial rectus. There was no bony erosion and the optic nerve appeared normal. She had an excision biopsy performed through lateral orbitotomy with Wright’s modification.

The tumour was removed within the capsule, it was found to be adherent to the inferior and lateral rectus. Histological examination of the tumour revealed the inflammatory process composed of aggregates of lymphocytes, with reactive lymphoid follicles, plasma cells, and groups of large histiocytes with abundant foamy cytoplasm. The inflammatory process extended around the nerves. There was no vasculitis, areas of coagulative necrosis, or granuloma formation. The large histiocytic cells were characterised by round to oval, vesicular, hyperchromatic nuclei with vesicular chromatin and abundant eosinophilic, foamy or clear cytoplasm with poorly defined cell borders. Emperipolosis was present. The phagocytosed cells were most often erythrocytes, lymphocytes, and polymorphonuclear leucocytes (Fig 1). Special stains for micro-organisms were negative. Immunohistochemical stains revealed the presence of diffuse S100 positivity within the cells. These cells also showed reactivity for the macrophage marker CD68. The diagnosis of Rosai Dorfman disease or SHML was confirmed.

Our patient did not have any lymphadenopathy or any other extranodal involvement. She did not receive any treatment and after 3 years’ follow up there was no signs of recurrence. She still had some residual hypotropia.

Comment
We report this case to draw attention to this unusual presentation of SHML confined to the orbit without any other extranodal lesions, which to our knowledge is the only the third reported case of this nature. SHML is a rare, benign proliferative histiocytic disease with massive lymphadenopathy. Table 1 lists the causes of histiocytic proliferations in the orbit.

In one report of SHML, uveitis with papillodea was the only presentation and in another report the only site of the lesion was lacrimal sac with the duct but these patients later developed cervical lymphadenopathy. Another case with ocular involvement was reported with uveitis and marginal corneal infiltrates in association with cervical lymphadenopathy. SHML is usually benign, low grade, and self limiting but death has been infrequently attributed to it. The condition has also been occasionally associated with the development of malignant lymphoma. Hodgkin’s and the follicular type of non-Hodgkin’s lymphoma and SHML have been identified in the same lymph node biopsy specimen. SHML may be associated with fever, leukocytosis, elevated erythrocyte sedimentation rate, and hypergammaglobulinaemia. Some studies suggest that human herpes virus 6 is involved in affected tissues as well. SHML is usually self limiting but in some cases there was orbital involvement with compressive optic neuropathy, persistent uveitis with marginal corneal infiltrates, massive lymphadenopathy impairing cervical perfusion, and generalised lymphadenopathy with AA amyloidosis. These cases were treated with chemotherapy and oral steroids, the commonest being cyclophosphamide, vincristine, mercaptopurine, and prednisolone. Treatment causes regression of the tumour and resolution of cervical lymphadenopathy with minimal recurrence. Our patient did not receive any treatment and in the 3 year follow up there was no evidence of recurrence of the disease or any sign of sinus histiocytosis elsewhere in the body.

References

The authors wish to correct an error in the article: A Comparison of Perimetric Results with Medmont and Humphrey Perimeters. (Br J Ophthalmol 2003; 87:699–701). Table 4, row 1, column 4 should read 1 not 2, and row 2, column 4 should read 35 not 34. Table 6, row 3, column 1 should read 24 not 27, and row 4, column 2 should read 27 not 24.

CORRECTION

Helping the blind and visually impaired

The latest issue of Community Eye Health (No 45) discusses help for the blind, with an editorial by Sir John Wall of the Royal National Institute for the Blind on the rights of blind people. For further information...
Second Sight

Second Sight, a UK based charity whose aims are to eliminate the backlog of cataract blind in India by the year 2020 and to establish strong links between Indian and British ophthalmologists, is regularly sending volunteer surgeons to India. Details can be found at the charity's website (www.secondsight.org.uk) or by contacting Dr Lucy Mathen (lucymathen@yahoo.co.uk).

SPEcific Eye Conditions (SPECS)

SPEcific Eye Conditions (SPECS) is a not for profit organisation which acts as an umbrella organisation for support groups of any conditions or syndrome with an integral eye disorder. SPECS represents over 50 different organisations related to eye disorders ranging from very rare syndromes that are relatively common to very rare syndromes. The website acts as a portal giving direct access to support groups own sites. The SPECS web page is a valuable resource for professionals and may also be of interest to people with a visual impairment or who are blind. For further details about SPECS contact: Kay Parkinson, SPECS Development Officer (tel: +44 (0)1808 524328; email: k@eyeconditions.org.uk; website: www.eyeconditions.org.uk).

The British Retinitis pigmentosa Society

The British Retinitis Pigmentosa Society (BRPS) was formed in 1975 to bring together people with retinitis pigmentosa and their families. The principle aims of BRPS are to raise funds to support the programme of medical research into an eventual cure for this hereditary disease, and through the BRPS welfare service, help members and their families cope with the everyday concerns caused by retinitis pigmentosa. Part of the welfare service is the telephone help line (+44 (0)1280 860 363), which is a useful resource for any queries or worries relating to the problems retinitis pigmentosa can bring. This service is especially valuable for those recently diagnosed with retinitis pigmentosa, and all calls are taken in the strictest confidence. Many people with retinitis pigmentosa have found the Society helpful, providing encouragement, and support through the Help line, the welfare network and the BRPS branches throughout the UK (tel: +44 (0)1280 821 334; email: bynda@brps.demon.co.uk; website: www.brps.demon.co.uk).

Surgical Eye Expeditions International

Volunteer ophthalmologists in active surgical practice are needed to participate in short term, sight restoring surgery clinics around the world. Contact: Harry S Brown, Surgical Eye Expeditions International, 27 East De La Guerra, C-2, Santa Barbara, CA 93101-9858, USA (tel: +805 963 3303; fax: +805 963 3564; email: hsbrown.md@cox.net or seeintl@seeintl.org; website: www.seeintl.org).

Glucoma Society 24th Annual Meeting and Dinner

The Glaucoma Society 24th Annual Meeting and Dinner will take place on 20 November 2003, from 8.30 am to 9.00 pm at The Royal College of Physicians, London, UK. Further details: Ms Janet Flowers (email: glausoc@ukiere.freeserve.co.uk).

Detachment Course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding the Annual Meeting of Iranian Society of Ophthalmology

The detachment course with international faculty on: Retinal and Vitreous Surgery with Case Presentations preceding Annual Meeting of Iranian Society of Ophthalmology will be held on 29–30 November 2003 and 1–4 December 2003 respectively, at the Razi Conference Center, Hemmat Hyw, Tehran, Iran. Further details: Scientific programme: Prof Ingrid Kreissig, University of Tuebingen, Schleichstr. 12, Reuenberg, 72076 Tuebingen, Germany (tel: +49 7071 295209; email: ingrid.kreissig@med.uni-tuebingen.de). Local organisation: Dr Arman Masheyekhi, Dr Siamak Moradian, Dept of Ophthalmology, Labbanfinejad Medical Center, Pasdaran Ave, Boosan 9, Tehran, 16666, Iran (fax: +98 21 254 9039; email: labbafi@hotmail.com).

5th International Symposium on Ocular Pharmacology and Therapeutics (ISOPT)

The 5th International Symposium on Ocular Pharmacology and Therapeutics (ISOPT) will take place 11–14 March 2004, in Monte Carlo, Monaco. Please visit our website for details of the scientific programme, registration, and accommodation. To receive a copy of the Call for Abstracts and registration brochure please submit your full mailing details to http://www.kenes.com/isopt/interest.htm. Further details: ISOPT Secretariat (website: www.kenes.com/isopt).

XVth Meeting of the International Neuro-Ophthalmology Society

The XVth Meeting of the International Neuro-Ophthalmology Society will take place 18–22 July 2004, in Geneva, Switzerland. Further details: Prof. A Safran, University Hospital Geneva, c/o SYMPORG SA, Geneva (fax: +4122 839 8484; email: info@sympor.ch; website: www.sympor.ch).