Blood group related antigens in ocular cicatricial pemphigoid

C Creuzot-Garcher, T H-Xuan, A M Bron, H Robin, P d’Athis, J Bara

Aim: To study the MUC5AC and the blood group related antigen expression in ocular cicatricial pemphigoid (OCP) according to the distribution of Lewis and secretor phenotypes in OCP patients compared to normal subjects.

Methods: Immunostaining was performed on conjunctival biopsy specimens from 22 consecutive patients suffering from OCP, using monoclonal antibodies (Mabs) directed against the peptidic core MUC5AC mucin (anti-M1/MUC5AC Mabs) and against the saccharide moieties (anti-blood group related antigens). These latter included anti-Le$^a$, anti-Le$^b$, anti-sialyl Le$^a$, and H type 2 Mabs, which immunoreact with Lewis positive and non-secretor (Le$^a$), Lewis positive and secretor (Le$^b$), Lewis positive (sialyl Le$^a$), and secretor (H type 2) phenotypes respectively. Serological tests were also performed to confirm the phenotype of each patient. The immunohistopathological patterns and the distribution of Lewis and secretor phenotypes were compared with the results of a previous study in normal individuals.

Results: (1) In OCP patients compared to the normal population, anti-M1 immunoreactivity of goblet cells was unchanged, whereas anti-Le$^a$, anti-Le$^b$, and anti-sialyl Le$^a$ immunoreactivities of epithelial and/or goblet cells were markedly decreased. (2) 41% of OCP patients had a non-secretor phenotype, which is statistically significantly more than the estimated incidence of the same phenotype in the French population (20%) (p=0.04).

Conclusions: Mucins in OCP patients showed a decreased expression of blood group related antigens whereas the MUC5AC peptidic core detected by anti-M1 Mab remained unchanged. These results also seem to indicate that OCP may be associated with a non-secretor phenotype.

Cicatricial pemphigoid (CP) is a rare systemic mucocutaneous bullous autoimmune disease which affects the eye in 70% of cases.$^{1-3}$ Ocular cicatricial pemphigoid (OCP) is characterised by chronic conjunctivitis, progressive subepithelial fibrosis, fornix foreshortening, selynapharon formation, and dry eye syndrome. Immune deposits at the conjunctival epithelial basement membrane zone are the hallmark of OCP.$^{4-6}$

Mucus is a tear film component which is crucial for the adherence of the aqueous layer to the superficial epithelial cells of the ocular surface. Mucins are made of flexible threads containing subunits. These latter contain heavily glycosylated regions (T domains) interspersed with less glycosylated or “naked” stretches of proteins.$^7$ Carbohydrate moieties are important components of mucus partly responsible for its viscosity. The blood group related epitopes are well known mucin antigens, mainly located in the glycosylated T domains. Le$^a$ and Le$^b$ antigenic determinants result from the epistatic interaction of the products of Lewis (Le or FUT3/5) and Secretor (Se or FUT2) genes on the Le$^c$ precursor chain.$^8$ These genes encode for two different fucosyltransferases which each transfers one fucose molecule onto two distinct sites of the Le$^c$ chain to build Le$^a$ and Le$^b$ epitopes. The transfer of two fucose molecules on the Le$^c$ chain by both fucosyltransferases builds the Le$^b$ antigen. Four different phenotypes—namely, Le$^a$, Le$^b$, Le$^c$ and Le$^d$—are thus generated depending on the enzyme activities of these two fucosyltransferases.$^9$ The links between Lewis phenotypes and Le$^a$ and Se genes are detailed in table 1.

Mucin M1/MUC5AC peptidic core epitopes, antigens secreted by conjunctival goblet cells, are mainly found in the columnar mucus cells of the gastric surface epithelium. All these epitopes probably are encoded by the same MUC5AC gene.$^{12-14}$ In dry eye syndrome, mucin distribution and biochemical characteristics, including glycosylation, are modified.$^{15}$ However, studies using conventional histological stainings or lectins have failed to show any alteration of carbohydrates in the goblet cells of patients with OCP, which is usually associated with dryness.

The purpose of our study was to immunocaracterise the peptidic antigens of conjunctival mucins and to analyse the distribution of the blood group related antigens with respect to the secretor and Lewis phenotypes in OCP patients.

PATIENTS AND METHODS

Population study

Twenty two patients including 16 biopsy proved OCP patients and six OCP suspects, with a mean age of 65 years (range 26–92 years) were included in the study. The diagnosis of OCP suspect relied on the combination of the following criteria: age over 60, progressive conjunctival fibrosis, association with extraocular involvement, absence of prolonged use of preserved topical medications, absence of systemic and ocular non-autoimmune fibrosing conditions including Stevens-Johnson syndrome, toxic epidermal necrolysis, Sjögren’s syndrome, sarcoidosis, lupus, progressive systemic sclerosis, fibrosing infectious conjunctivitis, ocular trauma or burn, rosacea, atopic keratoconjunctivitis, and efficacy of systemic immunosuppressive therapy.

Eighty nine normal individuals who belonged to a previous study were also included.$^{16}$ A conjunctival biopsy had been performed during cataract surgery, and the specimens had been processed with the same methods as in this study.

Tissue samples

Conjunctival biopsies were harvested from the bulbar conjunctiva adjacent to the superior limbus after informed consent had been obtained. They were bisected or trisected,
with one or two pieces processed for direct immunofluorescence and/or direct immunoelectron microscopy, and another piece for immunochromatization of mucin epitopes.

This latter piece was fixed in 95% ethanol overnight, as previously described, embedded in paraffin, and then thin serial sections were cut.

Monoclonal antibodies

All Mabs except for one (Mab NS-19-9) were provided by our laboratory. They included anti-M1 Mabs, and the Mabs against the saccharide moieties of mucins. These latter included anti-Lea (7LE), anti-Leb (2-25LE), and anti-H type 2 (19-0LE), and anti-sialyl Lea Mabs. Anti-Leb Mabs are known to faintly cross react with the Lea antigen.

The links between the blood group antigen related structures, secretor and Lewis phenotypes and Le and Se genes are detailed in table 1. Lewis positive patients can be detected by anti-Lea, anti-Leb, and/or anti-sialyl Lea Mabs. Non-secretor patients include those with Lea phenotype (detected by anti-Lea Mabs) and Leb phenotype which fails to immunoreact with any anti-Lewis and anti-H type 2 Mabs. Secretor patients are detected by anti-Lea but also by anti-H type 2 Mabs.

Immunoperoxidase assay

The sections were deparaffinized and incubated for 30 minutes in 5% NaN3 and 1% horse serum and then with the Mabs (undiluted hybridoma supernatants).

**Table 1 Lewis phenotypes**

<table>
<thead>
<tr>
<th>Name of phenotype</th>
<th>Lea</th>
<th>Leb</th>
<th>Lea</th>
<th>Leb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secretor (FUT2)</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lewis (FUT3/S)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Anti-Lea Mabs faintly react with Leb antigen.*

**Table 2 Immunohistological staining using anti-blood group related antigen Mabs on the conjunctiva of the 22 OCP patients and the 89 normal individuals**

<table>
<thead>
<tr>
<th>Epithelial cells</th>
<th>Goblet cells</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ph</strong></td>
<td>Lea</td>
</tr>
<tr>
<td>N</td>
<td>Lea</td>
</tr>
<tr>
<td>OCP</td>
<td>Lea</td>
</tr>
<tr>
<td>N</td>
<td>Leb</td>
</tr>
<tr>
<td>OCP</td>
<td>Leb</td>
</tr>
<tr>
<td>N</td>
<td>Lea</td>
</tr>
<tr>
<td>OCP</td>
<td>Lea</td>
</tr>
<tr>
<td>N</td>
<td>Lea</td>
</tr>
<tr>
<td>OCP</td>
<td>Lea</td>
</tr>
</tbody>
</table>

OCP, ocular cicatricial pemphigoid; N, normal conjunctiva; Ph, phenotype; Lea, anti-Lea (7LE); S-Lea, anti-sialyl-Lea (NS 19-9); Leb, anti-Leb (2-25 LE); positive reaction from – to +++ represent increasing number of stained cells and intensity staining; NA, not applicable; -, negative staining; number of individuals; goblet cells were found only in 5/7 Lea OCP patients; goblet cells were found only in 11/13 Leb OCP patients.

After three washes in PBS-Tween, the sections were incubated for 30 minutes with sheep anti-mouse Ig antibodies (1/200) bound to peroxidase. After three washes in PBS-Tween, the sections were incubated for 4 minutes with amino-ethylcarbazole containing H2O2. Cell nuclei were then stained with 1% haematein. To control the specificity of the immunoreactivity, Mabs were absorbed with gastric M1 mucin preparation (100 µg/ml). Semiquantitative grading of the intensity of immunostaining from 0 to 3+ was performed in a masked fashion using light microscopy. Gastroduodenal mucosae of individuals expressing each Lewis and secretor phenotype were used as positive controls as previously described.

**Serological determination of Lewis phenotypes**

Serological Lewis phenotypic determination, obtained using haemagglutination after informed consent of the patients had been obtained, was compared to the phenotypes determined by immunohistochemistry of the conjunctiva.

**Results**

Mucin M1/MUC5AC peptidic core epitopes Goblet cells

The number of conjunctival goblet cells was dramatically reduced in OCP patients compared to normal controls. In
OCP patients, goblet cells were present in 16 of 22 conjunctival specimens, and less than six goblet cells were counted in the sections of 12 of them (fig 1). However, their cytoplasm expressed the same intense staining with anti-M1 mucin Mabs as the goblet cells of normal conjunctiva without any link between the presence of M1 antigen and Lewis or Secretor phenotypes.

Epithelial cells
Epithelial cells from OCP and normal conjunctivas were not stained with anti-M1 mucin Mabs.

Lewis related epitopes (table 2)
In OCP patients, Lewis related epitopes were exclusively expressed in the conjunctiva of Lewis positive individuals. Le a, Le b, and Le c phenotypes were found in 13, seven, and two patients, respectively. Sialyl Le a epitopes were expressed in goblet cells and epithelial cells of both Le a and Le b individuals as previously described in normal conjunctiva.18

Goblet cells
Of the 16 OCP conjunctival samples containing goblet cells, five expressed the Le a antigen and 11 the Le b antigen. The intensity of staining with anti-Le a, anti-sialyl Le a, and anti-Le b Mabs was weaker in OCP than in controls. Sialyl Le a epitope immunostaining was negative or very weak in the goblet cells of two Le a and nine Le b OCP patients. One Le a and nine Le b patients did not express the Le a epitope in contrast with normal conjunctiva (according to the well known slight cross reaction of Le b and Le c—see above in "Monoclonal antibodies").

Epithelial cells
As in goblet cells, conjunctival epithelial cell immunoreactivity for sialyl Le a epitopes was slightly weaker in Le a OCP patients than in Le b normal individuals (fig 2). In two patients, no immunostaining was seen with the four Mabs indicating that they had a Le c phenotype. Le d was not expressed in OCP patients.

Comparison of the Lewis and secretor phenotypes of OCP patients and normal French population
Serological tests were performed in 17 of 22 OCP patients, and as in normal individuals, the same Lewis phenotype was found in red blood cells as in the conjunctiva. Therefore, immunohistological processing of the conjunctiva can be used for phenotypic studies comparing normal and cicatricial pemphigoid populations. There was a statistically significant difference (p = 0.047) between both populations with respect to the non-secretor phenotype (Le a and Le c), which was found in 41% (nine out of 22 patients) and 20% (17 out of 89 normal subjects) in the OCP group and the normal French population,18 respectively (table 2).

Figure 1  Immunoperoxidase staining of the conjunctiva of a patient with OCP using anti-M1 MAb and haematein counterstaining. The number of goblet cells is markedly decreased, but all goblet cells (arrows) and no epithelial cells were stained with the Mab (magnification ×500).

Figure 2  Conjunctival sample from a Le b patient (Le(a+b)) with OCP. (A) Anti-Le b Mab markedly stained the cytoplasm of the epithelial cells. (B) Anti-sialyl Le a Mab did not stain the epithelial cells. Small arrows indicate the nuclei of the haematein counterstained epithelial cells. Goblet cells are absent (magnification ×500).
DISCUSSION

According to the results of previous conventional histochemical studies, the mucin produced by goblet cells in OCP does not seem to differ from the mucin secreted by normal conjunctiva. Wells et al showed that goblet cells of OCP patients and normal individuals were stained with PNA (peanut agglutinin), HPA (Helix pomatia agglutinin), WGA (wheat germ agglutinin), and sWGA (succinylated wheat germ agglutinin). The binding of native WGA to the superficial conjunctival cells indicated the presence of N-acetyl-glucosamine and/or sialic acid and its residues. Results of sodium dodecyl sulfate polyacrylamide gel electrophoresis studies have also shown that conjunctival mucins of apomucin and secretory modality was similar in OCP, Stevens-Johnson syndrome, rosacea blepharoconjunctivitis, and normal individuals.

As in previous studies, we showed that conjunctival goblet cells were scarce or absent in OCP patients. However, changes observed during OCP seem to be both quantitative and qualitative regarding mucin characteristics. The changes involved the carbohydrate structure of the oligosaccharide chains, but not the peptide core encoded by MUC5AC gene.

It should be of great interest to study membrane associated chains, but not the peptidic core encoded by MUC5AC gene. Involved the carbohydrate structure of the oligosaccharide changes observed during OCP seem to be both quantitative and/or measurement of mRNA levels in OCP patients.

We also demonstrated in our study that the percentage of individuals with non-secretor phenotype was higher in OCP patients than in the normal French population. The percentage of non-secretor phenotype in our patients. We showed a similar immunopathological pattern in pterygium—for example, a decreased sialyl Lea immunostaining that may be related to a lower expression of ST3GaIIII gene than in normal conjunctiva. Abnormal sialyltransferase activity observed during cell differentiation or maturation, particularly in tumours deserves to be investigated. Decreased activity of glycosyl transferase could be assessed with direct assay of glycosyltransferase activity and/or measurement of mRNA levels in OCP patients.

We also demonstrated in our study that the percentage of non-secretor phenotype was higher in OCP patients than in the normal French population. The mechanisms by which oligosaccharide epitopes, and more particularly blood group related antigens, could be involved in the pathogenesis of OCP are unclear. Lewis, secretor, and ABO loci control the glycosyltransferase involved in the synthesis of the oligosaccharide chains. Their role has already been established in lung function, wheezing and asthma. It has been suggested that non-secretor patients could be more prone to develop mucous membrane diseases. It has been hypothesised that oligosaccharide epitopes are necessary for the recognition of some micro-organisms. Blood group related antigens have been involved in the pathogenesis of Helicobacter pylori associated diseases, as Lea patients may be more susceptible to develop gastric ulcers.

Six of the 22 OCP patients included in our study did not disclose the typical immunopathological features of the disease consisting of immune deposits at the conjunctival basement membrane. However, it has been shown that failure to demonstrate this deposition in a typical disease was possible, probably because of a lack of sensitivity of the technique. The immunopathological proof is thereby not mandatory if the disease fulfills all diagnostic clinical criteria.

In our study, all six OCP subjects had or later developed typical extraocular lesions of CP, and responded well to systemic immunosuppressive therapy. Other systemic and ocular non-autoimmune fibrosing conditions were also easily ruled out. Moreover, there were no change in the conjunctival staining between biopsy proved and the suspect OCP patients.

In conclusion, we characterised the conjunctiva of patients with OCP with respect to the peptidic MUC5AC and blood group related antigens of mucins. We observed some patterns of glycoconjugate epitopes but not of the peptidic core detected by anti-M1/MUC5AC MAb suggesting an abnormal glycosyltransferase expression. We also found an increase in the percentage of non-secretor phenotype in our patients. However, we are aware of the possible bias owing to the retrospective nature of the study as well as the lack of membrane associated mucin characterisation. Further studies including more patients are required to confirm these findings and to help us in a better understanding of the pathogenesis of autoimmune cicatrising conjunctivitis.

Authors’ affiliations
C Creuzot-Garcher, A M Bron, Service d’Ophtalmologie, Université de Bourgogne, Dijon, France
T H Xuan, H Robin, Service d’Ophtalmologie, Fondation Ophthalmologique A de Rothschild, Paris, France
P d’Athis, Service d’Informatique Médicale, Université de Bourgogne, Dijon, France
J Bara, U-482 INSERM, Hôpital Saint-Antoine, Paris, France

Presented in part at the annual meeting of the Association for Research in Vision and Ophthalmology, Ft Lauderdale, FL, USA, May 1999.

Correspondence to: C Creuzot-Garcher, Department of Ophthalmology, General Hospital, 3 rue du Faubourg Raines, 21000 Dijon, France; catherine.creuzot-garcher@chu-dijon.fr

Accepted for publication 29 February 2004

REFERENCES


www.bjophthalmol.com


Go MF. What are the host factors that place an individual at risk for Helicobacter pylori-associated disease. Gastroenterology 1997;113:515–20.