Deposition of silicone oil droplets in the residual anterior lens capsule after vitrectomy and lensectomy in rabbits

T Miyamoto, S Saika, A Yamanaka, Y Okada, Y Ohnishi

Aim: To examine the histology of preserved anterior lens capsule in vitrectomised and lensectomised rabbit eyes with and without silicone oil tamponade.

Methods: Forty adult Japanese albino rabbits received two port vitrectomy and lensectomy with or without silicone oil tamponade in one eye under both general and topical anaesthesia. Anterior lens capsule was preserved during operation. After healing intervals residual anterior capsule was histologically observed under light or electron microscopy.

Results: Immediately after operation, cuboidal lens epithelial cells were observed on the posterior surface of the preserved anterior capsule. During healing intervals in eyes with or without silicone oil tamponade, regenerated lens structure of Sommerring's ring and fibrous tissue formed in the peripheral and central areas of the residual capsule, respectively. Ultrastructural observation revealed the presence of many vacuoles amid matrix accumulation on the posterior capsular surface, suggesting the deposition of emulsified silicone oil droplets.

Conclusion: Lens epithelial cells produce regenerated lenticular structure and fibrous tissue on the residual capsule following vitrectomy and lensectomy in rabbits. Silicone oil droplets formed by its emulsification deposit in extracellular matrix accumulated on the posterior surface of the anterior capsule. Emulsified silicone may potentially enhance opacification of residual anterior capsule following pars plana vitrectomy by silicone oil deposition and subsequent activation of lens epithelial cells.

Materials and Methods

Surgical procedure in rabbits

Forty adult Japanese albino rabbits (2.0–2.2 kg body weight) were used, under both general and topical anaesthesia with intramuscular injection of ketamin hydrochloride and xylazine, and oxybuprocaine eyedrops as previously reported. Scleral incision was made at two points 1.0 mm apart from limbus, and then PPL and vitrectomy were performed using the 2 port system under infusion of balanced salt solution (BSS plus, Alcon, Fort Worth, TX, USA). Anterior capsule was preserved and posterior capsule was excised in one eye of each animal. Lens epithelial cells on the inner surface of the anterior capsule following lensectomy and vitrectomy with or without silicone oil tamponade in rabbits by using light and electron microscopy.

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

intravenous overdose of pentobarbital sodium. Each globe was enucleated and processed for histology as described below.

Scanning electron microscopy

Six globes excised at weeks 2 and 4 were fixed in 2.0% glutaraldehyde in 0.1 M phosphate buffer for 24 hours at 4°C. After hemisectioning the globe, the anterior segment of each globe was observed using the Miyake-Apple View after preparation for scanning electron microscopic examination—that is, dehydration through an ethanol series, critical point drying, and cold coating by an ion spatter.

Light microscopy and immunohistochemistry

Globes obtained at weeks 3 and 4 were embedded in OCT compound or paraffin following a 48 hour fixation in 2.0% paraformaldehyde in 0.1 M phosphate buffer and dehydration. Cryosections (8 μm thick) or paraffin sections (5 μm thick) were processed for haematoxylin and eosin (HE) staining or indirect immunohistochemistry as previously reported. Antibodies used in this study are listed in table 1.

Transmission electron microscopy

Four globes excised at months 1 and 12 were fixed in 2.0% glutaraldehyde in 0.1 M phosphate buffer for 24 hours at 4°C. Residual lens capsule was then removed and post fixed in 1.0% osmium tetroxide for 2 hours. Following dehydration through a graded ethanol series, specimens were embedded in Epon 812 mixture (Quetol 812, Nissin EM, Tokyo, Japan). Ultrathin sections were electron stained with uranyl acetate and lead citrate, and observed under transmission electron microscopy.

![Figure 1](image1)

Figure 1 Scanning electron microscopy of the posterior surface of the residual anterior capsule of a rabbit after PPL and vitrectomy. (A) Immediately after the operation, islands of the remaining columnar lens epithelial cells (LEC) are detected on exposed posterior surface (AC) of the residual capsule. (B) At a higher magnification, intercellular junctions are observed (arrows). (C) A posterior surface of the capsular specimen at week 2. Regenerated lenticular structure of Sommerring’s ring (S) is observed in the peripheral region. No columnar cells are seen in the central area. (D) A higher magnification picture of the central area shows accumulation of fibrous extracellular matrix structure on the capsular surface (AC). Bar: 50 μm (A and C); 5 μm (B and D).

![Figure 2](image2)

Figure 2 Histology with haematoxylin and eosin staining of a residual capsular structure at week 4. (A) Regenerated lenticular structure of Sommerring’s ring (S) is observed in the peripheral region. Arrow indicates the area of adhesion of anterior capsule (AC) and the peripheral edge of the equatorial capsule. (B) The central area of the posterior surface of the remaining anterior capsule (AC) is covered with accumulation of fibrous extracellular matrix structure (asterisk) containing cells. Bar: 40 μm.

Table 1: Primary antibodies used for immunohistochemistry

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Animal</th>
<th>Dilution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-type I collagen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Fuji Yakuhin Kogyo†</td>
</tr>
<tr>
<td>Anti-type I collagen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Southern Biotechnology†</td>
</tr>
<tr>
<td>Anti-type III collagen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Fuji Yakuhin Kogyo†</td>
</tr>
<tr>
<td>Anti-type III collagen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Southern Biotechnology†</td>
</tr>
<tr>
<td>Anti-type IV collagen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Fuji Yakuhin Kogyo†</td>
</tr>
<tr>
<td>Anti-type IV collagen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Southern Biotechnology†</td>
</tr>
<tr>
<td>Anti-type V collagen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Southern Biotechnology†</td>
</tr>
<tr>
<td>Anti-collagen fibrinogen</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Southern Biotechnology†</td>
</tr>
<tr>
<td>Anti-osteopontin</td>
<td>Goat</td>
<td>X200 in PBS</td>
<td>Southern Biotechnology†</td>
</tr>
<tr>
<td>Anti-α smooth muscle actin</td>
<td>Mouse</td>
<td>X200 in PBS</td>
<td>Sigma†</td>
</tr>
</tbody>
</table>

†Mouse monoclonal. †Toyama, Japan. †Birmingham, AL, USA. †Santa Cruz, CA, USA. †Saint Louis, MO, USA.
RESULTS

Light and electron microscopy of healing capsule without silicone oil tamponade

Scanning electron microscopy showed cuboidal epithelial cells lining the inner surface of the anterior capsule immediately after operation (fig 1A and B). The edge of the capsular bag was found to adhere to the peripheral area of the anterior capsule, forming the regenerated lenticular structure of Sommerring’s ring (fig 1C). The central area of the posterior surface of the remaining anterior capsule was covered with fibrous connective tissue (fig 1D). Haematoxylin and eosin staining revealed similar findings as suggested by scanning electron microscopy. In healing capsular tissue, the capsular bag was found to adhere to the posterior surface of the anterior capsule, forming the regenerated lenticular structure of Sommerring’s ring (fig 2A). The central area of the posterior surface of the remaining anterior capsule was covered with fibrous connective tissue (fig 2B). Transmission electron microscopy in specimens at weeks 2 and 4 showed the presence of lens epithelial cells beneath the anterior capsule and regenerated lenticular structure in the peripheral area. Lens cells in the central area of the inner surface of the anterior capsule were elongated and fibroblast like (fig 3A), while regenerated lens fibres were seen in Sommerring’s ring in the peripheral area (fig 3B). Extracellular matrix was found to be accumulated amid the lens cells with a fibroblastic appearance. An observation at a higher magnification revealed the presence of banded matrix fibres of collagen beneath the anterior capsule. Bar: \(3 \mu m\) (A); \(4 \mu m\) (B); \(0.5 \mu m\) (C).

Figure 3 Transmission electron microscopy of residual capsular tissue after PPL and vitrectomy at week 4. (A) The central area of the posterior surface of the remaining anterior capsule (AC) is covered with accumulation of fibrous extracellular matrix structure (asterisk) containing fibroblast like presumed lens epithelial cells. (B) Regenerated lenticular structure of Sommerring’s ring (S) is observed in the peripheral region. N indicates the nuclei of fibre differentiating cells. (C) A higher magnification picture of the asterisk area in frame A shows the presence of banded matrix fibres of collagen beneath the anterior capsule. Bar: \(3 \mu m\) (A); \(4 \mu m\) (B); \(0.5 \mu m\) (C).

Figure 4 Histology with haematoxylin and eosin staining of a residual capsular structure in a silicone oil tamponaded eye at week 4. (A) Regenerated lenticular structure of Sommerring’s ring (S) is observed in the peripheral region. (B) The central area of the posterior surface of the remaining anterior capsule (AC) is covered with an accumulation of fibrous extracellular matrix structure (open asterisk) containing cells. Many vacuoles can be seen amid the matrix (asterisks). Bar: \(40 \mu m\).

Figure 5 Ultrastructure of tissue newly formed on the central region of the posterior surface of the residual anterior capsule at month 12. Fibroblast like presumed lens epithelial cells and extracellular matrix accumulation are observed in the specimen with silicone oil tamponade. In the specimen with silicone oil tamponade, many vacuole like structures—suggesting the presence of emulsified silicone oil—were observed among cells (asterisks). Bar: \(6 \mu m\).
of fibrous components with the bundled characteristic of collagen (fig 3C).

Immunohistochemistry

Although light and electron microscopy showed the presence of presumed lens cells with a fibroblastic appearance and extracellular matrix accumulation, such morphological observations were not able to reveal the nature of these components. Immunohistochemistry revealed findings similar to those in previous reports: the presence of type IV collagen in the capsule and vimentin positive lens epithelial cells. Lens epithelial cells were negative for type I collagen and cellular fibronectin. The specimens at week 3, with extracellular matrix accumulated on the central posterior surface of the remaining capsule, were labelled with antibodies against collagen types I and IV, cellular fibronectin, and osteopontin (data not shown). Presumed lens cells of a fibroblastic appearance were labelled with the antibodies against vimentin. Cells positive for vimentin, and osteopontin (data not shown). Presumed lens cells of surface of the remaining capsule, were labelled with extracellular matrix accumulated on the central posterior surface of the capsule, and cellular fibronectin. The specimens at week 3, with extracellular matrix accumulation. The deposition of emulsified silicone oil in the iris, ciliary body, and retina tissue has many vacuoles of presumed emulsified silicone oil amid transmission electron microscopies revealed the presence of rigid and foldable posterior chamber intraocular lenses. Part II: Choosing the correct haptic fixation and intraocular lens design to help eradicate posterior capsule opacification. Ophthalmology. 1999;106:891–900.

REFERENCES

Capsule and silicone oil